Coot:
$Y\left(\left.\mathrm{~g}\right|_{\varepsilon}\right)$ and its Evalution reperatation

- Nekijina Qurva Variod for a \times, (Foulforints).
- Stable Envebfes
- R-wtrices $\leadsto Y$ Yangian $\leadsto Y\left(\left.g\right|_{2}\right)$
- quantion duterminart for $Y\left(g_{2}\right) Z(Y(g h))$
- Con-Yargan Consutor.

$$
\begin{align*}
& \text { 1.) } Y\left(\mathrm{gl}_{2}\right) \\
& T_{\text {ij }}^{k} \text { for } k \geq 1, \quad i, j \in\{1,2\} \text {. } \\
& {\left[T_{i j}^{(1)}, T_{k, 2}^{(5)}\right]=\sum_{a=1}^{\text {mikns } s)} T_{k j}^{a-1} T_{i, e}^{T+5-a}-T_{k, j}^{T+5-a} T_{i, 2}^{a-1}} \tag{1}\\
& T_{i j}(u)=\delta_{j j}+\sum_{k=1} T_{i j}^{(k)} u^{-k} \in Y\left(g_{2}\right)\left[u^{-1}\right]
\end{align*}
$$

$(u-v)$

$$
R(u-v) T(u) T_{2}(v)=T_{2}(v) T_{1}(u) R(n-v)-\text { 'RT'' nebion } \in \operatorname{Snd}\left(\phi^{2}\right) \otimes \varepsilon n d\left(Q^{2}\right) \otimes Y\left(g_{2}\right)[(u, u, v)] \text { ? }
$$

$$
\left.Y\left(\left.g\right|_{2}\right) \longrightarrow Y\left(g g_{2}\right) \quad \text { wh } \quad f(u)=1+\sum_{k=0} a_{k} u^{k} \in \mathbb{Q}\left[u^{-1}\right]\right]
$$

$$
T(n) \longmapsto f(u) T(u)
$$

$$
\frac{1}{1-1 / n} \leadsto
$$

Evaluation Representation

$$
\begin{align*}
& {\left[T_{i j}(u), T_{k, l}(v)\right]=T_{k j}(u) T_{i, 2}(v)-T_{k, j}(v) T_{i, l}(u)} \tag{1}\\
& T(u)=\left[\begin{array}{ll}
T_{i j}(u) & T_{n 2}(u) \\
T_{21}(u) & T_{22}(u)
\end{array}\right] \in \underline{\operatorname{End}_{0}\left(Q^{2}\right) \otimes Y\left(g l_{2}\left[\left[u^{-1}\right)\right]\right.} \\
& \text { 湖地 } \mathrm{I}_{0} \text { - } \\
& R(u)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \frac{u}{u-1} & \frac{-1}{u-1} & 0 \\
0 & \frac{-1}{u-1} & \frac{u}{u-1} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \frac{T_{2}(u)}{\underbrace{}_{I_{\infty} \otimes}(u) \otimes}
\end{align*}
$$

$$
\begin{aligned}
& Y\left(g l_{2}\right) \\
& \operatorname{deg}\left(T_{i j}^{R}\right)=k-1 \\
& g_{1}\left(g l_{2}\right)=U\left(g l_{2}[z]\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \psi\left(\left.g\right|_{2}\right) \xrightarrow{P} \operatorname{End}\left(Q^{2}\right) \\
& T_{i j}(u) \longmapsto \frac{\delta_{i j}-e_{j i} u^{-1}}{1-\frac{1}{u}}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{\mathrm{L}, 2} \\
& \sin \left(a^{2}\right)=\cos \left(\theta^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Since } R(u-v) T(u) T_{2}(v) \longmapsto R(u-v) R(u) R(v)=R(v) R(v) R(u-v)
\end{aligned}
$$

