Yangrans
For a f.d. simple Lie algebra ag, Drinfeld defined $y(a)$, Yangian, which is a Hoof algebra (in some sense) canonical deformation of $U(g[\times])$ (wave precisely, $\hbar \mapsto 1$)
I will describe the case $y=g l_{n}$
I am following Moles (see refs)

1. Definition of $y\left(g l_{n}\right)=y(n)$

Consider the stand basis $E_{i j}$ of ogle $\left(:\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)\right.$

$$
\begin{aligned}
& {\left[E_{i j}, E_{k e}\right]=\delta_{k, j} E_{i \ell}-\delta_{i l} E_{k j} .} \\
& E=\left(E_{i j}\right) \quad\left(\begin{array}{c}
E_{11} \\
E_{21} \\
E_{22} \\
E_{22}
\end{array}\right)
\end{aligned}
$$

Useful fact:

$$
g_{0}=\operatorname{tr}\left(E^{s}\right) \in Z\left(u\left(g l_{u}\right)\right)
$$

Proof of cutrality uses the following:

$$
\left[E_{i j},\left(E^{s}\right)_{k e}\right]=\delta_{k j}\left(E^{s}\right)_{k e}-\delta_{i e}\left(E^{s}\right)_{k j} .
$$

Proposition:

$$
\begin{aligned}
& {\left[\left(E^{r+1}\right)_{i j},\left(E^{s}\right)_{k e}\right]-\left[\left(E^{r}\right)_{i j},\left(E^{s+1}\right)_{k e}\right]=\left(E^{r}\right)_{k j}\left(E^{s}\right)_{i e}-\left(E^{s}\right)_{k j}\left(E^{r}\right)_{i e}} \\
& \left(E^{0}\right)_{i j}=\delta_{i j} .
\end{aligned}
$$

Definition: The Yayian $y\left(g l_{n}\right)=y(n)$ is onital assoc. algebra w. generators $t_{i j}^{(r)}, \quad r \in \mathbb{Z} \geqslant 0, i, j=1, \ldots, n, t_{i j}^{(0)}=S_{i j}$

$$
\begin{aligned}
& {\left[t_{i j}^{(r+s)}, t_{k e}^{(s)}\right]-\left[t_{i j}^{(r)}, t_{k e}^{(s+4)}\right]=t_{k j}^{(r)} t_{i e}^{(s)}-t_{k j}^{(s)} t_{i e}^{(r)} .} \\
& \text { Remarks }: 1)^{(u)} t_{i j}(u)=\sum_{r=0}^{\infty} t_{i j}^{(r)} u^{-r}=\delta_{i j}+t_{i j}^{(3)} u^{-1}+\ldots \\
& (u-v)\left[t_{i j}(u), t_{k e}(v)\right]=t_{k j}(u) t_{i e}(v)-t_{k j}(v) t_{i e}(u)
\end{aligned}
$$

2) There is a hamaonorphism

$$
\begin{aligned}
& \text { is a homaonorphism } \\
& y(n) \longrightarrow u\left({ }_{g} l_{w}\right), t_{i j}^{(r)} \mapsto\left(E^{r}\right)_{i j} \quad \text { (special to tope A)! } \\
& u\left(g l_{n}\right) \hookrightarrow y(n), E_{i j} \mapsto t_{i j}^{(i)}
\end{aligned}
$$

2. Matrix form of relations

Write $T(u)$ for a matrix $\left(t_{i j}(u)\right)$

$$
T(u) \in Y(u)\left[\left[u^{-3}\right\}\right] \otimes E_{n d}\left(\mathbb{C}^{u}\right), \quad T(u)=\sum t_{i j} \otimes e_{i j}
$$

