
STABLE ENVELOPES: GENERALIZATIONS

PAVEL SAFRONOV

1. Assumptions

We work over the complex numbers. Let A be a torus and T = A ×C×. Let ΛA = Hom(A,C×) be the
weight lattice of A. Let aR = Hom(C×,A)⊗Z R be the real locus of the Lie algebra of A.

Let X be a smooth quasi-projective variety with a T-action.

Definition 1.1. An equivariant root α ∈ ΛA is a weight for the A-action of the normal bundle of the
fixed point locus XA ⊂ X. A root hyperplane is the hyperplane {α = 0} ⊂ aR. A chamber C ⊂ aR is a
connected component of the complement of root hyperplanes.

Definition 1.2. Let C be a chamber. Given a subvariety Y ⊂ XA the attracting variety of Y AttrC(Y ) ⊂
X consists of all points x ∈ X such that the limit limz→0 σ(z) · x ∈ Y exists for some (equivalently, all)
cocharacters σ ∈ C. The attracting variety AttrC ⊂ XA × X is the subset of pairs (y, x), such that
limx→0 σ(z) · x = y.

We have a correspondence

Attr

|| !!
XA X

Let
XA =

∐
i

Fi

be the decomposition of the fixed point locus into connected components. Each Fi is a smooth variety. There
is a partial order on the set of components of XA defined as follows.

Definition 1.3. Let C be a chamber. Fi ≥ Fj if Fj ⊂ AttrC(Fi). The full attracting variety is

AttrfC(Fi) =
∐
Fj≤Fi

AttrC(Fj).

We will assume the following on the above data.

Assumption 1.4. For any connected component Fi ⊂ XA the full attracting variety AttrfC(Fi) ⊂ X is
closed.

Remark 1.5. If X is an A-equivariant symplectic resolution, then the assumption is satisfied, see [MO19,
Lemma 3.2.7].

The following is our main example.

Example 1.6. Consider A = C× ×C× acting on P1 via (t1, t2) · [x : y] = [t1x : t2y]. Consider its canonical
extension to a symplectic A-action on X = T∗P1. Consider the C×-action on X given by scaling the fibers
so that the symplectic structure has weight 2. This defines the T = A×C×-action on X.

The fixed point locus XA is {0,∞}. The two equivariant roots are (t1, t2) 7→ (t1/t2)±1. Let C+ be the
chamber containing the cocharacter t 7→ (t, 1) and C− the opposite chamber.

From now on the chamber C+ will be implicit. The attracting varieties are

Attr(∞) = T∗∞P1, Attr(0) = P1 \ {∞}.

As {∞} ∈ Attr(0), the partial order is {0} > {∞}.
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2. Cohomological stable envelopes

Fix the data (T, X,C) as before. The (cohomological) stable envelope will be a certain map

Stab: H•T(XA) −→ H•T(X)

of H•T(pt)-modules. To define it, we need extra data. For an A-equivariant vector bundle V → X we denote

by eA(V ) ∈ H
2 dim(V )
A (X) the equivariant Euler class (equal to the equivariant top Chern class of V ).

For a connected component Fi ⊂ XA we have a decomposition

TX |Fi = TFi ⊕N+ ⊕N−,

where TFi is fixed by A, N+ has positive and N− has negative A-weights (with respect to the chamber C).
To define stable bases, one has to fix some signs. It is useful to assume one has a polarization of X. In

the following we consider T-equivariant K-theory of X and denote KC×(pt) = C[q1/2, q−1/2].

Definition 2.1. A polarization of X is a choice of a virtual bundle T
1/2
X ∈ KT(X) with an equality

T
1/2
X + q−1(T

1/2
X )∗ = TX in KT(X).

Proposition 2.2. Suppose X is a symplectic variety with a T-action so that C× ⊂ T scales the symplectic

structure with weight 2. If T
1/2
X is a Lagrangian subbundle in TX , then it defines a polarization of X.

Proof. We have an exact sequence of T-equivariant vector bundles

0 −→ T
1/2
X −→ TX −→ q−1(T

1/2
X )∗ −→ 0,

where we have used that the symplectic structure has weight 2 to identify q(TX/T
1/2
X ) ∼= (T

1/2
X )∗. In

K-theory this gives the equality

TX = T
1/2
X + q−1(T

1/2
X )∗ ∈ KT(X).

