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ABSTRACT. We compute the COHA of zero-dimensional sheaves on an arbitrary smooth quasi-
projective surface S with pure cohomology, deriving an explicit presentation by generators and
relations. When S has trivial canonical bundle, this COHA is isomorphic to the enveloping algebra
of deformed trigonometric W14 oo-algebra associated to the ring H* (.S, Q). We also define a double
of this COHA, show that it acts on the homology of various moduli stacks of sheaves on S and
explicitly describe this action on the products of tautological classes. Examples include Hilbert
schemes of points on surfaces, the moduli stack of Higgs bundles on a smooth projective curve and
the moduli stack of 1-dimensional sheaves on a K3 surface in an ample class. The double COHA
is shown to contain Nakajima’s Heisenberg algebra, as well as a copy of the Virasoro algebra.
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0. INTRODUCTION

Let S be a smooth quasi-projective complex surface. In the pioneering work [3I], Nakajima
constructed an action of a Heisenberg algebra hg on the direct sum V(5) := €D, 5, H* (Hilb,(5), Q)
of cohomology groups of the Hilbert schemes of points on S. Here, hg is modeled on the cohomology
ring H*(S,Q). What’s more, Nakajima identified V(5) with the Fock space representation of hg,
thereby providing a very fruitful bridge between the enumerative geometry of Hilb(S) and the
representation theory of Heisenberg algebras. This has led to a flurry of remarkable results on
the topology of Hilbert schemes of points on surfaces or of instanton spaces (see, among many
others, [23], [24], [43], [41], ...) and has served as model for the theory of quiver varieties. Similar
constructions exist also in the K-theoretic context, see e.g. [33], and may be upgraded to the
T-equivariant setting in the presence of a torus action on S.
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Nakajima operators arise from the correspondences
Hilb,, (S) x § <—— Hilby, 4 (S) —— Hilb,, 4 £(S5)

(and their transposes), where Hilb,, ,4+£(S) is the nested Hilbert scheme parametrizing pairs of
subschemes Z C Z' of respective lengths n, n+k. The scheme Hilb,, ,,4(S) carries the tautological
vector bundle H°(S,Z'/Z); taking cup product with the characteristic classes of these bundles
yields additional operators, generating a much larger algebra than U(hg). For S = C? equipped
with the natural (C*)2-action, such an algebra was studied in [39], where it was identified with
the so-called affine Yangian of gl, (see also [28] for a different approach)lﬂ In loc.cit. the same
algebra was shown to act on the cohomology of any of the instanton spaces, which are moduli
spaces of higher rank (framed, torsion-free) sheaves on C2. The affine Yangian of gl; is in turn
a two-parameter deformation of the algebra Wi, of differential operators on the circle, and its
representation theory is strongly related to that of affine WW-algebras of gl,.

The aim of this paper is to provide a generalization of the results (except for the link to affine
W-algebras) to the case of an arbitrary smooth quasi-projective surface S which is cohomologically
pure (for instance, projective). This provides actions of explicit infinite-dimensional algebras that
we call deformed W1 o-algebras on the Borel-Moore homology of many interesting moduli stacks
of coherent sheaves on S. Our approach is based on the theory of (2-dimensional) cohomological
Hall algebras, which we now succinctly recall.

0.1. Cohomological Hall algebras. Let C be a C-linear abelian category (satisfying suitable
finiteness conditions, such as in e.g. [8 § 5.1]) and let M denote the derived stack of objects in C.
The prime example of interest for us is the category of coherent sheaves on an algebraic surface S.
Extensions in C are controled by the (Hecke) correspondence

(0.1) Mo x Me L ﬁc . Me

where ﬁc is the stack of short exact sequences in C. Here p, resp. ¢ associate to a sequence
its middle, resp. extreme terms. The properties of the maps p,q depend heavily on the global
dimension of C; crucially, ¢ is quasi-smooth when C is of global dimension at most 2. When in
addition p is proper, the composition p,q' : H,(Mc,Q)®? — H,(Mc, Q) yields a structure of an
associative algebra on the Borel-Moore homology H. (¢, Q); this is the cohomological Hall algebra
(COHA) of C. Furthermore, any locally closed susbtack g C M¢ for which restricts to a
correspondence

to} 4q NO p ¢]
Me x Mg <—— Mz —— M2

gives rise to a H, (M¢, Q)-module structure on H, (M2, Q) (such substacks are called Hecke patterns
n [22]). In other words, the same algebra H,(M¢, Q) acts simultaneously on the homology of all
Hecke patterns. Hecke patterns may for instance be constructed using stability conditions and/or
framings. This construction appears in [38] (in the K-theoretic setting) and in [39] in the context
of quiver varieties and instanton spaces, where it gives rise to Yangians of Kac-Moody algebras, a
family of infinite-dimensional quantum groups. The construction of the COHA was later extended
to much more general contexts, see e.g. [44],[29], [37], [4], [22], [45], [34]....