Define: $P=\sum e_{i j} \otimes e_{j i} \in E_{n d}\left(\mathbb{C}^{u}\right)^{\otimes 2}$ (Killing form)

$$
R(u)=I d-P_{u^{-1}}-Y_{\text {and's }} R \text {-matrix }
$$

R satisfies

$$
R_{12}(u) R_{13}(u+v) R_{23}(v)=R_{23}(v) R_{13}(u+v) R_{12}(u)
$$

(QYBE w. spectral parameter)
Proposition: relations of $y(n)$ ave given by

$$
\begin{gathered}
R(u-v) T_{1}(u) T_{2}(v)=T_{2}(v) T_{1}(u) R(u-v) \\
T_{i}(u) \in y(u)\left[\left\{u^{-1}\right]\right\} \otimes E_{n d}\left(\mathbb{C}^{\cdot u}\right)^{\otimes 2} \\
T_{1}(u)=\sum t_{i j}(u) \otimes e_{i j} \otimes 1 \\
T_{2}(u)=\sum t_{i j}(u) \otimes 1 \otimes e_{i j} .
\end{gathered}
$$

Exercise: 1) check what set of relations is obtained
2) a) $T^{-1}(u)$ also satisfies $R T T$ relations ($T \mapsto T^{-1}$ (up to sides an artam. of the Yangidu)
b) $t_{i j}(u) \mapsto \delta_{i j}+E_{i j} u^{-1}$ - gives another homomorphism $y(u) \rightarrow U\left(g l_{u}\right)$.
3. $y(n)$ is a Hapf algebra

Theorem: $y(u)$ is a Hoff algebra

$$
\begin{aligned}
& \Delta: t_{i j}(u) \mapsto \sum_{a=1}^{n} t_{i a}(u) \otimes t_{a j}(u) \\
& S: T(u) \mapsto T^{-1}(u) \\
& \varepsilon: T(u) \longmapsto 1
\end{aligned}
$$

Proof: will just prove Δ is a homomorphism.

$$
\begin{aligned}
& \Delta(T(u))=T_{[1]}(u) T_{[2]}(u)=\left(\Sigma t_{i j} \otimes 1 \otimes e_{i j}\right)\left(\Sigma 1 \otimes t_{i j} \otimes e_{i j}\right) \\
& y_{(u)}^{\infty} 2^{2}\left[\left[u^{-1}\right]\right] \otimes \operatorname{End}\left(\mathbb{C}^{n}\right) \\
& T_{[i] j} \in \underset{i^{\text {th }}}{y(u)^{\otimes 2} \otimes \operatorname{End}\left(\mathbb{C}^{2}\right)^{\otimes 2}\left[\left\{u^{-1}, v^{-1}\right\}\right]} \\
& T_{[i] 2}{ }^{(u)}=\sum t_{i j}(y) \otimes 1 \otimes 1 \otimes e_{i j}
\end{aligned}
$$

Δ-haucomorplism \Longleftrightarrow

$$
\begin{aligned}
& R(u-v) T_{[1] 1}(u) T_{[2] 1}(u) \\
& =T_{[1] 2}(v) T_{[2] 2}(v) \\
& (v) T_{[2] 2}(v) T_{[i] 1}(u) T_{[2] 1}(u) R(u-v)
\end{aligned}
$$

This follows from RTT \& $T_{[131}$ commutes $w . T_{2232}$

$$
T_{[2] 2}-i=T_{[2]]}
$$

4. Let $\operatorname{deg} t_{i j}^{(r)}=r-1$ - defines a filtration an $y(n)$.

Exercise: $\operatorname{gr} y(n) \longrightarrow U\left(g l_{n}[x]\right)$

$$
\overline{t_{i j}^{(r)}} \longmapsto \bar{E}_{i j} x^{r}
$$

image' of $t_{i j}^{(r)}$ in the $(r-1)^{s+}$ graded piece
(PBW for $y(n) \Rightarrow$ an isomaphism)
5. There is family of commutative subalgebras in $y(u)$
indexed by $C \in G L(u)$ (called Bethe subalgebras)

$$
\tau_{k}(u, C)=\operatorname{tr} \underbrace{A_{n} T_{1}(u) T_{2}(u-1) \ldots T_{k}(u-k+1) C_{k+1} \ldots C_{n}}_{n}
$$

A_{n} is a projector to the sign rep. of S_{n} in $\left(\mathbb{C}^{冈}\right)^{\otimes n}$.
Theorem: coifs. of $\tau_{k}(u, C), k=1, \ldots, n$ commence w. each other.
If C is regular semisimple, define maximal comm. subalf. of $y(n)$,

What about $g \neq g$ h?
Motivation
Det J-Lie algebsa Δ co-Lie brachet $\delta: \eta \rightarrow g \otimes o g$
$(J, \delta) x$ - Lie balgetra if δ is a 1 -cocycte, i.e.