$$
\begin{aligned}
& Y\left(\left.g\right|_{2}\right) \xrightarrow{-a} Y\left(g l_{2}\right) \xrightarrow{p} \operatorname{End}\left(Q^{2}\right) \text {. for any } a \in Q \\
& T(u) \longmapsto T(u-a) \\
& P_{a}: Y\left(\left.g\right|_{2}\right) \longrightarrow \operatorname{End}\left(Q^{2}\right) \\
& T_{i j}(n) \longmapsto \delta_{i j}-e_{j i}(n-a)^{-1} \\
& P_{a}^{\prime}: Y\left(g l_{2}\right) \longrightarrow \operatorname{End}\left(Q^{2}\right) \\
& T_{i j}(n) \longmapsto \delta_{i j}-e_{j i}(n-a)^{-1} \\
& T_{i j}^{(k)} \longmapsto-a^{k-1} e_{j i} \quad u\left(g_{2}[u \tau)\right. \\
& \begin{array}{l}
U\left(g g_{2}[u]\right) \longrightarrow{\underset{F}{F_{i j}}}^{(r)} \quad \text { gr. } Y\left(g l_{2}\right) \\
U^{k-1} E_{i j} \longmapsto
\end{array} \\
& \left.\bar{P}_{a}^{\prime}: U\left(\left.g\right|_{2} u\right)\right) \longrightarrow \operatorname{End}\left(Q^{2}\right) \\
& a=a_{1}, a_{2} \ldots a_{n}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{P}_{a_{0, ~}^{\prime}, a_{2}, a_{n}}^{\prime}: u(g_{2}(\omega) \longrightarrow \underbrace{\varepsilon_{d}\left(Q^{2}\right) \otimes \cdots \varepsilon_{d r}\left(Q^{2}\right)}_{n+t_{n} .} \\
& P_{a_{1, a_{2}-a_{n}}}: Y\left(g l_{2}\right) \longrightarrow-\varepsilon_{n d}\left(a^{2}\right) \otimes \cdots \otimes \varepsilon_{d}\left(a_{0}\right) \\
& T(u) \longmapsto R_{1,2}\left(u-a_{1}\right) R_{1,3}\left(u-a_{2}\right) \cdots R_{1, n+1}\left(u-a_{n}\right)
\end{aligned}
$$

Claim:

$$
\begin{aligned}
& n, a_{1}, a_{2} \ldots a_{n}, \quad \operatorname{kem}_{4}\left(P_{a_{1}, a_{2}, a_{n}}\right)=0 \\
& g \in Y\left(g l_{2}\right) \quad \exists P_{2, a, ~ a n} \quad P_{\text {anam }}(s) \neq 0 \\
& \widetilde{P}_{\text {a, } a_{1}, \ldots n}
\end{aligned}
$$

$$
\begin{aligned}
& Y\left(\left.g\right|_{2}\right) \subset \prod_{a_{1} \ldots a_{n}} \operatorname{\varepsilon nd}\left(\underline{Q^{2}\left(a_{1}\right) \otimes \cdots Q^{2}\left(a_{n}\right)}\right)
\end{aligned}
$$

2.) Nakejina Varisty of a foint:

$$
Q \leadsto \theta_{f} \leadsto \bar{\theta}_{f}
$$

$$
\begin{aligned}
& \underset{x_{\theta}}{\mu^{-1}(0)} a_{v}=M_{\theta}(\varepsilon, n) \longrightarrow \operatorname{kr}_{r} i(k, n) \\
& \theta>\left.0 \leadsto i\right|_{V}=0 \leadsto \operatorname{Hom}(W / V, V) \\
& M_{\theta}(k, n)=T \cdot \operatorname{Cr}(k, n)
\end{aligned}
$$

$$
\left.\begin{array}{l}
V= \\
(\sigma)^{n} \cup \operatorname{Co}(k, n)
\end{array}\right\}
$$

$$
\begin{aligned}
& (z \cdot z) \quad \mathbb{e}_{e_{i} \mapsto}^{\infty} \rightarrow e_{i}
\end{aligned}
$$

$$
\begin{aligned}
& \left(z_{1} \ldots z_{i}\right)=\left(\mathbb{C}^{\prime}\right)^{r} G T^{r} G(k, n)
\end{aligned}
$$

$$
\begin{aligned}
& t=n
\end{aligned}
$$

$$
\begin{aligned}
& =\bigsqcup_{\substack{s<|1 . n 3\\
| s \mid=\varepsilon_{0}}} L_{s} \quad L_{s}=\bigoplus_{i \in s} \mathbb{C} e_{i} \\
& \left.M_{n}\right):=\bigsqcup_{k} T^{*} G(k, n) \\
& M(n)^{A}=M(1) \times M(1) \cdots \times M(1) \\
& M(1)=T^{*} \operatorname{Gr}(0,1) \cup T^{\prime} \operatorname{Gr}(1,1) \\
& =|0\rangle U|1\rangle \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& H_{T}\left(X^{A}\right) ; \quad T=A \times C_{h}
\end{aligned}
$$