�

Example 2.3. Suppose Y is a smooth variety with an A-action and consider the induced symplectic A-action
on X = T∗Y . Extend it to a T-action so that C× ⊂ T acts on fibers with weight 2. Then the vertical
tangent bundle of X → Y defines a Lagrangian subbundle and hence a polarization.

Given a polarization of X, we get a polarization of each component Fi ⊂ XA, i.e. we have a splitting

NFi = N1/2 + q−1(N1/2)∗ ∈ KT(Fi).

An element of H•A(pt) ∼= C[a] is a polynomial and we denote by degA its degree. Since A acts trivially on
XA we have

H•T(XA) ∼= H•C×(XA)⊗C[a]

and so the degree degA of elements of H•T(XA) is also well-defined.

Example 2.4. Consider the A-equivariant Euler class eA(N−) of the negative normal bundle N− to Fi. We
have

degA e
A(N−) = dim N− = codimFi/2.

Theorem 2.5. Assume that dim(XA) = 0 for simplicity. There is a unique map

Stab: H•T(XA) −→ H•T(X)

of H•T(pt)-modules, such that for any component Fi ⊂ XA the stable envelope Stab(i) = Stab(1Fi) satisfies

(1) supp Stab(i) ⊂ Attrf (Fi),

(2) Stab(i)|Fi = (−1)dimN
1/2
+ eT(N−) · γ,

(3) degA(Stab(i)|Fj ) < codimFj/2 = degA(Stab(j)|Fj ) for any Fj < Fi.

Uniqueness is shown in [MO19, Theorem 3.3.4] and existence (under the more general assumptions stated
here) is shown in [Oko21].
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Example 2.6. Consider X = T∗P1 and the T-action on X from example 1.6. Fix the chamber C+ and the
polarization from example 2.3.

We claim that

Stab(0) = [P1] + [T∗∞P1], Stab(∞) = −[T∗∞P1]

satisfy the axioms.
Indeed, the support axiom is obvious. Next, identify

H•T(pt) = C[u1, u2, ~].

Then

[P1]|0 = u2 − u1 − ~
[P1]|∞ = u1 − u2 − ~

[T∗∞P1]|0 = 0

[T∗∞P1]|∞ = u2 − u1,

which can be computed from the excess intersection formula. E.g. [P1]|0 = eT(T∗0P
1) and [T∗∞P1]|∞ =

eT(T∞P1).
We have

eT(N−) = u2 − u1 − ~, N
1/2
+ = 0

at {0} and

eT(N−) = u2 − u1, N
1/2
+ = T∗∞P1

at {∞} which proves the second axiom.
Finally, we have

Stab(0)|∞ = u1 − u2 − ~ + u2 − u1 = −~
which has A-degree 0 < (codim{0})/2 = 1, which verifies the last axiom.

The pullback along the zero section induces an isomorphism

H•T(T∗P1) ∼= C[x, u1, u2, ~]/(x+ u1)(x+ u2).

The restriction to 0 is x 7→ −u2 and the restriction to ∞ is x 7→ −u1. Under this isomorphism [T∗∞P1] goes
to x+ u2 and the stable envelopes are

Stab(0) = −u1 − x− ~, Stab(∞) = −u2 − x.

3. General stable envelopes

For a smooth complex variety X with an action of a torus T we can consider the following generalized
cohomology theories:

• Equivariant cohomology H•T(X).
• Equivariant K-theory KT(X).
• Equivariant elliptic cohomology EllT(X) which depends on an elliptic curve E.

Correspondingly, there are stable envelope constructions in all of these three settings: the K-theoretic
stable envelopes are defined in [Oko17] and the elliptic stable envelopes are defined in [AO21].

In the case of Nakajima quiver varieties the stable envelopes allow one to construct R-matrices for the
following quantum groups:

• Yangian Y (g) from cohomological stable envelopes.
• Quantum affine algebra Uq(ĝ) from K-theoretic stable envelopes.
• Elliptic quantum groups Eτ,η(g) from elliptic stable envelopes.

These also admit categorifications. Namely, equivariant K-theory KT(X) can be categorified to the
equivariant derived category DbCohT(X). Correspondingly, there are expected to be stable envelopes in this
setting which would be functors

DbCohT(XA) −→ DbCohT(X).

