STABLE ENVELOPES: GENERALIZATIONS

PAVEL SAFRONOV

1. Assumptions

We work over the complex numbers. Let A be a torus and $T = A \times C^{\times}$. Let $\Lambda_A = \operatorname{Hom}(A, C^{\times})$ be the weight lattice of A. Let $\mathfrak{a}_{\mathbf{R}} = \operatorname{Hom}(\mathbf{C}^{\times}, A) \otimes_{\mathbf{Z}} \mathbf{R}$ be the real locus of the Lie algebra of A.

Let X be a smooth quasi-projective variety with a T-action.

Definition 1.1. An *equivariant root* $\alpha \in \Lambda_A$ is a weight for the A-action of the normal bundle of the fixed point locus $X^A \subset X$. A *root hyperplane* is the hyperplane $\{\alpha = 0\} \subset \mathfrak{a}_{\mathbf{R}}$. A *chamber* $\mathfrak{C} \subset \mathfrak{a}_{\mathbf{R}}$ is a connected component of the complement of root hyperplanes.

Definition 1.2. Let \mathfrak{C} be a chamber. Given a subvariety $Y \subset X^{\mathsf{A}}$ the *attracting variety of* Y Attr_{\mathfrak{C}} $(Y) \subset X$ consists of all points $x \in X$ such that the limit $\lim_{z\to 0} \sigma(z) \cdot x \in Y$ exists for some (equivalently, all) cocharacters $\sigma \in \mathfrak{C}$. The *attracting variety* Attr_{$\mathfrak{C}} \subset X^{\mathsf{A}} \times X$ is the subset of pairs (y, x), such that $\lim_{x\to 0} \sigma(z) \cdot x = y$.</sub>

We have a correspondence

Let

be the decomposition of the fixed point locus into connected components. Each F_i is a smooth variety. There is a partial order on the set of components of X^A defined as follows.

Definition 1.3. Let \mathfrak{C} be a chamber. $F_i \geq F_j$ if $F_j \subset \overline{\operatorname{Attr}_{\mathfrak{C}}(F_i)}$. The *full attracting variety* is

$$\operatorname{Attr}^{f}_{\mathfrak{C}}(F_{i}) = \coprod_{F_{j} \leq F_{i}} \operatorname{Attr}_{\mathfrak{C}}(F_{j}).$$

We will assume the following on the above data.

Assumption 1.4. For any connected component $F_i \subset X^A$ the full attracting variety $\operatorname{Attr}^f_{\mathfrak{C}}(F_i) \subset X$ is closed.

Remark 1.5. If X is an A-equivariant symplectic resolution, then the assumption is satisfied, see [MO19, Lemma 3.2.7].

The following is our main example.

Example 1.6. Consider $A = C^{\times} \times C^{\times}$ acting on P^1 via $(t_1, t_2) \cdot [x : y] = [t_1 x : t_2 y]$. Consider its canonical extension to a symplectic A-action on $X = T^* P^1$. Consider the C^{\times} -action on X given by scaling the fibers so that the symplectic structure has weight 2. This defines the $T = A \times C^{\times}$ -action on X.

The fixed point locus X^{A} is $\{0, \infty\}$. The two equivariant roots are $(t_1, t_2) \mapsto (t_1/t_2)^{\pm 1}$. Let \mathfrak{C}_+ be the chamber containing the cocharacter $t \mapsto (t, 1)$ and \mathfrak{C}_- the opposite chamber.

From now on the chamber \mathfrak{C}_+ will be implicit. The attracting varieties are

$$\operatorname{Attr}(\infty) = \operatorname{T}^*_{\infty} \mathbf{P}^1, \qquad \operatorname{Attr}(0) = \mathbf{P}^1 \setminus \{\infty\}.$$

As $\{\infty\} \in \overline{\operatorname{Attr}(0)}$, the partial order is $\{0\} > \{\infty\}$.

2. Cohomological stable envelopes

Fix the data $(\mathsf{T}, X, \mathfrak{C})$ as before. The (cohomological) stable envelope will be a certain map

Stab:
$$\mathrm{H}^{\bullet}_{\mathsf{T}}(X^{\mathsf{A}}) \longrightarrow \mathrm{H}^{\bullet}_{\mathsf{T}}(X)$$

of $H^{\bullet}_{\mathsf{T}}(\mathrm{pt})$ -modules. To define it, we need extra data. For an A-equivariant vector bundle $V \to X$ we denote by $e^{\mathsf{A}}(V) \in \mathrm{H}^{2\dim(V)}_{\mathsf{A}}(X)$ the equivariant Euler class (equal to the equivariant top Chern class of V).

For a connected component $F_i \subset X^A$ we have a decomposition

$$\mathbf{T}_X|_{F_i} = \mathbf{T}_{F_i} \oplus \mathbf{N}_+ \oplus \mathbf{N}_-,$$

where T_{F_i} is fixed by A, N₊ has positive and N₋ has negative A-weights (with respect to the chamber \mathfrak{C}).

To define stable bases, one has to fix some signs. It is useful to assume one has a polarization of X. In the following we consider T-equivariant K-theory of X and denote $K_{\mathbf{C}^{\times}}(pt) = \mathbf{C}[q^{1/2}, q^{-1/2}].$

Definition 2.1. A *polarization* of X is a choice of a virtual bundle $T_X^{1/2} \in K_T(X)$ with an equality $T_X^{1/2} + q^{-1}(T_X^{1/2})^* = T_X$ in $K_T(X)$.