$$
\delta([X, Y])=\left(a d_{X} \otimes 1+1 \otimes a d_{X}\right) \delta(Y)-\left(a d_{y} \otimes 1+1 \otimes a d_{y}\right) \delta_{X} .
$$

Exomple:

1) 7-semisiaple

$$
b_{+}, b_{-}<\eta
$$

$g^{\prime}=\{(x, y): \pi(X)=-\pi(y)\}<\hbar_{-} \times \hbar_{T} \quad$ is a Lie subalgebra
\& $y^{\prime} \simeq y^{*}$ via $\langle(x, y), z\rangle=(y-x, z)$ \leadsto compatible δ.
2)

$$
\gamma[u]=\gamma_{\mathbb{C}}^{\otimes} \mathbb{C}[u] \quad \delta: f \longmapsto\left(\operatorname{ad}_{f(u)} \otimes i d+i d \otimes \operatorname{ad}_{f(v)}\right)\left(\frac{t}{u-v}\right)
$$

Drineld expected (in 80s) that ony ($\mathrm{y}, 5$) aduilted a quantivation:
$\rightarrow \mathbb{C}\left[\begin{array}{r}\boldsymbol{b} \\ \mathbb{L}\end{array}\right.$-linear bialg. $U_{\hbar}\left(l_{y}\right)$ s.t.
$\rightarrow U_{t}(\underline{y}) \simeq U(y)[t h]$ as $\mathbb{C}\left[t_{5}\right]$-modules
$\rightarrow \mu_{\hbar}=\mu, A_{\hbar}=\Delta \bmod \hbar=0$.
Dnoved by Etingof -Kazhdan in the gos. Exople $2 \leadsto Y(\mathrm{~g})$.

11 Two pesentations
Def (I-presentation)

$$
U_{\hbar}(\eta[u]) \text { gen. by } x \in y, J(x), x \in g
$$

modulo rels:

1) If Lie subalgebra
2) J is $Q[t \hbar]$-linean: $J(a x+b y)=a](x)+b J(y)$.

$$
\text { 3) }[x, J(y)]=J([x, y)) \text {. }
$$

$$
\begin{aligned}
& \text { 4) } \\
& {[J(x), J([y, y)]][J(z), J([x, y))]+[J(y), J([z, y)]} \\
& \frac{1}{24} \hbar^{2} \sum_{\lambda, \mu, 0}^{\prime \prime}\left(\left[x, x_{\lambda}\right],\left[\left[y, x_{\mu}\right],\left[z, x_{0}\right]\right]\right)\left\{x_{\lambda}, x_{\mu}, x_{0}\right\} \\
& \text { busis of } y \\
& \text { Coproduct: } \\
& \Delta(x)=x \oplus 1+10 x \\
& \Delta(J(x))=J(x) d+1 \oplus J(x)+\frac{1}{2} \hbar[x 01, t]
\end{aligned}
$$

$\left\{x_{\lambda}\right\}$-orthonam.

Ruk 1) This quantization is winque.
2) $u_{\hbar} \rightarrow u_{\hbar^{\prime}}$
$\stackrel{x \mapsto x}{ } J(x) \longmapsto \frac{\hbar^{\prime}}{\hbar} J(x)$
is am iso to v $\hbar, \hbar \neq 0$
$\Rightarrow 5=1$

Def (Current presentation)

