1 -ang-Baxter equation:

- braid relation: in B_{n} braid group: $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}$

YB equation

- V finite dim us $/ \mathbb{Q}, R \in \operatorname{End}(V \otimes V)$ is an R-matrix if

$$
\begin{aligned}
& \text { finite dim vs } / \mathbb{C}, R \in E n d(V \otimes V) \text { is an } R(R \otimes i d v) \cdot(i d v \otimes R)_{0}(R \otimes i d v)=(i d \otimes R)(R \otimes i d v)(i d v \otimes R) \in E n d(V \otimes V \otimes V) \\
& \left(R \otimes R_{12} R_{13} R_{23}=R_{23} R_{13} R_{12} \quad R_{13}=\tau \cdot R_{13}\right. \\
& \Leftrightarrow R_{12}
\end{aligned}
$$

Why? \rightarrow appears in maths physics.
\rightarrow rep. theory: braided categery of rep.
Hope algebra: $(A, m, \triangle, S): m: A \otimes A \rightarrow A$
$\Delta: A \longrightarrow A \otimes A$
V, W sone A-modules
$V \otimes W$ is A-mod. : $g \cdot(v \otimes \omega)=\Delta(g) \cdot(v \operatorname{siv})$
V^{6} is A-mod: $g . \phi=\phi_{0} S(g)$
Example: A lie algebra, $A=U(\partial)$ is a tlopf algebra with $\Delta(x)=201+10 x$
cocemmutative: $\tau 0 \Delta=\Delta \circledast \tau(n \otimes y)=y \otimes n$

Braided category: $\forall x_{1} y, \Rightarrow$ iso $c_{x, y}: X \otimes y \rightarrow Y \otimes X$.
Deformation of by Universal R-matrix:
$R \in A \otimes A$, invertible st $R \Delta(x) R^{\cdot 1}=\left(\tau_{0} \Delta\right)(x), \forall x \in A$
(+ conditions) $\leftarrow(\Delta$ aid $) R=R_{13} R_{23}$
\rightarrow the category A-mod is braided: $C u_{u, w}=\tau_{0} R$
\rightarrow the R-matrix satisfies the $Y B$ equation.
2) Quantum groups:

I simple Live algebra / \mathbb{L} (V,M algebra) $q \in \mathbb{C}^{x}$, not a nook of 1
$U_{q}(q)$: q-deformation of $U(\mathcal{L})=\left\langle E_{i}, F_{i}, \overparen{\mathcal{K}_{i}^{ \pm}}\right.$commutative
$C=\left(c_{i j}\right)$ Coutan :

$$
K_{i}^{ \pm} E_{j}={ }_{q_{i j}}^{ \pm c_{i j}} E_{j}^{\prime} K_{i}^{ \pm}
$$

matrix of \mathcal{I}

$$
k_{i}^{ \pm} F_{j}=q^{\mp c_{i j}} F_{j} k_{i}^{ \pm}
$$

$+q$-Serve relations $\quad\left[E_{i}, F_{j}\right]=\delta_{i j} \frac{k_{i}-k_{i}^{-1}}{q_{i}-q_{i}^{-1}}\left(q_{i}=q^{d_{i}}\right.$, D sym. of $\left.C\right)$

$$
\begin{aligned}
& \text { Example: } \mathrm{Ul}_{q}\left(s l_{2}\right):\left\langle E, F, K^{ \pm}\right\rangle \\
& \begin{array}{l}
K^{E A} E=q^{+2} E K^{ \pm},[E, F]=\frac{K-K^{-1}}{q-q^{-1}} \\
K^{ \pm} F=q^{72} F K^{ \pm}
\end{array} \\
& U q(f) \text { is a thopf algebra } \\
& \Lambda\left(k_{i}\right)=K_{i}(x) k_{i} \quad, \quad S\left(K_{i}\right)=u_{i^{-1}} \\
& U_{q}\left(g l_{2}\right)=\left\langle E, F, K_{1}^{ \pm} k_{2}^{ \pm}\right\rangle \\
& K_{1} E=q E K_{1}^{\prime}, K_{1} F=q^{-1} F K_{1} \\
& K_{2} E=q^{-1} E K_{2}, k_{2} r=q F K_{2} \\
& U_{q}\left(s l_{2}\right)=C l q\left(f l_{2}\right)^{\prime} / k \\
& 11_{11,-1}\left\langle K_{1} k_{2}=1\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \Delta\left(E_{i}\right)=E_{i} \otimes 1+K_{i} \otimes E_{i}, S\left(E_{i}\right)=-K_{i}^{-1} E_{i} \quad n=v \wedge u_{2} \\
& \Delta\left(F_{i}\right)=F_{i} \otimes K_{i}^{2}+\Lambda \otimes F_{i}, S\left(F_{i}\right)=-F_{i} K_{i}
\end{aligned}
$$

Tho: [Drinfeld] $\exists R \in U_{a}(f) \hat{\otimes} U_{g}(f)$, universal R-matrix specializes to firth elimensional rep:
$\forall V, W$ fad rep: $R_{v, W}=\left(\rho_{v_{s p}} \rho_{w}\right)(R) \in$ End $(v \otimes W)$
The category $\operatorname{Rep} \rho d U_{q}(g)$ is braided.

$$
F \otimes E\left(v_{1} \otimes v_{0}\right)=0
$$

(Ru) R has multiplicative formula:
of the form: $R=\prod_{\beta \in \Phi} \exp \left(c_{\beta} \bar{F}_{\beta} \otimes \bar{E}_{\beta}\right) g^{H \infty}: \begin{aligned} & \text { also true for } \\ & g \text { affine }\end{aligned}$ vie algebra.
3 RTT presentations:
 $G \quad\left|R_{12} T_{13} T_{23}=T_{123} T_{13} R_{12}\right| e \operatorname{End}\left(V^{82}\right) \otimes U_{q}(g)$.