Proposition 2.2. Suppose X is a symplectic variety with a T-action so that $\mathbf{C}^{\times} \subset \mathsf{T}$ scales the symplectic structure with weight 2. If $T_X^{1/2}$ is a Lagrangian subbundle in T_X , then it defines a polarization of X.

Proof. We have an exact sequence of T-equivariant vector bundles

$$0 \longrightarrow \mathcal{T}_X^{1/2} \longrightarrow \mathcal{T}_X \longrightarrow q^{-1}(\mathcal{T}_X^{1/2})^* \longrightarrow 0,$$

where we have used that the symplectic structure has weight 2 to identify $q(T_X/T_X^{1/2}) \cong (T_X^{1/2})^*$. In K-theory this gives the equality

$$T_X = T_X^{1/2} + q^{-1} (T_X^{1/2})^* \in K_{\mathsf{T}}(X).$$

Example 2.3. Suppose Y is a smooth variety with an A-action and consider the induced symplectic A-action on $X = T^*Y$. Extend it to a T-action so that $\mathbf{C}^{\times} \subset \mathsf{T}$ acts on fibers with weight 2. Then the vertical tangent bundle of $X \to Y$ defines a Lagrangian subbundle and hence a polarization.

Given a polarization of X, we get a polarization of each component $F_i \subset X^A$, i.e. we have a splitting

$$N_{F_i} = N^{1/2} + q^{-1} (N^{1/2})^* \in K_T(F_i).$$

An element of $H^{\bullet}_{A}(pt) \cong \mathbf{C}[\mathfrak{a}]$ is a polynomial and we denote by \deg_{A} its degree. Since A acts trivially on X^{A} we have

$$\mathrm{H}^{\bullet}_{\mathsf{T}}(X^{\mathsf{A}}) \cong \mathrm{H}^{\bullet}_{\mathbf{C}^{\times}}(X^{\mathsf{A}}) \otimes \mathbf{C}[\mathfrak{a}]$$

and so the degree \deg_A of elements of $H^{\bullet}_{\mathsf{T}}(X^{\mathsf{A}})$ is also well-defined.

Example 2.4. Consider the A-equivariant Euler class $e^{A}(N_{-})$ of the negative normal bundle N_{-} to F_{i} . We have

$$\deg_{\mathsf{A}} e^{\mathsf{A}}(\mathsf{N}_{-}) = \dim \mathsf{N}_{-} = \operatorname{codim} F_{i}/2.$$

Theorem 2.5. Assume that $\dim(X^A) = 0$ for simplicity. There is a unique map

Stab:
$$\mathrm{H}^{\bullet}_{\mathsf{T}}(X^{\mathsf{A}}) \longrightarrow \mathrm{H}^{\bullet}_{\mathsf{T}}(X)$$

of $H^{\bullet}_{\mathsf{T}}(\mathsf{pt})$ -modules, such that for any component $F_i \subset X^{\mathsf{A}}$ the stable envelope $\mathrm{Stab}(i) = \mathrm{Stab}(1_{F_i})$ satisfies

- (1) supp Stab(i) $\subset \operatorname{Attr}^{f}(F_{i}),$ (2) Stab(i)|_{F_i} = $(-1)^{\dim \mathbb{N}_{+}^{1/2}} e^{\mathsf{T}}(\mathbb{N}_{-}) \cdot \gamma,$
- (3) $\deg_{\mathsf{A}}(\operatorname{Stab}(i)|_{F_i}) < \operatorname{codim} F_i/2 = \deg_{\mathsf{A}}(\operatorname{Stab}(j)|_{F_i})$ for any $F_j < F_i$.

Uniqueness is shown in [MO19, Theorem 3.3.4] and existence (under the more general assumptions stated here) is shown in [Oko21].

Example 2.6. Consider $X = T^* \mathbf{P}^1$ and the T-action on X from example 1.6. Fix the chamber \mathfrak{C}_+ and the polarization from example 2.3.

We claim that

$$\operatorname{Stab}(0) = [\mathbf{P}^{1}] + [\mathrm{T}_{\infty}^{*}\mathbf{P}^{1}], \qquad \operatorname{Stab}(\infty) = -[\mathrm{T}_{\infty}^{*}\mathbf{P}^{1}]$$

satisfy the axioms.

Indeed, the support axiom is obvious. Next, identify

$$\mathbf{H}^{\bullet}_{\mathsf{T}}(\mathrm{pt}) = \mathbf{C}[u_1, u_2, \hbar]$$

Then

$$\begin{aligned} [\mathbf{P}^{1}]|_{0} &= u_{2} - u_{1} - \hbar \\ [\mathbf{P}^{1}]|_{\infty} &= u_{1} - u_{2} - \hbar \\ [\mathbf{T}_{\infty}^{*}\mathbf{P}^{1}]|_{0} &= 0 \\ [\mathbf{T}_{\infty}^{*}\mathbf{P}^{1}]|_{\infty} &= u_{2} - u_{1}, \end{aligned}$$

which can be computed from the excess intersection formula. E.g. $[\mathbf{P}^1]|_0 = e^{\mathsf{T}}(\mathbf{T}_0^*\mathbf{P}^1)$ and $[\mathbf{T}_\infty^*\mathbf{P}^1]|_\infty = e^{\mathsf{T}}(\mathbf{T}_\infty\mathbf{P}^1)$.