Stable Envebjos::

$$
\begin{aligned}
& X=\operatorname{Ta} \operatorname{Gr}(k, n) \xrightarrow{\text { Problar }} X_{0}=M_{0}(k, n) / \omega m \\
& \begin{array}{l}
A \cup T \cdot \ln (k, n) \\
\downarrow
\end{array} \\
& a_{R}=\operatorname{Cochar}\left(Q^{\prime}, A\right) \otimes \mathbb{R} \quad \mathcal{L}_{S} \\
& A \cup{\underset{\mathcal{L}}{s}}^{\mathcal{L}_{s}} \operatorname{Ga}_{r}(k, n) \sim T_{\mathcal{L}_{s}} h_{r}(k, n) \oplus T_{\mathcal{L}_{s}}{ }^{*} \operatorname{Gr}(k, n) \\
& \left(z_{i} \ldots z_{i}\right) \leadsto z_{i} / z_{i} \\
& \text { (} \operatorname{Hom}\left(\mathcal{L}_{s}, c^{\kappa} / \rho_{s}\right) \\
& \left(a_{i}-a_{j}\right)=0 \\
& \overline{A H_{e}(z)} \cap z^{\prime} \neq 0
\end{aligned}
$$

R-matrix: $\quad e^{\prime}, e^{\prime \prime}$

$$
S_{t a b}^{e^{-1}} \text { 。 } S_{t a b} e^{\prime \prime} \in \operatorname{End}\left(H_{T}\left(x^{*}\right)\right) \otimes Q(t)
$$

$$
\begin{aligned}
& R_{e, e^{\prime \prime}}=S_{\text {ta }} b_{e}^{-1} e^{0} \text { State }{ }^{\prime \prime}
\end{aligned}
$$

$R_{\alpha} \rightarrow$ Rot R-matrices

$$
v T(\mid) \quad \underset{\sim}{\square} \quad n \quad 1,1\left[\frac{u}{u-\hbar} \frac{-\hbar}{u-\hbar}\right\rceil
$$

$$
\begin{aligned}
& \lambda=111 . \\
& A=\mathbb{C} \\
& K_{<,\rangle}(u)=\left\lfloor\begin{array}{ll}
\frac{-\hbar}{u \hbar} & \frac{u}{u-\hbar}
\end{array}\right\rfloor \\
& \begin{array}{l}
A^{\prime} \subset A \rightarrow X^{A} \subset X^{A^{\prime}} \\
\quad \operatorname{codar}\left(A^{\prime}\right) \subset \operatorname{codar}(A)
\end{array} \\
& e^{\prime} c e \quad \quad A^{\prime} A^{\prime} \in X^{A^{\prime}} \\
& H_{T}\left(x^{A}\right) \xrightarrow{\text { Stater }} H_{T}\left(x^{\prime \prime}\right) \\
& \text { Stab } \int_{H_{t}^{+}(x)}^{\text {Sol }_{2} e^{\prime}} \\
& R_{\alpha} \rightarrow A>\operatorname{ku}(\alpha)=A^{\alpha} \quad H \\
& \mathbb{C}=A / A^{\alpha} \hookrightarrow X^{A^{\alpha}} \\
& M(n)=\bigsqcup_{k} \operatorname{T}^{*} G_{r}(k, n) \\
& \alpha=a_{i}-a_{j} \\
& A^{\alpha} \subset A=\left(\mathbb{C}^{-}\right)^{n}
\end{aligned}
$$

