STABLE ENVELOPES: GENERALIZATIONS

PAVEL SAFRONOV

1. ASSUMPTIONS

We work over the complex numbers. Let A be a torus and T = A x C*. Let Ax = Hom(A, C*) be the
weight lattice of A. Let ag = Hom(C*,A) ®z R be the real locus of the Lie algebra of A.
Let X be a smooth quasi-projective variety with a T-action.

Definition 1.1. An equivariant root o € Ap is a weight for the A-action of the normal bundle of the
fixed point locus X C X. A root hyperplane is the hyperplane {a =0} Car. A chamber € C ag is a
connected component of the complement of root hyperplanes.

Definition 1.2. Let € be a chamber. Given a subvariety Y C X the attracting variety of Y Attre(Y) C
X consists of all points x € X such that the limit lim, ,o0(2) - € Y exists for some (equivalently, all)
cocharacters o € €. The attracting variety Attre C X” x X is the subset of pairs (y,z), such that
lim, yo0(2) -z =y.

We have a correspondence
Attr

O\

XA X

xA=1[F

be the decomposition of the fixed point locus into connected components. Each F; is a smooth variety. There
is a partial order on the set of components of X” defined as follows.

Let

Definition 1.3. Let € be a chamber. F; > F; if F; C Attre(F;). The full attracting variety is
Attrg(F) = ] Attre(F)).
F;<F;
We will assume the following on the above data.

Assumption 1.4. For any connected component Fy C X” the full attracting variety Attré(Fi) C X s
closed.

Remark 1.5. If X is an A-equivariant symplectic resolution, then the assumption is satisfied, see [MO19,
Lemma 3.2.7].

The following is our main example.

Ezample 1.6. Consider A = C* x C* acting on P! via (t1,t2) - [ : y] = [t17 : tay]. Consider its canonical
extension to a symplectic A-action on X = T*P!. Consider the C*-action on X given by scaling the fibers
so that the symplectic structure has weight 2. This defines the T = A x C*-action on X.

The fixed point locus X” is {0,00}. The two equivariant roots are (t1,t2) — (t1/t2)T!. Let €, be the
chamber containing the cocharacter ¢ — (¢,1) and €_ the opposite chamber.

From now on the chamber € will be implicit. The attracting varieties are

Attr(oo) = T% P, Attr(0) = P\ {oo}.
As {oo} € Attr(0), the partial order is {0} > {oo}.



2. COHOMOLOGICAL STABLE ENVELOPES
Fix the data (T, X, €) as before. The (cohomological) stable envelope will be a certain map
Stab: H$(X*) — H3(X)

of H% (pt)-modules. To define it, we need extra data. For an A-equivariant vector bundle V' — X we denote
by eA(V) € Hf\dlm(v)(X) the equivariant Euler class (equal to the equivariant top Chern class of V).

For a connected component F; C X” we have a decomposition
Tx|r, =Tr &Ny N_,

where T, is fixed by A, N has positive and N_ has negative A-weights (with respect to the chamber €).
To define stable bases, one has to fix some signs. It is useful to assume one has a polarization of X. In
the following we consider T-equivariant K-theory of X and denote Kgx (pt) = C[¢"/2, ¢~ 1/2].

Definition 2.1. A polarization of X is a choice of a virtual bundle T;/z € Ky(X) with an equality

TY? + ¢ H(TY?)" = Tx in Kr(X).
Proposition 2.2. Suppose X is a symplectic variety with a T-action so that C* C T scales the symplectic

structure with weight 2. If T%z is a Lagrangian subbundle in Tx, then it defines a polarization of X.