We have

$$e^{\mathsf{T}}(\mathsf{N}_{-}) = u_2 - u_1 - \hbar, \qquad \mathsf{N}_{+}^{1/2} = 0$$

at $\{0\}$ and

$$e^{\mathsf{T}}(\mathsf{N}_{-}) = u_2 - u_1, \qquad \mathsf{N}_{+}^{1/2} = \mathsf{T}_{\infty}^* \mathbf{P}^1$$

at $\{\infty\}$ which proves the second axiom.

Finally, we have

$$Stab(0)|_{\infty} = u_1 - u_2 - \hbar + u_2 - u_1 = -\hbar$$

which has A-degree $0 < (\operatorname{codim}\{0\})/2 = 1$, which verifies the last axiom.

The pullback along the zero section induces an isomorphism

$$\mathrm{H}^{\bullet}_{\mathsf{T}}(\mathrm{T}^*\mathbf{P}^1) \cong \mathbf{C}[x, u_1, u_2, \hbar]/(x+u_1)(x+u_2).$$

The restriction to 0 is $x \mapsto -u_2$ and the restriction to ∞ is $x \mapsto -u_1$. Under this isomorphism $[T^*_{\infty} \mathbf{P}^1]$ goes to $x + u_2$ and the stable envelopes are

$$\operatorname{Stab}(0) = -u_1 - x - \hbar, \qquad \operatorname{Stab}(\infty) = -u_2 - x.$$

3. General stable envelopes

For a smooth complex variety X with an action of a torus T we can consider the following generalized cohomology theories:

- Equivariant cohomology $H^{\bullet}_{\mathsf{T}}(X)$.
- Equivariant K-theory $K_T(X)$.
- Equivariant elliptic cohomology $\text{Ell}_{\mathsf{T}}(X)$ which depends on an elliptic curve E.

Correspondingly, there are stable envelope constructions in all of these three settings: the K-theoretic stable envelopes are defined in [Oko17] and the elliptic stable envelopes are defined in [AO21].

In the case of Nakajima quiver varieties the stable envelopes allow one to construct R-matrices for the following quantum groups:

- Yangian $Y(\mathfrak{g})$ from cohomological stable envelopes.
- Quantum affine algebra $U_q(\hat{\mathfrak{g}})$ from K-theoretic stable envelopes.
- Elliptic quantum groups $E_{\tau,\eta}(\mathfrak{g})$ from elliptic stable envelopes.

These also admit categorifications. Namely, equivariant K-theory $K_{\mathsf{T}}(X)$ can be categorified to the equivariant derived category $\mathrm{D}^{\mathrm{b}}\mathrm{Coh}_{\mathsf{T}}(X)$. Correspondingly, there are expected to be stable envelopes in this setting which would be functors

$$D^{b}Coh_{\mathsf{T}}(X^{\mathsf{A}}) \longrightarrow D^{b}Coh_{\mathsf{T}}(X).$$

This is currently a work in progress by Halpern-Leistner, Maulik and Okounkov.

The elliptic cohomology of X over the Tate elliptic curve $E = \mathbf{C}^{\times}/q^{\mathbf{Z}}$ defined over $\mathbf{C}((q))$ is closely related to the "Tate K-theory" [KM07] which is the \mathbf{C}^{\times} -equivariant K-theory of the algebraic loop space $LX = \text{Map}(\text{Spec } \mathbf{C}((t)), X)$, where \mathbf{C}^{\times} acts on LX by scaling t. More precisely, for the Tate elliptic curve we should have

$$\operatorname{Ell}(X) \cong \operatorname{K}_{\mathbf{C}^{\times}}(X) \otimes_{\mathbf{Z}[q,q^{-1}]} \mathbf{C}((q)).$$

This again can be categorified. We refer to [MSY20] for some developments in this direction.

4. K-THEORETIC STABLE ENVELOPES

In this section we explain stable envelopes in the setting of equivariant K-theory $K_T(X)$. Let us recall some basic facts about (equivariant) K-theory:

 $\bullet\,$ For a torus ${\sf T}$ we have

$$K_{\mathsf{T}}(\mathrm{pt}) = \mathbf{Z}[\Lambda],$$

the group algebra of the character lattice $\Lambda = \text{Hom}(\mathsf{T}, \mathbf{C}^{\times})$.

- If X is a T-variety, then $K_T(X)$ is a $K_T(pt)$ -algebra.
- If E is a coherent sheaf over a smooth variety X, then it defines a class $[E] \in K(X)$ and similarly for the equivariant version.
- If E is a vector bundle over X, then it has the Euler class

$$e(E) = \sum_{i=0}^{\dim E} (-1)^i \left[\bigwedge^i E^* \right].$$

• For a T-equivariant morphism $f: X \to Y$ of smooth varieties we have the pullback morphism

$$f^* \colon \mathrm{K}_{\mathsf{T}}(Y) \longrightarrow \mathrm{K}_{\mathsf{T}}(X).$$

If f is proper, then we also have the pushforward morphism

$$f_* \colon \mathrm{K}_{\mathsf{T}}(X) \longrightarrow \mathrm{K}_{\mathsf{T}}(Y).$$

• Suppose

is a Cartesian diagram of quasi-compact quasi-separated schemes, where i and i' are regular closed immersions, so that there is an exact sequence of vector bundles

$$0 \longrightarrow \mathcal{N}_{Y'/X'} \longrightarrow (f')^* \mathcal{N}_{Y/X} \longrightarrow \Delta \longrightarrow 0.$$

Then there is an excess intersection formula (see [Tho93, Théorème 3.1])

$$f^*i_*(-) = i'_*(e(\Delta) \cdot (f')^*(-))$$

of maps $K(Y) \to K(X')$. An analogous formula holds in the equivariant context (see [Kha21, Corollary 0.2]).