This is currently a work in progress by Halpern-Leistner, Maulik and Okounkov.
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The elliptic cohomology of X over the Tate elliptic curve E = C×/qZ defined over C((q)) is closely
related to the “Tate K-theory” [KM07] which is the C×-equivariant K-theory of the algebraic loop space
LX = Map(Spec C((t)), X), where C× acts on LX by scaling t. More precisely, for the Tate elliptic curve
we should have

Ell(X) ∼= KC×(X)⊗Z[q,q−1] C((q)).

This again can be categorified. We refer to [MSY20] for some developments in this direction.

4. K-theoretic stable envelopes

In this section we explain stable envelopes in the setting of equivariant K-theory KT(X). Let us recall
some basic facts about (equivariant) K-theory:

• For a torus T we have

KT(pt) = Z[Λ],

the group algebra of the character lattice Λ = Hom(T,C×).
• If X is a T-variety, then KT(X) is a KT(pt)-algebra.
• If E is a coherent sheaf over a smooth variety X, then it defines a class [E] ∈ K(X) and similarly

for the equivariant version.
• If E is a vector bundle over X, then it has the Euler class

e(E) =

dimE∑
i=0

(−1)i

[
i∧
E∗

]
.

• For a T -equivariant morphism f : X → Y of smooth varieties we have the pullback morphism

f∗ : KT(Y ) −→ KT(X).

If f is proper, then we also have the pushforward morphism

f∗ : KT(X) −→ KT(Y ).

• Suppose

Y ′
i′ //

f ′

��

X ′

f

��
Y

i // X

is a Cartesian diagram of quasi-compact quasi-separated schemes, where i and i′ are regular closed
immersions, so that there is an exact sequence of vector bundles

0 −→ NY ′/X′ −→ (f ′)∗NY/X −→ ∆ −→ 0.

Then there is an excess intersection formula (see [Tho93, Théorème 3.1])

f∗i∗(−) = i′∗(e(∆) · (f ′)∗(−))

of maps K(Y ) → K(X ′). An analogous formula holds in the equivariant context (see [Kha21,
Corollary 0.2]).

• If p : V → X is a vector bundle with i : X → V the zero section, then i∗ and p∗ induce isomorphisms

K(X) ∼= K(V ).

An analogous formula holds in the equivariant context.

Example 4.1. If i : Y ↪→ X is a regular closed immersion, then the excess intersection formula gives i∗i∗(−) =
e(NY/X) · (−).

Remark 4.2. If E is a vector bundle of rank r over X, then

ch(∧•E∗) = cr(E).

In particular, the K-theoretic Euler class goes to the cohomological Euler class under the Chern character.
4



We continue with the previous assumptions on X. In particular, we assume that it comes with a polariza-

tion T
1/2
X ∈ KT(X). Given a component Fi ⊂ XA recall that the polarization gives elements N1/2 ∈ KT(Fi)

such that
NFi = N1/2 + q−1(N1/2)∗.

Further splitting these into positive and negative A-weights (with respect to C) we get an equality

N− = N
1/2
− + q−1(N

1/2
+ )∗

and similarly for positive weights. In particular,

N− −N1/2 = q−1(N
1/2
+ )∗ −N

1/2
+ .

Its determinant is
det N−

det N1/2
= q− dimN

1/2
+

(
det N

1/2
+

)⊗(−2)
.

In particular, it has a canonical square root (recall that q1/2 ∈ KT(X))(
det N−

det N1/2

)1/2

= q− dimN
1/2
+ /2(det N

1/2
+ )−1.

To define K-theoretic stable envelopes we also have to choose a slope parameter

L ∈ Pic(X)⊗Z R.

Just like in the case of equivariant parameters, there are Kähler roots which define walls (affine hyper-
planes) in Pic(X)⊗Z R. We say a slope L ∈ Pic(X)⊗Z R is generic if it does not lie on a wall. Note that
we may choose a lift of the slope to a class in PicA(X)⊗Z R; the choice of a lift will not matter.

Theorem 4.3. Assume that dim(XA) = 0 for simplicity. For a generic slope L there is a unique map

Stab: KT(XA) −→ KT(X)

of KT(pt)-modules, such that for any component Fi ⊂ XA the stable envelope Stab(i) = Stab(1Fi) satisfies

(1) supp Stab(i) ⊂ Attrf (Fi),

(2) Stab(i)|Fi = (−1)dimN
1/2
+

(
detN−

detN1/2|Fi

)1/2
eT(N−),

(3) degA(Stab(i)|Fj ) ⊂ degA(Stab(j)|Fj ) + L|Fj − L|Fi for any Fj < Fi.