Proof. We have an exact sequence of T-equivariant vector bundles

0— TY? — Tx — ¢ {(TY?)* — 0,

where we have used that the symplectic structure has weight 2 to identify ¢(Tx /T%Q) = (T}X/Q)*. In
K-theory this gives the equality
Tx = TY? + ¢ H(TY?)" € Kr(X).
|
Example 2.3. Suppose Y is a smooth variety with an A-action and consider the induced symplectic A-action

on X = T*Y. Extend it to a T-action so that C* C T acts on fibers with weight 2. Then the vertical
tangent bundle of X — Y defines a Lagrangian subbundle and hence a polarization.

Given a polarization of X, we get a polarization of each component F; C XA, i.e. we have a splitting
Np, = NY2 4 g7 YNV € Ke(F).

An element of Hj (pt) = Cla] is a polynomial and we denote by deg, its degree. Since A acts trivially on
XA we have

HY(X%) = g (X*) @ Cla]
and so the degree deg, of elements of H}(X?) is also well-defined.

Ezample 2.4. Consider the A-equivariant Euler class ¢A(N_) of the negative normal bundle N_ to F;. We
have

degp eA(N_) = dimN_ = codimF; /2.
Theorem 2.5. Assume that dim(XA) = 0 for simplicity. There is a unique map
Stab: H$(XA) — HY(X)

of H$(pt)-modules, such that for any component F; C X” the stable envelope Stab(i) = Stab(1f,) satisfies

(1) suppStab(i) C Attr! (F}),

: dimNY/? T
(2) Stab(i)|p, = (=1)™" 7+ e’ (N_) -,
(3) dega(Stab(i)|r,) < codimF}/2 = dega(Stab(j)|r,) for any F; < F;.
Uniqueness is shown in [MO19, Theorem 3.3.4] and existence (under the more general assumptions stated

here) is shown in [Oko21].
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Example 2.6. Consider X = T*P! and the T-action on X from example 1.6. Fix the chamber €, and the
polarization from example 2.3.
We claim that
Stab(0) = [P'] + [T: P'],  Stab(co) = —[T7 P?]
satisfy the axioms.
Indeed, the support axiom is obvious. Next, identify

H$(pt) = Cluy, usg, A
Then
P =uz —us — h
[PY|oo = u1 —uz — h
[T5Plo=0
[T5P oo = un — ua,

which can be computed from the excess intersection formula. E.g. [Pl]|p = e"(T§P!) and [T Pl]|e =

e (ToPY).

We have
e"(N_) =up —uy — A, N}rm:O

at {0} and

TN )=uy—uy, NY2=TP!
at {oo} which proves the second axiom.
Finally, we have
Stab(0)|oo =u, — Uy —h+us—u =—"h
which has A-degree 0 < (codim{0})/2 = 1, which verifies the last axiom.
The pullback along the zero section induces an isomorphism

H$(T*PY) = Clz, up, ug, B /(@ + uy) (z + ug).

The restriction to 0 is # — —ug and the restriction to oo is # — —u;. Under this isomorphism [T* P1'] goes
to = 4+ ug and the stable envelopes are

Stab(0) = —u; — x — h, Stab(co) = —us — .

3. GENERAL STABLE ENVELOPES

For a smooth complex variety X with an action of a torus T we can consider the following generalized
cohomology theories:

e Equivariant cohomology H$(X).
e Equivariant K-theory K1(X).
e Equivariant elliptic cohomology Ellt(X) which depends on an elliptic curve E.
Correspondingly, there are stable envelope constructions in all of these three settings: the K-theoretic
stable envelopes are defined in [Oko17] and the elliptic stable envelopes are defined in [AO21].
In the case of Nakajima quiver varieties the stable envelopes allow one to construct R-matrices for the
following quantum groups:

e Yangian Y(g) from cohomological stable envelopes.
e Quantum affine algebra U,(g) from K-theoretic stable envelopes.
e Elliptic quantum groups E; ,(g) from elliptic stable envelopes.