• If $p: V \to X$ is a vector bundle with $i: X \to V$ the zero section, then i^* and p^* induce isomorphisms $K(X) \cong K(V).$

An analogous formula holds in the equivariant context.

Example 4.1. If $i: Y \hookrightarrow X$ is a regular closed immersion, then the excess intersection formula gives $i^*i_*(-) = e(N_{Y/X}) \cdot (-)$.

Remark 4.2. If E is a vector bundle of rank r over X, then

$$\operatorname{ch}(\wedge^{\bullet} E^*) = c_r(E).$$

In particular, the K-theoretic Euler class goes to the cohomological Euler class under the Chern character.

We continue with the previous assumptions on X. In particular, we assume that it comes with a polarization $T_X^{1/2} \in K_T(X)$. Given a component $F_i \subset X^A$ recall that the polarization gives elements $N^{1/2} \in K_T(F_i)$ such that

$$N_{F_i} = N^{1/2} + q^{-1} (N^{1/2})^*$$

Further splitting these into positive and negative A-weights (with respect to \mathfrak{C}) we get an equality

$$N_{-} = N_{-}^{1/2} + q^{-1}(N_{+}^{1/2})^{2}$$

and similarly for positive weights. In particular,

$$N_{-} - N^{1/2} = q^{-1} (N_{+}^{1/2})^* - N_{+}^{1/2}.$$

Its determinant is

$$\frac{\det N_{-}}{\det N^{1/2}} = q^{-\dim N_{+}^{1/2}} \left(\det N_{+}^{1/2}\right)^{\otimes (-2)}$$

In particular, it has a canonical square root (recall that $q^{1/2} \in K_T(X)$)

$$\left(\frac{\det N_{-}}{\det N^{1/2}}\right)^{1/2} = q^{-\dim N_{+}^{1/2}/2} (\det N_{+}^{1/2})^{-1}$$

To define K-theoretic stable envelopes we also have to choose a *slope* parameter

 $\mathcal{L} \in \operatorname{Pic}(X) \otimes_{\mathbf{Z}} \mathbf{R}.$

Just like in the case of equivariant parameters, there are **Kähler roots** which define walls (affine hyperplanes) in $\operatorname{Pic}(X) \otimes_{\mathbf{Z}} \mathbf{R}$. We say a slope $\mathcal{L} \in \operatorname{Pic}(X) \otimes_{\mathbf{Z}} \mathbf{R}$ is *generic* if it does not lie on a wall. Note that we may choose a lift of the slope to a class in $\operatorname{Pic}_{\mathsf{A}}(X) \otimes_{\mathbb{Z}} \mathbb{R}$; the choice of a lift will not matter.

Theorem 4.3. Assume that $\dim(X^{\mathsf{A}}) = 0$ for simplicity. For a generic slope \mathcal{L} there is a unique map

Stab:
$$K_{\mathsf{T}}(X^{\mathsf{A}}) \longrightarrow K_{\mathsf{T}}(X)$$

of $K_T(pt)$ -modules, such that for any component $F_i \subset X^A$ the stable envelope $Stab(i) = Stab(1_{F_i})$ satisfies

- (1) supp $\operatorname{Stab}(i) \subset \operatorname{Attr}^f(F_i)$,
- (2) $\operatorname{Stab}(i)|_{F_i} = (-1)^{\dim N_+^{1/2}} \left(\frac{\det N_-}{\det N^{1/2}|_{F_i}}\right)^{1/2} e^{\mathsf{T}}(N_-),$ (3) $\operatorname{deg}_{\mathsf{A}}(\operatorname{Stab}(i)|_{F_j}) \subset \operatorname{deg}_{\mathsf{A}}(\operatorname{Stab}(j)|_{F_j}) + \mathcal{L}|_{F_j} \mathcal{L}|_{F_i} \text{ for any } F_j < F_i.$

Remark 4.4. Call the complement of the walls in $Pic(X) \otimes_{\mathbf{Z}} \mathbf{R}$ an *alcove*. For any two slopes lying in the same alcove the K-theoretic stable envelopes are the same.

Remark 4.5. Stable envelopes also exist for non-generic slopes. But if a slope lies on a wall, uniqueness fails: the stable envelopes for the adjacent alcoves satisfy the axioms.

Example 4.6. Consider $X = T^* \mathbf{P}^1$ and the T-action on X from example 1.6. Fix the chamber \mathfrak{C}_+ and the polarization from example 2.3. We have $\operatorname{Pic}(X) = \mathbf{Z}$ generated by $\mathcal{O}_{\mathbf{P}^1}(1)$. Consider the slope $\mathcal{L} = \mathcal{O}(-\epsilon) \in$ $\operatorname{Pic}(X) \otimes_{\mathbf{Z}} \mathbf{R}$ for $0 < \epsilon < 1$. Let

$$K_{\mathsf{T}}(pt) = \mathbf{Z}[u_1^{\pm 1}, u_2^{\pm 1}, q^{\pm 1/2}].$$

We claim that

$$\operatorname{Stab}(0) = [\mathcal{O}_{\mathbf{P}^1}] + q u_2 u_1^{-1} [\mathcal{O}_{\mathbf{T}^*_{\infty} \mathbf{P}^1}], \qquad \operatorname{Stab}(\infty) = -q^{1/2} u_2 u_1^{-1} [\mathcal{O}_{\mathbf{T}^*_{\infty} \mathbf{P}^1}].$$