Remark 4.4. Call the complement of the walls in Pic(X)⊗Z R an alcove . For any two slopes lying in the
same alcove the K-theoretic stable envelopes are the same.

Remark 4.5. Stable envelopes also exist for non-generic slopes. But if a slope lies on a wall, uniqueness fails:
the stable envelopes for the adjacent alcoves satisfy the axioms.

Example 4.6. Consider X = T∗P1 and the T-action on X from example 1.6. Fix the chamber C+ and the
polarization from example 2.3. We have Pic(X) = Z generated by OP1(1). Consider the slope L = O(−ε) ∈
Pic(X)⊗Z R for 0 < ε < 1. Let

KT(pt) = Z[u±11 , u±12 , q±1/2].

We claim that

Stab(0) = [OP1 ] + qu2u
−1
1 [OT∗∞P1 ], Stab(∞) = −q1/2u2u−11 [OT∗∞P1 ].

The support axiom is obvious. By the excess intersection formula

[OP1 ]|0 = 1− u1u−12 q

[OP1 ]|∞ = 1− u2u−11 q

[OT∗∞P1 ]|0 = 0

[OT∗∞P1 ]|∞ = 1− u1u−12

At {0} we have N
1/2
+ = 0, so the normalization axiom is

Stab(0)|0 = 1− qu1u−12
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which is obviously satisfied. At {∞} we have N
1/2
+ = T∗∞P1 which has class u1u

−1
2 q−1 in K-theory, so the

normalization axiom is

Stab(∞)|∞ =
−q−1/2

u1u
−1
2 q−1

(1− u1u−12 )

which is again satisfied.
Finally, we have to check the degree axiom for ∞ < 0. Since all expressions involve a = u2u

−1
1 , it will be

convenient to consider the degree with respect to this variable. We have deg(Stab(∞)|∞) = [0, 1]. Similarly,
since

Stab(0)|∞ = 1− q
we have degA(Stab(0)∞) = [0, 0].

OP1(2) = TP1 lifts to an A-equivariant line bundle with OP1(2)|∞ having class u2u
−1
1 and OP1(2)|0 having

class u1u
−1
2 in equivariant K-theory. Therefore, the degree axiom is that deg(Stab(0)|∞) = [0, 0] is contained

in [0, 1]− ε = [−ε, 1− ε]. So, it is also satisfied.
The pullback along the zero section induces an isomorphism

KT(T∗P1) ∼= Z[x±1, u±11 , u±12 , q±1/2]/(1− xu1)(1− xu2).

The restriction to 0 is x 7→ u−12 and the restriction to ∞ is x 7→ u−11 . Under this isomorphism [OT∗∞P1 ] goes

to 1− x−1u−12 and the stable envelopes are

Stab(0) = 1− u1u2x2q + qu2u
−1
1 (1− x−1u−12 ), Stab(∞) = −q1/2u2u−11 (1− x−1u−12 ).

Example 4.7. Consider the previous example with the trivial slope L = OP1 . Then

Stab(0) = [OP1 ] + u2u
−1
1 [OT∗∞P1 ], Stab(∞) = −q1/2u2u−11 [OT∗∞P1 ].

also satisfies the stable envelope axioms. To see that it is different from the previous expression observe that

Stab(0)|∞ = u2u
−1
1 (1− q).

Thus, for the trivial slope the uniqueness of stable envelopes fails. As explained before, it is the stable
envelope for the slope L = OP1(ε) for 0 < ε < 1.

5. K-theoretic stable envelopes for cotangent bundles of flag varieties

Let G be a connected simply-connected semisimple complex algebraic group, B ⊂ G a Borel subgroup
and B = G/B the flag variety. In this section we will consider X = T∗B with its G ×C×-action, where G
acts on B in the obvious way and C× scales the fibers with weight 2. We let A ⊂ G be the maximal torus.
Let W be the Weyl group, Λ = Hom(A,C×) the weight lattice. For s, t ∈ W denote by ns,t the order of
st ∈W .