$$
\begin{aligned}
& \text { Example: } U_{q}\left(s_{2}\right): R=\sum_{r=0}^{+\infty} \left\lvert\, c_{r}(q) e^{\frac{1}{2} H(H H} F^{r} \otimes E^{r}\right. \text {, where } K=0_{0}^{H} \\
& V=W=V_{1}=\mathbb{C} \vartheta_{0} \oplus \mathbb{C} s_{1} \\
& K v_{0}=q v_{0} \left\lvert\, \begin{array}{ll}
E v_{0}=0, & F v_{0}=v_{1} \\
E v_{1}=v_{0}, & F V_{1}=0
\end{array}\right. \\
& K v_{l}=q^{-1} v_{1}
\end{aligned}
$$

$$
\begin{aligned}
& F \otimes E\left(N \otimes v_{\lambda}\right)=v_{1} v_{0}
\end{aligned}
$$

$Z l_{D}$ consequence of $Y B$.
Hopf dual: in general a R-matrix $R\left(\epsilon \overline{\tau_{n}} d(V \otimes V)\right)$: $(d i m V=n)$

$$
A(R)=\left\langle t_{i j}, 1 \leq i, j \leq n\right\rangle+R J J \text { relation, with } \bar{T}=\left(t_{i j}\right)_{1 \leqslant i j s n} \text {. }
$$

$\backsim A(R)$ is also a Hopf algebra:
Example: $R=\left(\begin{array}{llll}9 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 9-1\end{array} \quad R T=T R\right.$ gives: $T=\left(\begin{array}{ll}t_{\mu} & t_{22} \\ t_{21} & t_{22}\end{array}\right)$

$$
\begin{aligned}
& R=\left(\begin{array}{cccc}
9 & 0 & 0 & 0 \\
0 & 1 & -9^{-1} & 1 \\
0 & 0 \\
0 & 0 & 0 & 9
\end{array}\right) \\
& \Delta\left(t_{i j}\right)=\sum_{\varepsilon=1}^{n} t_{i \beta} \otimes t_{\varepsilon_{j}} \\
& \left\{\begin{array} { l }
{ t _ { 1 1 } t _ { 1 2 } = q ^ { t _ { 1 2 } t _ { 1 1 } } } \\
{ t _ { 1 2 } t _ { 2 1 } = t _ { 2 1 } t _ { 1 2 } } \\
{ t _ { 2 1 } t _ { 2 2 } = q _ { 2 2 } t _ { 2 1 } }
\end{array} \left\{\begin{array}{l}
t_{11} t_{21}=q t_{21} t_{11} \\
t_{12} t_{22}=q^{t} t_{22} t_{12} \\
t_{11} t_{22}-t_{22} t_{11}= \\
\left(q-q^{-1}\right) t_{12} t_{21}
\end{array}\right.\right. \\
& \text { (nil) } \\
& \left(q-9^{-1}\right) t_{12} t_{21} .
\end{aligned}
$$

Example: $V=\mathbb{C}^{n}, R=R_{V, v}$ for $U_{q}(s \mid n)$
$A(R)=M_{2}(q)=$ quantized algebra of functions.
n=2: $\quad M_{2}(q)=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right\} /($ rel $\left.)\right\}: q$-deformation of $M_{2}(\mathbb{C})$.
$G L_{2}(q)=M_{2}(q)[t] /\left(\right.$ detpq$\left._{q}-1\right) \quad S L_{2}(q) \operatorname{det}_{q}=a d-a_{q}^{-1} b c$ central in $M_{2}(q)$

- FRJ presentation:
$U(R)=\left\langle\left(l_{i j}^{ \pm}\right)_{1 \leq i, j \leq n}\right\rangle \subset A^{*}(R)$, with relations:

$$
R_{1}^{(n)} L_{2}^{\frac{1}{2}}=L_{2}^{\frac{1}{2}} L_{1}^{ \pm} R \in \operatorname{MaH}^{\operatorname{Man}}\left(V^{\infty 2}, A^{*}(R)\right)
$$

Then: $U(R) \cong U_{q}(\delta \ln)$.

$$
L=\left(e_{i j}\right) \quad \begin{aligned}
& L_{1}=L \text { id } \\
& L_{2}=i d \theta L
\end{aligned}
$$

n=2: $L^{+}=\left(\begin{array}{cc}K^{-1 / 2} & \left(q-q^{-1}\right) E \\ 0 & u^{1 / 2}\end{array}\right), L^{-}=\left(\begin{array}{cc}K^{1 / 2} & 0 \\ \left(q-9^{-}\right) F & u^{-1 / 2}\end{array}\right)$
4) Quantum affine algebras:
$Y B$ with parameters; $R(2) \in(A \& A)(\mathcal{Z})) \quad$ with a solution $R(z)$ $\left(R_{12}(2) R_{13} \omega_{2}\right) R_{23}(\omega)=R_{23}(\omega) R_{33}(\omega) R_{22}(z) \rightarrow$ can construct $u_{0}(\hat{y})$.
same thing as presearato of crate), with \& affine
solution to $Y B$
(6 vertex model)
\rightarrow rep of evcenation of $U_{q}\left(\delta \hat{l}_{2}\right)$.
Take $2=e^{u}, u \rightarrow 0$

$$
q=e^{h / 2}, h \rightarrow 0
$$

"classical limit"
Obtain: $\frac{1}{(u+h}\left(\begin{array}{ll}u & h \\ h & u\end{array}\right): R$-matrix