The support axiom is obvious. By the excess intersection formula

$$\begin{split} [\mathfrak{O}_{\mathbf{P}^{1}}]|_{0} &= 1 - u_{1}u_{2}^{-1}q\\ [\mathfrak{O}_{\mathbf{P}^{1}}]|_{\infty} &= 1 - u_{2}u_{1}^{-1}q\\ [\mathfrak{O}_{\mathbf{T}_{\infty}^{*}\mathbf{P}^{1}}]|_{0} &= 0\\ [\mathfrak{O}_{\mathbf{T}_{\infty}^{*}\mathbf{P}^{1}}]|_{\infty} &= 1 - u_{1}u_{2}^{-1} \end{split}$$

At $\{0\}$ we have $N_{+}^{1/2} = 0$, so the normalization axiom is

$$Stab(0)|_0 = 1 - qu_1 u_2^{-1}$$

which is obviously satisfied. At $\{\infty\}$ we have $N_+^{1/2} = T_{\infty}^* \mathbf{P}^1$ which has class $u_1 u_2^{-1} q^{-1}$ in K-theory, so the normalization axiom is

$$\operatorname{Stab}(\infty)|_{\infty} = \frac{-q^{-1/2}}{u_1 u_2^{-1} q^{-1}} (1 - u_1 u_2^{-1})$$

which is again satisfied.

Finally, we have to check the degree axiom for $\infty < 0$. Since all expressions involve $a = u_2 u_1^{-1}$, it will be convenient to consider the degree with respect to this variable. We have deg(Stab $(\infty)|_{\infty}$) = [0, 1]. Similarly, since

$$\operatorname{Stab}(0)|_{\infty} = 1 - q$$

we have $\deg_A(\operatorname{Stab}(0)_{\infty}) = [0, 0].$

 $\mathcal{O}_{\mathbf{P}^1}(2) = \mathrm{T}_{\mathbf{P}^1}$ lifts to an A-equivariant line bundle with $\mathcal{O}_{\mathbf{P}^1}(2)|_{\infty}$ having class $u_2 u_1^{-1}$ and $\mathcal{O}_{\mathbf{P}^1}(2)|_0$ having class $u_1 u_2^{-1}$ in equivariant K-theory. Therefore, the degree axiom is that $\operatorname{deg}(\operatorname{Stab}(0)|_{\infty}) = [0, 0]$ is contained in $[0, 1] - \epsilon = [-\epsilon, 1 - \epsilon]$. So, it is also satisfied.

The pullback along the zero section induces an isomorphism

$$K_{\mathsf{T}}(\mathrm{T}^*\mathbf{P}^1) \cong \mathbf{Z}[x^{\pm 1}, u_1^{\pm 1}, u_2^{\pm 1}, q^{\pm 1/2}]/(1 - xu_1)(1 - xu_2).$$

The restriction to 0 is $x \mapsto u_2^{-1}$ and the restriction to ∞ is $x \mapsto u_1^{-1}$. Under this isomorphism $[\mathcal{O}_{T^*_{\infty}\mathbf{P}^1}]$ goes to $1 - x^{-1}u_2^{-1}$ and the stable envelopes are

$$\operatorname{Stab}(0) = 1 - u_1 u_2 x^2 q + q u_2 u_1^{-1} (1 - x^{-1} u_2^{-1}), \qquad \operatorname{Stab}(\infty) = -q^{1/2} u_2 u_1^{-1} (1 - x^{-1} u_2^{-1}).$$

Example 4.7. Consider the previous example with the trivial slope $\mathcal{L} = \mathcal{O}_{\mathbf{P}^1}$. Then

$$\operatorname{Stab}(0) = [\mathcal{O}_{\mathbf{P}^1}] + u_2 u_1^{-1} [\mathcal{O}_{\mathrm{T}^*_{\infty} \mathbf{P}^1}], \qquad \operatorname{Stab}(\infty) = -q^{1/2} u_2 u_1^{-1} [\mathcal{O}_{\mathrm{T}^*_{\infty} \mathbf{P}^1}].$$

also satisfies the stable envelope axioms. To see that it is different from the previous expression observe that

$$\operatorname{Stab}(0)|_{\infty} = u_2 u_1^{-1} (1-q)$$

Thus, for the trivial slope the uniqueness of stable envelopes fails. As explained before, it is the stable envelope for the slope $\mathcal{L} = \mathcal{O}_{\mathbf{P}^1}(\epsilon)$ for $0 < \epsilon < 1$.

5. K-Theoretic stable envelopes for cotangent bundles of flag varieties

Let G be a connected simply-connected semisimple complex algebraic group, $B \subset G$ a Borel subgroup and $\mathcal{B} = G/B$ the flag variety. In this section we will consider $X = T^*\mathcal{B}$ with its $G \times \mathbb{C}^{\times}$ -action, where G acts on \mathcal{B} in the obvious way and \mathbb{C}^{\times} scales the fibers with weight 2. We let $A \subset G$ be the maximal torus. Let W be the Weyl group, $\Lambda = \text{Hom}(A, \mathbb{C}^{\times})$ the weight lattice. For $s, t \in W$ denote by $n_{s,t}$ the order of $st \in W$.

Let $\mathcal{N} \subset \mathfrak{g}^*$ be the nilpotent cone with $T^*\mathcal{B} \to \mathcal{N}$ the moment map for the *G*-action and $St = T^*\mathcal{B} \times_{\mathcal{N}} T^*\mathcal{B}$ the Steinberg variety. Recall the affine Hecke algebra.