Let N ⊂ g∗ be the nilpotent cone with T∗B→ N the moment map for the G-action and St = T∗B×N T∗B
the Steinberg variety. Recall the affine Hecke algebra.

Definition 5.1. The affine Hecke algebra H is the Z[q1/2, q−1/2]-algebra with generators Ts (for s a
simple reflection) and θx (for x ∈ Λ a character) with the relations

TsTt . . .︸ ︷︷ ︸
nst

= TtTs . . .︸ ︷︷ ︸
nst

θxθy = θx+y

Tsθx = θxTs, s(x) = x

θx = Tsαθx−αTsα

(Ts + q−1/2)(Ts − q1/2) = 0.

For w ∈ W we denote by Tw ∈ H the element obtained by writing a reduced expression of w. There is
a natural algebra structure on KG×C×(St) given by convolution. Moreover, there is a natural KG×C×(St)-
module structure on KT(T∗B).
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Theorem 5.2 (Kazhdan–Lusztig, Ginzburg). There is an isomorphism of algebras

KG×C×(St) ∼= H.

The equivariant roots in this case coincide with the usual roots for G. So, as the chamber C we may take
the chamber of positive roots with respect to the Borel B. We may identify the fixed points with

XA ∼= W,

where w = e ∈W corresponds to B ∈ B. Consider the polarization from example 2.3. We may identify

Pic(X) ∼= Λ.

We define the negative fundamental alcove of Λ⊗Z R to consist of weights λ such that

−1 < (λ, α∨) < 0

for all positive roots α. From now on the slope L ∈ Λ⊗ZR is an arbitrary element of the negative fundamental
alcove. The stable envelopes will define K-theoretic classes

Stab(w) ∈ KT(T∗B).

The following is shown in [SZZ20].

Theorem 5.3.

(1) Stab(e) = [OT∗eB
].

(2) For any w ∈W one has Stab(w) = Tw−1(Stab(e)).

Remark 5.4. In the case when C is the negative Weyl chamber one has

Stab(w0) = (−q1/2)dim(G/B)e2ρ[OT∗w0
B].

This coincides with the calculation of Stab(∞) in example 4.6 for G = SL2.

6. Deformation quantization in positive characteristic and stable envelopes

In this section we assume that X is a conical A-equivariant symplectic resolution. In particular, it implies
that Hi(X,O) = 0 for i > 0. In this case

Pic(X)⊗Z C ∼= H2(X; C)

by taking the first Chern class.
According to [BK04] filtered deformation quantizations of X are parametrized by λ ∈ H2(X; C) which can

be made A-equivariant. It is also expected that one can quantize the Lagrangian correspondence X ← Attr→
XA to define a parabolic induction functor from deformation quanzation modules on XA to deformation
quantization modules on X. It is expected (the ongoing work of Bezrukavnikov and Okounkov) that it is
related to K-theoretic stable envelopes and their categorifications via reductions mod p which we will briefly
recall.

If X is a symplectic variety over a field of positive characteristic, its deformation quantization Aλ often
has a large center, so that A localizes to a sheaf of Azumaya algebras Aλ over the Frobenius twist X(1) of
X. In certain cases Aλ might be canonically split, i.e. it is isomorphic to the endomorphism algebra of a
vector bundle on X(1). In this case we get an equivalence

Db
T(Aλ −mod) ∼= DbCohT(X(1))

of the corresponding derived categories. This is expected to happen for quantization parameters

L ∈ 1

p
Pic(X) ⊂ Pic(X)⊗Z Q

which lie away from the same affine hyperplanes that appear in the definition of K-theoretic stable envelopes.
We refer to [Los17] for some results in this direction.

So, the parabolic induction functor has a “classical shadow” given by a functor

DbCohT(XA) −→ DbCohT(X)

which categorifies the K-theoretic stable envelope. In this section we describe how this works for X = T∗B,
the cotangent bundle of the flag variety, following [SZZ21].
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Let ρ be the Weyl vector and consider the affine hyperplanes

Hp
α∨,n = {λ′ ∈ Λ⊗Z Q | 〈α∨, λ′ + ρ〉 = np}.

Consider the fundamental alcove containing (ε− 1)ρ for a small positive ε. We say λ′ ∈ Λ⊗Z Q is regular
if it does not lie on the affine hyperplanes.

Remark 6.1. Let

λ = −λ
′ + ρ

p
.