These also admit categorifications. Namely, equivariant K-theory Kt(X) can be categorified to the
equivariant derived category D?Coht(X). Correspondingly, there are expected to be stable envelopes in this
setting which would be functors

DPCoht(X*) — DPCohr(X).
This is currently a work in progress by Halpern-Leistner, Maulik and Okounkov.
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The elliptic cohomology of X over the Tate elliptic curve E = C* /¢% defined over C((q)) is closely
related to the “Tate K-theory” [KMO7] which is the C*-equivariant K-theory of the algebraic loop space
LX = Map(Spec C((t)), X ), where C* acts on LX by scaling t. More precisely, for the Tate elliptic curve
we should have

EH(X) &= KCX (X) ®Z[q,q*1] C((q))

This again can be categorified. We refer to [MSY20] for some developments in this direction.

4. K-THEORETIC STABLE ENVELOPES

In this section we explain stable envelopes in the setting of equivariant K-theory K+(X). Let us recall
some basic facts about (equivariant) K-theory:
e For a torus T we have
Kr(pt) = Z[A],
the group algebra of the character lattice A = Hom(T, C*).
e If X is a T-variety, then K7(X) is a Kt (pt)-algebra.
o If E is a coherent sheaf over a smooth variety X, then it defines a class [E] € K(X) and similarly
for the equivariant version.
e If F is a vector bundle over X, then it has the Euler class
dim FE

e(B)= ) (1)

=0

i
NE
e For a T-equivariant morphism f: X — Y of smooth varieties we have the pullback morphism

If f is proper, then we also have the pushforward morphism
o K3 (X) — K1 (Y).
e Suppose
Yy s X
b
Yy — > X

is a Cartesian diagram of quasi-compact quasi-separated schemes, where ¢ and i’ are regular closed
immersions, so that there is an exact sequence of vector bundles

0— NyI/X/ — (f/)*NY/X — A — 0.
Then there is an excess intersection formula (see [Tho93, Théoreme 3.1))
friv(=) =il (e(A) - (f)"(=))
of maps K(Y) — K(X’). An analogous formula holds in the equivariant context (see [Kha2l,

Corollary 0.2]).
e If p: V — X is a vector bundle with i: X — V the zero section, then i* and p* induce isomorphisms

K(X) 2 K(V).
An analogous formula holds in the equivariant context.

Ezample 4.1. Ifi: Y — X is a regular closed immersion, then the excess intersection formula gives i*i,(—) =
e(Ny/x) - (=)
Remark 4.2. If E is a vector bundle of rank r over X, then

ch(A*E*) = c.(E).

In particular, the K-theoretic Euler class goes to the cohomological Euler class under the Chern character.
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We continue with the previous assumptions on X. In particular, we assume that it comes with a polariza-
tion T/ € K7(X). Given a component F; C XA recall that the polarization gives elements N/2 € Ky(F})

such that
NFi — N1/2 +q_1(N1/2)*.
Further splitting these into positive and negative A-weights (with respect to €) we get an equality
N_=NY2 4 gt (NY/?)
and similarly for positive weights. In particular,
Z1n1/24 % 1/2
N_—NY2—g4 1(N+/ ) —N+/ .
Its determinant is det N (2
et N_  gim N1/ 172\~
i = £ (detNY2)
In particular, it has a canonical square root (recall that ¢'/? € K1(X))
det N_ \ /2 dim N1/2
__—dim /2 1/2\—1
(detN1/2> =g e
To define K-theoretic stable envelopes we also have to choose a slope parameter
L € Pic(X) ®z R.

Just like in the case of equivariant parameters, there are Kdhler roots which define walls (affine hyper-
planes) in Pic(X) ®z R. We say a slope £ € Pic(X) ®z R is generic if it does not lie on a wall. Note that
we may choose a lift of the slope to a class in Pica(X) ®z R; the choice of a lift will not matter.

Theorem 4.3. Assume that dim(X”*) = 0 for simplicity. For a generic slope L there is a unique map
Stab: K7(X*) — K(X)
of K(pt)-modules, such that for any component F; C X” the stable envelope Stab(i) = Stab(1f,) satisfies
(1) supp Stab(i) ¢ Attr! (F}),
(2) Stab(i)lr, = ()N () e,
(3) dega(Stab(i)|r,) C dega(Stab(j)|r,) + L|r, — L|F, for any Fy < F;.