Definition 5.1. The *affine Hecke algebra* **H** is the $\mathbb{Z}[q^{1/2}, q^{-1/2}]$ -algebra with generators T_s (for s a simple reflection) and θ_x (for $x \in \Lambda$ a character) with the relations

$$\underbrace{T_s T_t \dots}_{n_{st}} = \underbrace{T_t T_s \dots}_{n_{st}}$$
$$\theta_x \theta_y = \theta_{x+y}$$
$$T_s \theta_x = \theta_x T_s, \qquad s(x) = x$$
$$\theta_x = T_{s_\alpha} \theta_{x-\alpha} T_{s_\alpha}$$
$$(T_s + q^{-1/2})(T_s - q^{1/2}) = 0.$$

For $w \in W$ we denote by $T_w \in \mathbf{H}$ the element obtained by writing a reduced expression of w. There is a natural algebra structure on $K_{G \times \mathbf{C}^{\times}}(St)$ given by convolution. Moreover, there is a natural $K_{G \times \mathbf{C}^{\times}}(St)$ module structure on $K_{\mathsf{T}}(\mathsf{T}^*\mathcal{B})$. **Theorem 5.2** (Kazhdan–Lusztig, Ginzburg). There is an isomorphism of algebras

$$K_{G \times \mathbf{C}^{\times}}(St) \cong \mathbf{H}.$$

The equivariant roots in this case coincide with the usual roots for G. So, as the chamber \mathfrak{C} we may take the chamber of positive roots with respect to the Borel B. We may identify the fixed points with

 $X^{\mathsf{A}} \cong W,$

where $w = e \in W$ corresponds to $B \in \mathcal{B}$. Consider the polarization from example 2.3. We may identify

 $\operatorname{Pic}(X) \cong \Lambda.$

We define the *negative fundamental alcove* of $\Lambda \otimes_{\mathbf{Z}} \mathbf{R}$ to consist of weights λ such that

$$-1 < (\lambda, \alpha^{\vee}) < 0$$

for all positive roots α . From now on the slope $\mathcal{L} \in \Lambda \otimes_{\mathbf{Z}} \mathbf{R}$ is an arbitrary element of the negative fundamental alcove. The stable envelopes will define K-theoretic classes

$$\operatorname{Stab}(w) \in \operatorname{K}_{\mathsf{T}}(\operatorname{T}^*\mathcal{B})$$

The following is shown in [SZZ20].

Theorem 5.3.

- (1) $\operatorname{Stab}(e) = [\mathcal{O}_{\operatorname{T}_{e}^{*}\mathcal{B}}].$
- (2) For any $w \in W$ one has $\operatorname{Stab}(w) = T_{w^{-1}}(\operatorname{Stab}(e))$.

Remark 5.4. In the case when \mathfrak{C} is the negative Weyl chamber one has

$$\operatorname{Stab}(w_0) = (-q^{1/2})^{\dim(G/B)} e^{2\rho} [\mathcal{O}_{\mathcal{T}^*_{w_0}\mathcal{B}}].$$

This coincides with the calculation of $\text{Stab}(\infty)$ in example 4.6 for $G = \text{SL}_2$.

6. Deformation quantization in positive characteristic and stable envelopes

In this section we assume that X is a conical A-equivariant symplectic resolution. In particular, it implies that $H^i(X, \mathcal{O}) = 0$ for i > 0. In this case

$$\operatorname{Pic}(X) \otimes_{\mathbf{Z}} \mathbf{C} \cong \operatorname{H}^2(X; \mathbf{C})$$

by taking the first Chern class.

According to [BK04] filtered deformation quantizations of X are parametrized by $\lambda \in \mathrm{H}^2(X; \mathbb{C})$ which can be made A-equivariant. It is also expected that one can quantize the Lagrangian correspondence $X \leftarrow \operatorname{Attr} \rightarrow X^{\mathsf{A}}$ to define a *parabolic induction* functor from deformation quanzation modules on X^{A} to deformation quantization modules on X. It is expected (the ongoing work of Bezrukavnikov and Okounkov) that it is related to K-theoretic stable envelopes and their categorifications via reductions mod p which we will briefly recall.

If X is a symplectic variety over a field of positive characteristic, its deformation quantization A_{λ} often has a large center, so that A localizes to a sheaf of Azumaya algebras \mathcal{A}_{λ} over the Frobenius twist $X^{(1)}$ of X. In certain cases \mathcal{A}_{λ} might be canonically split, i.e. it is isomorphic to the endomorphism algebra of a vector bundle on $X^{(1)}$. In this case we get an equivalence

$$D^{\mathrm{b}}_{\mathsf{T}}(A_{\lambda} - \mathrm{mod}) \cong D^{\mathrm{b}}\mathrm{Coh}_{\mathsf{T}}(X^{(1)})$$

of the corresponding derived categories. This is expected to happen for quantization parameters

$$\mathcal{L} \in \frac{1}{p} \operatorname{Pic}(X) \subset \operatorname{Pic}(X) \otimes_{\mathbf{Z}} \mathbf{Q}$$

which lie away from the same affine hyperplanes that appear in the definition of K-theoretic stable envelopes. We refer to [Los 17] for some results in this direction.

So, the parabolic induction functor has a "classical shadow" given by a functor

$$D^{b}Coh_{\mathsf{T}}(X^{\mathsf{A}}) \longrightarrow D^{b}Coh_{\mathsf{T}}(X)$$

which categorifies the K-theoretic stable envelope. In this section we describe how this works for $X = T^*\mathcal{B}$, the cotangent bundle of the flag variety, following [SZZ21].