Then λ′ is regular in the above sense if, and only if, the slope λ ∈ Λ ⊗Z Q is generic as in the definition
of K-theoretic stable envelopes. Moreover, λ′ lies in the fundamental alcove if, and only if, λ lies in the
negative fundamental alcove, i.e.

−1 < 〈α∨, λ〉 < 0

for every positive root α.

For a regular integral λ′ the papers [BMR06; BMR08] have established a localization result identifying a
certain derived category of g-representations over an algebraically closed field k of positive characteristic p
and DbCohTk(T∗B(1)). We denote this equivalence by γλ

′
.

Now consider the Verma module Z(w(λ′ + ρ) + ρ) with the corresponding highest weight over g. In
particular,

γλ
′
Z(w(λ′ + ρ) + ρ) ∈ DbCohTk(T∗B(1)).

Let BZ be the Z-form of the flag variety. The following is [SZZ21, Theorem 1.2].

Theorem 6.2. Suppose p is greater than the Coxeter number of G, λ′ ∈ Λ⊗Z Q is regular and integral and
let

λ = −λ
′ + ρ

p
.

There are objects StabλZ(w) ∈ DbCohTZ
(T∗BZ) with the following properties:

• We have an equality

[StabλZ(w)⊗Z C] = e−ρStab(w) ∈ KT(T∗B),

where we use λ as the slope in the definition of K-theoretic stable envelopes.
• We have an isomorphism

StabλZ(w)⊗Z k ∼= L−ρ ⊗ γλ
′
Z(w(λ′ + ρ) + ρ) ∈ DbCohTk(T∗B(1)),

where k is an algebraically closed field of characteristic p and L−ρ is the corresponding G × Gm-
equivariant line bundle on T∗B.

Quantizing T∗B in positive characteristic we get the representation category of g by the Beilinson–
Bernstein localization and the corresponding parabolic induction functor quantizing

W ←− Attr −→ T∗B

sends w to the corresponding Verma module. The above theorem asserts a compatibility between quantiza-
tion in positive characteristic and stable envelopes.

7. Stable envelopes for cotangent bundles

Consider the setting of example 2.3, so that Y is a smooth variety with an A-action and X = T∗Y with a
T = A×C×-action. We fix a chamber C. Let AttrX be the attracting variety in X and AttrY the attracting
variety in Y . In this case the Lagrangian correspondence

AttrX

{{ ""
XA X
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becomes

N∗AttrY

yy $$
T∗Y A T∗Y

which is the conormal bundle of the correspondence

AttrY

p

||

η

""
Y A Y

Let MHM(Y ) be the category of A-eqvuiariant mixed Hodge modules on Y and DbMHMA(Y ) the corre-
sponding equivariant derived category which admits a six-functor formalism [Ach13]. For us it is important
to know that a mixed Hodge module has an underlying filtered D-module. In particular, there is a functor

gr ◦DR: DbMHMA(Y ) −→ DbCohT(Y )

passing to the associated graded of the filtration on the de Rham complex.
We will be interested in the functor

η!p
∗ : DbMHMA(Y A) −→ DbMHMA(Y ).

For L ∈ Pic(X)⊗ZQ we may also consider the category of twisted mixed Hodge modules which we denote

by MHML(Y ).

Theorem 7.1. There is a commutative diagram

K0(DbMHML
A (Y A))

η!p
∗
//

gr◦DR

��

K0(DbMHML
A (Y ))

gr◦DR

��
KT(Y A)

∼ π∗

��

KT(Y )

∼ π∗

��
KT(XA)

Stab // KT(X)

Here the vertical isomorphisms on K-theory are induced by pullbacks under the projections π : T∗Y → Y
and π : T∗Y A → Y A and the K-theoretic stable envelope at the bottom involves L as the slope parameter.

Remark 7.2. The above theorem is a combination of the following results:

(1) For a subvariety i : U ↪→ Y the class in K-theory of the mixed Hodge module i!QU is the equi-
variant motivic Chern class. Motivic Chern classes (along with the relationship to mixed Hodge
modules) were introduced in [BSY10]; their equivariant version was introduced in [FRW21] and
their relationship to equivariant mixed Hodge modules was explained in [DM20].

(2) The K-theoretic stable envelope for the cotangent bundle coincides with the equivariant motivic
Chern class of the corresponding attracting set [FRW21].
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