Remark 4.4. Call the complement of the walls in Pic(X) ®z R an alcove. For any two slopes lying in the
same alcove the K-theoretic stable envelopes are the same.

Remark 4.5. Stable envelopes also exist for non-generic slopes. But if a slope lies on a wall, uniqueness fails:
the stable envelopes for the adjacent alcoves satisfy the axioms.

Ezample 4.6. Consider X = T*P! and the T-action on X from example 1.6. Fix the chamber €, and the
polarization from example 2.3. We have Pic(X) = Z generated by Op1(1). Consider the slope £L = O(—¢) €
Pic(X) ®z R for 0 < e < 1. Let

Kr(pt) = Zuy™, uy", =72,
We claim that
Stab(0) = [0p1] + quauy ' [Ors_p1], Stab(co) = —q1/2uQuf1[OT&p1].
The support axiom is obvious. By the excess intersection formula
[Opi]lo =1 —wuz'q
0pi]loo = 1 — uzui'q
[Or: p1]lo =0
[OT;OPl]loo =1- u1u2_1
At {0} we have Ni_/ > =0, so the normalization axiom is

Stab(0)]o = 1 — quyuy '
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which is obviously satisfied. At {oco} we have N}/* = T* P! which has class uju; 'q~

normalization axiom is

in K-theory, so the

12
Stab(00)|se = — (1 — uyuz )
ULuy ¢
which is again satisfied.

Finally, we have to check the degree axiom for co < 0. Since all expressions involve a = uguf17 it will be
convenient to consider the degree with respect to this variable. We have deg(Stab(co)|s) = [0,1]. Similarly,
since

Stab(0)|ec =1 —¢
we have deg 4 (Stab(0)) = [0,0].

Op1(2) = Tp1 lifts to an A-equivariant line bundle with Op1(2)|s having class uou; * and Op1(2)|o having
class uju; * in equivariant K-theory. Therefore, the degree axiom is that deg(Stab(0)|,) = [0, 0] is contained
in [0,1] —e=[—€,1—¢. So, it is also satisfied.

The pullback along the zero section induces an isomorphism

Kr(T*PY) = ZzF uit ud?, 7Y% /(1 — 2ur) (1 — zug).

The restriction to 0 is o + u; * and the restriction to oo is  + u; *. Under this isomorphism [Or«_p1] goes

1

to 1 — 2 'uy ! and the stable envelopes are

Stab(0) = 1 — ugusx?q + quau; ' (1 — 2~ uy ), Stab(oo) = —¢"2usuy (1 — z 7 uyt).

Example 4.7. Consider the previous example with the trivial slope £ = Op:. Then
Stab(0) = [Op1] + UQUl_l[OT;OPIL Stab(oo) = 7(]1/2U2U1_1[OT;CP1].
also satisfies the stable envelope axioms. To see that it is different from the previous expression observe that
Stab(0)]ee = ugu; (1 — q).

Thus, for the trivial slope the uniqueness of stable envelopes fails. As explained before, it is the stable
envelope for the slope £ = Op1(e) for 0 < e < 1.

5. K-THEORETIC STABLE ENVELOPES FOR COTANGENT BUNDLES OF FLAG VARIETIES

Let G be a connected simply-connected semisimple complex algebraic group, B C G a Borel subgroup
and B = G/B the flag variety. In this section we will consider X = T*B with its G x C*-action, where G
acts on B in the obvious way and C* scales the fibers with weight 2. We let A C G be the maximal torus.
Let W be the Weyl group, A = Hom(A, C*) the weight lattice. For s,t € W denote by n,, the order of
steW.