Let ρ be the Weyl vector and consider the affine hyperplanes

$$H^p_{\alpha^{\vee},n} = \{\lambda' \in \Lambda \otimes_{\mathbf{Z}} \mathbf{Q} \mid \langle \alpha^{\vee}, \lambda' + \rho \rangle = np\}.$$

Consider the fundamental alcove containing $(\epsilon - 1)\rho$ for a small positive ϵ . We say $\lambda' \in \Lambda \otimes_{\mathbf{Z}} \mathbf{Q}$ is *regular* if it does not lie on the affine hyperplanes.

Remark 6.1. Let

$$\lambda = -\frac{\lambda' + \rho}{p}.$$

Then λ' is regular in the above sense if, and only if, the slope $\lambda \in \Lambda \otimes_{\mathbf{Z}} \mathbf{Q}$ is generic as in the definition of K-theoretic stable envelopes. Moreover, λ' lies in the fundamental alcove if, and only if, λ lies in the negative fundamental alcove, i.e.

$$-1 < \langle \alpha^{\vee}, \lambda \rangle < 0$$

for every positive root α .

For a regular integral λ' the papers [BMR06; BMR08] have established a localization result identifying a certain derived category of \mathfrak{g} -representations over an algebraically closed field k of positive characteristic p and $D^{b}Coh_{\mathsf{T}_{k}}(\mathsf{T}^{*}\mathcal{B}^{(1)})$. We denote this equivalence by $\gamma^{\lambda'}$.

Now consider the Verma module $Z(w(\lambda' + \rho) + \rho)$ with the corresponding highest weight over \mathfrak{g} . In particular,

$$\gamma^{\lambda'} Z(w(\lambda' + \rho) + \rho) \in \mathrm{D^bCoh}_{\mathsf{T}_k}(\mathrm{T}^* \mathcal{B}^{(1)}).$$

Let $\mathcal{B}_{\mathbf{Z}}$ be the **Z**-form of the flag variety. The following is [SZZ21, Theorem 1.2].

Theorem 6.2. Suppose p is greater than the Coxeter number of G, $\lambda' \in \Lambda \otimes_{\mathbf{Z}} \mathbf{Q}$ is regular and integral and let

$$\lambda = -\frac{\lambda' + \rho}{p}.$$

There are objects $\operatorname{Stab}_{\mathbf{Z}}^{\lambda}(w) \in D^{\mathrm{b}}\operatorname{Coh}_{\mathsf{T}_{\mathbf{Z}}}(\mathrm{T}^{*}\mathfrak{B}_{\mathbf{Z}})$ with the following properties:

• We have an equality

$$[\operatorname{Stab}_{\mathbf{Z}}^{\lambda}(w) \otimes_{\mathbf{Z}} \mathbf{C}] = e^{-\rho} \operatorname{Stab}(w) \in \operatorname{K}_{\mathsf{T}}(\mathrm{T}^*\mathcal{B}),$$

where we use λ as the slope in the definition of K-theoretic stable envelopes.

• We have an isomorphism

$$\operatorname{Stab}_{\mathbf{Z}}^{\lambda}(w) \otimes_{\mathbf{Z}} k \cong \mathcal{L}_{-\rho} \otimes \gamma^{\lambda'} Z(w(\lambda' + \rho) + \rho) \in \operatorname{D^bCoh}_{\mathsf{T}_k}(\mathrm{T}^* \mathcal{B}^{(1)}),$$

where k is an algebraically closed field of characteristic p and $\mathcal{L}_{-\rho}$ is the corresponding $G \times \mathbf{G}_{\mathrm{m}}$ equivariant line bundle on $\mathrm{T}^*\mathcal{B}$.

Quantizing $T^*\mathcal{B}$ in positive characteristic we get the representation category of \mathfrak{g} by the Beilinson-Bernstein localization and the corresponding parabolic induction functor quantizing

$$W \longleftarrow \operatorname{Attr} \longrightarrow \operatorname{T}^* \mathcal{B}$$

sends w to the corresponding Verma module. The above theorem asserts a compatibility between quantization in positive characteristic and stable envelopes.

7. STABLE ENVELOPES FOR COTANGENT BUNDLES

Consider the setting of example 2.3, so that Y is a smooth variety with an A-action and $X = T^*Y$ with a $T = A \times C^{\times}$ -action. We fix a chamber \mathfrak{C} . Let $Attr^X$ be the attracting variety in X and $Attr^Y$ the attracting variety in Y. In this case the Lagrangian correspondence

becomes

which is the conormal bundle of the correspondence

Let MHM(Y) be the category of A-equivariant mixed Hodge modules on Y and $D^{b}MHM_{A}(Y)$ the corresponding equivariant derived category which admits a six-functor formalism [Ach13]. For us it is important to know that a mixed Hodge module has an underlying filtered *D*-module. In particular, there is a functor

$$\operatorname{gr} \circ \operatorname{DR} \colon \operatorname{D^{b}MHM}_{\mathsf{A}}(Y) \longrightarrow \operatorname{D^{b}Coh}_{\mathsf{T}}(Y)$$

passing to the associated graded of the filtration on the de Rham complex.