$$
M(n)^{A}=\underbrace{\mu(2)}_{n} \times \int_{n \neq i, j} M(1)
$$

Yangian for A

$$
\begin{aligned}
& \otimes Q_{h}^{2}\left[r_{2}\right] \cdots \otimes Q_{h}^{2}\left[u_{2}\right] \\
& d m(u)=m_{1}(n) e_{1} \otimes e_{1}^{2}+m_{12}(n) e_{1} \otimes e_{2}^{*}+m_{21}+m_{22} \in Q_{h}^{2} \otimes Q_{h}^{2 v}[n] .
\end{aligned}
$$

$$
\begin{aligned}
& H_{h}\left(p_{h}\right)=Q_{h} \\
& H_{T}^{-}\left(M(n)^{A}\right)=H_{T / A}\left(M(n)^{A}\right) \otimes Q[a] \\
& Q_{h}^{2}\left[w_{1}\right] \\
& \text { Q } \\
& H_{H}(\beta+)
\end{aligned}
$$

$R_{0, n} \ldots R_{02} R_{0,1}$
$Q[$ [u] $\otimes W \xrightarrow{\text { Ron }} W$

$$
E(m(n)) \in \operatorname{End}^{n}(w) \leadsto Y \underset{\sim}{\rightleftarrows}\left(\delta_{2}\right)
$$

Quantum Determinant foo $Y\left(g l_{2}\right)$

$$
q \underset{1}{q \operatorname{dot}(u)=\sum_{k \rightarrow 0}^{T_{11}(u) T_{22}(u-1)-T_{21}(u)} T_{12}(u-1) \in Y\left(g_{2}\right)\left[u^{-1}\right] .}
$$

$$
q d \Delta t_{k}=t^{t_{11}^{(k)}+t_{22}^{(k)}+m} \lll<-1
$$

\leadsto aflcaily ineft
qut

Cemin:

$$
\begin{aligned}
& g \rightarrow \text { redutien lie of chan } \\
& z(\underset{\downarrow}{u}(g[u]))=u(z(g)[u]) \\
& {\left[g_{1} u^{k}, g_{2} u^{k}\right]} \\
& =u^{h+\infty}\left[g_{1}, g_{2}\right] \\
& -z\left(g l_{2}\right) \rightarrow Z\left(u\left(g l_{2}(z)\right)=u\left(\left(\xi_{1}+F_{22}\right) h^{n}\right)\right. \\
& \Rightarrow Z\left(Y\left(g_{2}\right)\right)=\left\langle q d t_{k} ; h_{21}\right\rangle \\
& z(g)=\left\{\begin{array}{c}
x \in g \left\lvert\, \begin{array}{l}
\forall y \in J, \\
{[x, y]=0}
\end{array}\right.
\end{array}\right\}
\end{aligned}
$$

Lemn:-: $a \subseteq g_{c \text { fimita dimasion }}$ sud tht a is redudive in g
Lht b be the centribizo of a in g

Then the centralizer of $U(a[z])$ in $U(g[z])$ is equal to
$U(b[z])$

- Moreover, $Z(g)=0$, than cater of

$$
\begin{aligned}
& -Z\left(U\left(s_{2}[z]\right)\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& Y\left(S l_{2}\right) \subset Y\left(g l_{2}\right) \\
& T(u) \longrightarrow f(u) T(u) \\
& \frac{Y\left(g l_{2}\right) \simeq Y\left(s l_{2}\right) \otimes Z\left(Y\left(g l_{2}\right)\right)}{\ldots} \\
& z(u(g[z]))=u(z \\
& f(u)=1+\sum_{i, 0} a_{i} k^{-i} \\
& z_{f}: Y\left(g l_{2}\right) \longrightarrow Y\left(g l_{2}\right) \\
& Y\left(s k_{2}\right) \subset Y\left(\delta s_{2}\right)
\end{aligned}
$$

$$
\begin{gathered}
\nu Y\left(s l_{2}\right)=\frac{Y\left(g l_{2}\right)}{\left\langle Z\left(Y\left(\left.g\right|_{2}\right)\right\rangle\right.}=\frac{Y(g \mid 2)}{\left\langle q d t_{k}=0\right\rangle} \\
M_{0}: \quad Y_{Q} \subset Y_{Q} \\
M_{i}(v, w) \\
C_{k}\left(W_{i}\right)=\left\langle q u c_{k}\right\rangle \quad
\end{gathered}
$$