Let N C g* be the nilpotent cone with T*B — N the moment map for the G-action and St = T*B xnT*B
the Steinberg variety. Recall the affine Hecke algebra.

Definition 5.1. The affine Hecke algebra H is the Z[q'/?, ¢~'/?]-algebra with generators T (for s a
simple reflection) and 6, (for © € A a character) with the relations

TSTt...:TtTS...
—— N —
0,0, = 0,4,

Tsow = ewTw S(Jf) =z
9:5 - TsaezfaTsa
(Ts + q_l/Q)(Ts - ql/Q) =0.
For w € W we denote by T,, € H the element obtained by writing a reduced expression of w. There is
a natural algebra structure on Kgycox (St) given by convolution. Moreover, there is a natural Kgycx (St)-

module structure on K1(T*B).
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Theorem 5.2 (Kazhdan—Lusztig, Ginzburg). There is an isomorphism of algebras
Kgyxcox (St) 2 H.

The equivariant roots in this case coincide with the usual roots for G. So, as the chamber € we may take
the chamber of positive roots with respect to the Borel B. We may identify the fixed points with

XA =W,
where w = e € W corresponds to B € B. Consider the polarization from example 2.3. We may identify
Pic(X) = A.
We define the negative fundamental alcove of A ®z R to consist of weights A such that
-1<(\a’)<0

for all positive roots c. From now on the slope £ € A®zR is an arbitrary element of the negative fundamental
alcove. The stable envelopes will define K-theoretic classes

Stab(w) € K1(T*B).
The following is shown in [SZZ20].

Theorem 5.3.
(1) Stab(e) = [OT:3].
(2) For any w € W one has Stab(w) = T,,-1(Stab(e)).

Remark 5.4. In the case when € is the negative Weyl chamber one has
Stab(wo) _ (_ql/Q)dim(G/B)e2p[oT;O’B]-
This coincides with the calculation of Stab(co) in example 4.6 for G = SLs.

6. DEFORMATION QUANTIZATION IN POSITIVE CHARACTERISTIC AND STABLE ENVELOPES

In this section we assume that X is a conical A-equivariant symplectic resolution. In particular, it implies
that H'(X,0) =0 for ¢ > 0. In this case

Pic(X) ®z C = H*(X; C)
by taking the first Chern class.

According to [BK04] filtered deformation quantizations of X are parametrized by A € H?(X; C) which can
be made A-equivariant. It is also expected that one can quantize the Lagrangian correspondence X + Attr —
XA to define a parabolic induction functor from deformation quanzation modules on X* to deformation
quantization modules on X. It is expected (the ongoing work of Bezrukavnikov and Okounkov) that it is
related to K-theoretic stable envelopes and their categorifications via reductions mod p which we will briefly
recall.

If X is a symplectic variety over a field of positive characteristic, its deformation quantization A, often
has a large center, so that A localizes to a sheaf of Azumaya algebras A over the Frobenius twist X 1) of
X. In certain cases A might be canonically split, i.e. it is isomorphic to the endomorphism algebra of a
vector bundle on X1, In this case we get an equivalence

D2 (A, — mod) = D”Cohy(X ™)

of the corresponding derived categories. This is expected to happen for quantization parameters
1
L € —Pic(X) C Pic(X) ®z Q
p

which lie away from the same affine hyperplanes that appear in the definition of K-theoretic stable envelopes.
We refer to [Los17] for some results in this direction.
So, the parabolic induction functor has a “classical shadow” given by a functor

DPCoht(X*) — D"Coht(X)
which categorifies the K-theoretic stable envelope. In this section we describe how this works for X = T*B,

the cotangent bundle of the flag variety, following [SZZ21].
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Let p be the Weyl vector and consider the affine hyperplanes
Hfy,={N €A@@z Q| (a’ XN +p) =np}.

Consider the fundamental alcove containing (e — 1)p for a small positive e. We say X € A ®z Q is regular
if it does not lie on the affine hyperplanes.