$$
\begin{aligned}
& Y(\eta)^{u_{1}(\eta)} \simeq\left\langle X_{i, r}^{\frac{1}{2}}, H_{i, r}, i=1, \ldots, v k \eta, r \in \mathbb{Z}_{\geq 0}\right\rangle \text { /relations. } \\
& X_{i}^{ \pm}(u)=\sum_{r \geqslant 0} X_{i, r}^{ \pm} u^{-r-1} \quad H_{i}(\omega)=1+\sum_{r \geqslant 0} H_{i, r} u^{-r-1} \\
& \text { - }\left[H_{i}(u), H_{j}(v)\right]=0 \\
& \text { - }\left[X_{i}^{+}(u), X_{j}^{-}(v)\right]=\delta_{i j} \frac{H_{i}(u)-H_{i}(v)}{v-u} \\
& \text { - }\left[H_{i}(u), X_{j}^{ \pm}(v)\right]= \pm \frac{c_{i j}}{2} \frac{\left\{H_{i}(u), X_{j}^{ \pm}(u)-X_{j}^{ \pm}(v)\right\}}{u-v} \quad\{u, v\}=u v r v u \\
& \text { - }\left[X_{i}^{ \pm}(u), X_{j}^{ \pm}(v)\right]= \pm \frac{c_{j}}{2} \frac{\left(X_{i}^{ \pm}(u)-x_{j}^{ \pm}(v)\right)^{2}}{u-v} \quad \text { matrix } \quad\left[X_{i}(u)\right)_{1}\left[X_{i}(u)_{1}, \ldots \quad\left[X_{i}(u), X_{i}(u)=0\right. \text { relations }\right. \\
& \varphi\left(E_{1}\right)=X_{i, 0}^{+} \\
& \varphi\left(J\left(H_{i}\right)\right)=H_{i, 1}+\ldots \\
& \varphi\left(F_{i}\right)=X_{i, 0}^{-} \\
& \varphi\left(J\left(E_{i}\right)\right)=k_{i, 1}^{\top}+\ldots \\
& \varphi\left(H_{i}\right)=H_{i, 0}
\end{aligned}
$$

Advantages: J has coproduct (explicit)
Current: better suited to study fin. dim reps

- easier to see PBW basis. (monomials in gcreators).

Prop 7 1-pawam family of outonorplisisus of $Y(g)$ given by

$$
\begin{aligned}
& \tau_{a}^{a \in C}\left(H_{i, r}\right)=\sum_{s=0}^{r}\binom{r}{s} a^{v-s} H_{i, s} \\
& \tau_{a}\left(X_{i, r}^{-}\right)=\sum_{s=0}^{r}\binom{r}{s} a^{r-s} X_{i, s}^{ \pm}
\end{aligned}
$$

Pf \ln J-presentation

$$
\begin{aligned}
& \tau_{a}(x)=x \\
& \tau_{a}(J(x))=J(a)+a x
\end{aligned}
$$

is enviously an automorphisms.

The formulas above ac derived by induction, using expr. of $X_{i, r+1}^{ \pm}$in terms of $H_{i, r}, X_{i, r}^{ \pm}$
\& $\quad H_{i, r+1}=\left[X_{i, r+1}^{+}, X_{i, 0}^{-}\right]$.

21 Quantion Youg-Baxter (with spectral pacians)

$$
\begin{array}{r}
R_{12}\left(\lambda_{1}-\lambda_{2}\right) R_{13}\left(\lambda_{1}-\lambda_{3}\right) R_{23}\left(\lambda_{2}-\lambda_{3}\right)=R_{23}\left(\lambda_{2}-\lambda_{3}\right) R_{B}\left(\lambda_{1}-\lambda_{3}\right) R_{12}\left(\lambda_{1}-\lambda_{2}\right) . \tag{*}\\
\left.\underline{T_{m} 1} \text { (Dinfeld) } \exists R(\lambda)=1 \oplus 1+\frac{t}{\lambda}+\sum_{r 21} R_{r} \lambda^{-r-1} \in Y(g) \otimes Y(g) \llbracket \lambda^{-1} \mathbb{I}\right)
\end{array}
$$

which satsfies (*)
Tun2 $\left.R(\lambda)\right|_{\rho}$ is rational in $\lambda . \Rightarrow$ almost wiways mathes sense.
Prop $\{V(\lambda)\} \quad$ f.b. epps on the save v.spance V

1) $\forall \lambda, \mu \quad \exists I(\lambda, \mu): V(\lambda) \otimes V(\mu) \simeq V(\mu) \otimes V(\lambda)$
$\Rightarrow R=f l i p \circ$ satisties
2) $\operatorname{Aut}(V(\lambda) \odot V(\mu) \odot V(\nu))=$ sulars.

$$
R_{12}(\lambda, \mu) R_{13}\left(\lambda_{1} \nu\right) R_{23}(\mu, \nu)=\ldots
$$

$$
\rho: Y(g) \rightarrow \text { End }(v)
$$