We will be interested in the functor

$$\eta_! p^* \colon \mathrm{D^bMHM}_{\mathsf{A}}(Y^{\mathsf{A}}) \longrightarrow \mathrm{D^bMHM}_{\mathsf{A}}(Y).$$

For $\mathcal{L} \in \operatorname{Pic}(X) \otimes_{\mathbb{Z}} \mathbb{Q}$ we may also consider the category of twisted mixed Hodge modules which we denote by $\operatorname{MHM}^{\mathcal{L}}(Y)$.

Theorem 7.1. There is a commutative diagram

Here the vertical isomorphisms on K-theory are induced by pullbacks under the projections $\pi: T^*Y \to Y$ and $\pi: T^*Y^A \to Y^A$ and the K-theoretic stable envelope at the bottom involves \mathcal{L} as the slope parameter.

Remark 7.2. The above theorem is a combination of the following results:

- (1) For a subvariety $i: U \hookrightarrow Y$ the class in K-theory of the mixed Hodge module $i_! \mathbf{Q}_U$ is the equivariant motivic Chern class. Motivic Chern classes (along with the relationship to mixed Hodge modules) were introduced in [BSY10]; their equivariant version was introduced in [FRW21] and their relationship to equivariant mixed Hodge modules was explained in [DM20].
- (2) The K-theoretic stable envelope for the cotangent bundle coincides with the equivariant motivic Chern class of the corresponding attracting set [FRW21].

References

- [Ach13] P. Achar. "Equivariant mixed Hodge modules". Lecture notes from the Clay Mathematics Institute workshop on Mixed Hodge Modules and Applications. 2013. URL: https://www.math.lsu.edu/~pramod/docs/emhm.pdf.
- [AO21] M. Aganagic and A. Okounkov. "Elliptic stable envelopes". J. Amer. Math. Soc. 34.1 (2021), pp. 79–133. arXiv: 1604.00423 [math.AG].

[BMR06] R. Bezrukavnikov, I. Mirković, and D. Rumynin. "Singular localization and intertwining functors for reductive Lie algebras in prime characteristic". Nagoya Math. J. 184 (2006), pp. 1–55. arXiv: math/0602075.

[[]BK04] R. Bezrukavnikov and D. Kaledin. "Fedosov quantization in algebraic context". Mosc. Math. J. 4.3 (2004), pp. 559– 592, 782. arXiv: math/0309290.

- [BMR08] R. Bezrukavnikov, I. Mirković, and D. Rumynin. "Localization of modules for a semisimple Lie algebra in prime characteristic". Ann. of Math. (2) 167.3 (2008). With an appendix by Bezrukavnikov and Simon Riche, pp. 945–991. arXiv: math/0205144.
- [BSY10] J.-P. Brasselet, J. Schürmann, and S. Yokura. "Hirzebruch classes and motivic Chern classes for singular spaces". J. Topol. Anal. 2.1 (2010), pp. 1–55. arXiv: math/0503492.
- [DM20] B. Dirks and M. Mustaţă. "The Hilbert series of Hodge ideals of hyperplane arrangements". J. Singul. 20 (2020), pp. 232-250. arXiv: 2003.11681 [math.AG].
- [FRW21] L. M. Fehér, R. Rimányi, and A. Weber. "Motivic Chern classes and K-theoretic stable envelopes". Proc. Lond. Math. Soc. (3) 122.1 (2021), pp. 153-189. arXiv: 1802.01503 [math.AG].
- [Kha21] A. A. Khan. "Virtual excess intersection theory". Ann. K-Theory 6.3 (2021), pp. 559–570. arXiv: 1909.13829 [math.AG].
- [KM07] N. Kitchloo and J. Morava. "Thom prospectra for loopgroup representations". Elliptic cohomology. Vol. 342. London Math. Soc. Lecture Note Ser. Cambridge Univ. Press, Cambridge, 2007, pp. 214–238. arXiv: math/0404541.
- [Los17] I. Losev. "On modular categories O for quantized symplectic resolutions" (2017). arXiv: 1712.07726 [math.RT].
- [MO19] D. Maulik and A. Okounkov. "Quantum groups and quantum cohomology". Astérisque 408 (2019), pp. ix+209. arXiv: 1211.1287 [math.AG].
- [MSY20] M. McBreen, A. Sheshmani, and S.-T. Yau. "Elliptic stable envelopes and hypertoric loop spaces" (2020). arXiv: 2010.00670 [math.AG].
- [Oko17] A. Okounkov. "Lectures on K-theoretic computations in enumerative geometry". Geometry of moduli spaces and representation theory. Vol. 24. IAS/Park City Math. Ser. Amer. Math. Soc., Providence, RI, 2017, pp. 251–380. arXiv: 1512.07363 [math.AG].
- [Oko21] A. Okounkov. "Inductive construction of stable envelopes". Lett. Math. Phys. 111.6 (2021), Paper No. 141, 56. arXiv: 2007.09094 [math.AG].
- [SZZ20] C. Su, G. Zhao, and C. Zhong. "On the K-theory stable bases of the Springer resolution". Ann. Sci. Éc. Norm. Supér. (4) 53.3 (2020), pp. 663–711. arXiv: 1708.08013 [math.AG].
- [SZZ21] C. Su, G. Zhao, and C. Zhong. "Wall-crossings and a categorification of K-theory stable bases of the Springer resolution". Compos. Math. 157.11 (2021), pp. 2341–2376. arXiv: 1904.03769 [math.RT].
- [Tho93] R. W. Thomason. "Les K-groupes d'un schéma éclaté et une formule d'intersection excédentaire". Invent. Math. 112.1 (1993), pp. 195–215.