Remark 6.1. Let
N+p
P
Then ) is reqular in the above sense if, and only if, the slope A € A ®z Q is generic as in the definition
of K-theoretic stable envelopes. Moreover, X' lies in the fundamental alcove if, and only if, A lies in the
negative fundamental alcove, i.e.

)\:

1< (a¥,\) <0
for every positive root «.

For a regular integral A’ the papers [BMR06; BMRO08] have established a localization result identifying a
certain derived category of g-representations over an algebraically closed field & of positive characteristic p
and DPCohr, (T*B(M1). We denote this equivalence by 4.

Now consider the Verma module Z(w(\ + p) + p) with the corresponding highest weight over g. In
particular,

N Z(w(X 4 p) + p) € D*Cohr, (T*BM).
Let Bz be the Z-form of the flag variety. The following is [SZZ21, Theorem 1.2].

Theorem 6.2. Suppose p is greater than the Cozeter number of G, X' € A @z Q is reqular and integral and
let
)\/
G
p

There are objects Staby(w) € DPCoh, (T*Byz) with the following properties:

o We have an equality

[Staby (w) ®z C] = e ?Stab(w) € K(T*B),

where we use \ as the slope in the definition of K -theoretic stable envelopes.
e We have an isomorphism

Staby (w) @z k = L_,® N Z(w(N + p)+p) € DPCohr, (T*BW),

where k is an algebraically closed field of characteristic p and L_, is the corresponding G X G-
equivariant line bundle on T*B.

Quantizing T*B in positive characteristic we get the representation category of g by the Beilinson—
Bernstein localization and the corresponding parabolic induction functor quantizing

W +— Attr — T*B
sends w to the corresponding Verma module. The above theorem asserts a compatibility between quantiza-
tion in positive characteristic and stable envelopes.
7. STABLE ENVELOPES FOR COTANGENT BUNDLES

Consider the setting of example 2.3, so that Y is a smooth variety with an A-action and X = T*Y with a
T = A x C*-action. We fix a chamber €. Let Attr™ be the attracting variety in X and AttrY the attracting
variety in Y. In this case the Lagrangian correspondence

Attr¥

O\

XA X
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becomes
N*AttrY

~

T*YA ™Y
which is the conormal bundle of the correspondence

AttrY
/ \
YA Y
Let MHM(Y") be the category of A-eqvuiariant mixed Hodge modules on Y and DPMHMAa(Y) the corre-

sponding equivariant derived category which admits a six-functor formalism [Ach13]. For us it is important
to know that a mixed Hodge module has an underlying filtered D-module. In particular, there is a functor

gro DR: DPMHMA,(Y) — D”Coht(Y)

passing to the associated graded of the filtration on the de Rham complex.
We will be interested in the functor

mp*: DPMHMA (Y?) — DPMHMA(Y).

For £ € Pic(X)®z Q we may also consider the category of twisted mixed Hodge modules which we denote
by MHM* (Y).

Theorem 7.1. There is a commutative diagram

Ko(DPMHME (YA)) 22 Ko (DPMHME (V)

\LgroDR lgroDR

Kr(Y?) Kr(Y)
KT(XA) Stab KT(X)

Here the vertical isomorphisms on K-theory are induced by pullbacks under the projections w: T*Y — Y
and m: T*YA = YA and the K -theoretic stable envelope at the bottom involves £ as the slope parameter.

Remark 7.2. The above theorem is a combination of the following results:

(1) For a subvariety i: U — Y the class in K-theory of the mixed Hodge module #/Qy is the equi-
variant motivic Chern class. Motivic Chern classes (along with the relationship to mixed Hodge
modules) were introduced in [BSY10]; their equivariant version was introduced in [FRW21] and
their relationship to equivariant mixed Hodge modules was explained in [DM20].

(2) The K-theoretic stable envelope for the cotangent bundle coincides with the equivariant motivic
Chern class of the corresponding attracting set [FRW21].
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