The main object of study of this paper is the COHA of the category of zero-dimensional coherent
sheaves on a smooth surface S. Such COHAs were previously considered in [29], [22] and, in the
K-theoretical context, in [45] and [33], where quadratic relations (of Ding-Iohara type) between
degree one generators were found and actions on smooth moduli spaces were constructed. Here, we

lthe K-theoretic version was considered in [38] where it was identified with the elliptic Hall algebra (see also [13])
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focus on the Borel-Moore homology COHA and fully determine this COHA under the assumption
that S has a pure cohomology. As far as we are aware, the only case in which this COHA was fully
determined before was S = A? with a torus action, see [6], [39].

0.2. Deformed Wi, -algebras associated to a surface. In § |§| and §|§L to which we refer
for details, we introduce and begin the study of a family of associative algebras W (S) attached to
smooth, pure surfaces S. Let us begin by assuming that S is proper. Let c¢1,co be the Chern
classes of S and sy = ¢ — co. The algebra W(®)(S) is generated by collections of elements
{TEN),Yn(N) |70, € H*(S,Q)} and a central element ¢ modulo relations among which the
most important ones are

[V (N), T ()] = £m T,y (M),

[T V), T ()] = 3T 1 (V) Trea ()] + 3T 2 (A), Ty (10)] = [T 5 (V), T ()]
— [T (), T (s2)] + [T 1 (V) T (s200)] £ T, T Hear AsAn) =0,

m>) n
D w [T, (M) [T, (N2), Ty ()] = 0
weES3
as well as the double relation ([3.17), which expresses the commutators [T} (X), T, (i)] as poly-

nomials in 1,’s. We denote by W*(S), resp. W°(S) the subalgebras generated by {TX(\)} and
{4 (\), c} respectively. The algebra W) (S) is Z x N-graded, where T:F(\),4,()\) are put in
degrees (£1,2n — 2 + deg(A)) and (0,2n — 2 + deg(\)) respectively.

0.3. Main results. Let us now describe our main results, referring to the body of the text for
details:

Theorem A (Theorem 3.2 Propositions 3.20). Let S be a smooth and proper surface.
The following hold:
(a) There is a triangular decomposition W) (S) ~ W= (S) @ W°(S) @ W*(S),
(b) The graded character of WT(S) is given by
Ps(2)2 2w
PW+(S)(Z,1,U) = EXp <(1—22)(1—u))

where Pg(z) is the Poincaré polynomial of S,

(c) There are embeddings U(hs) < W((S) and U(Virg) = W(©)(S), where bs and Virg are the
Heisenberg and Virasoro algebras modeled on H*(S,Q); the respective central charges of bg
and Virg as functions of A\, u € H*(S) are given by

Cy = c/ AL, Nvir = C (/ codp — (1 — c2)/ AN+ 21/10(01)\u)> .
s S s

When the surface S has trivial canonical bundle, the W-algebra turns out to be the enveloping
algebra of a Lie algebra. More precisely:

Theorem A’ (Theorem . Let S be a proper surface, such that c; = 0 and sy = ¢* for some
q € H2(S). Then

W*(S) ~U(w™(9)),
where Wt (S) is the Lie algebra spanned by elements z™ D"\ with m>1,n>0,\ € H*(S,Q), subject
to the relations
(D +m'q)"D"™ — D™(D + mq)"

[ZmDn/\ , Zm'Dn/'u] — Zm+m' .

AL
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We also construct a natural representation F()(S) of W()(8) := W) (8)|c=, for any integer
r>0, which we call the level r Fock space. As a vector space,
F)(S) = A(S)[s, 5 jeer

where A(S) = Q[pn,(N\),r | n=0,\ € H*(S,Q)]. The space A(S) may be understood as the ring of
universal tautological classes on the stack €oh(S) of coherent sheaves on S, see § We prove in
§ [ the following

Theorem A’ (Corollary Remark [2.10). For any r € N, there is an action of W) (S) on
F()(S) via Fourier modes of the vertex operators

Pk . - 0 n
®+(z):exp( Z ?(’Y)@)’Y s k)[sol]exp(—vgoaﬁn(v)@’ys )

vik>1
_ Teu Pk .ok 9 n
o _ _ Ter Pk _9
(2) exp( ;1 k ()@ )[s<—r] exp( 20 Okn () ®s )
vik yinz
where {7}, {v*} are dual bases of H*(S,Q) and where the elements {rkn(N\)} are related to the

{p(N)} through relation (2.24)) involving the Todd class of S, and where 7., is a certain shift
automorphism of A(S), see §[0.4 This representation is faithful for r > 0, but is neither irreducible

nor highest weight.

In the case of open surfaces S, we may replace H*(S,Q) by either H*(S,Q) or H}(S,Q), the
cohomology with compact supports. It turns out that both are important for applications. This
leads us to define not one, but four versions WT(;: )(9), WT(f)(S), ff )(S) and Wfﬁ )(S) of deformed
W14 oo-algebra, depending on a choice of H* or H} for each half W+ (S), W~ (S). Assuming that
S is pure, we extend Theorems and to the setup of open surfaces, see § |l All the above
results continue to hold in the presence of a torus T" acting on S, where we now consider all spaces
as (free) modules over H*(BT). Finally, from the construction, it is immediate that the assignment
S WT(TC ) (S) is functorial with respect to open immersions; similar result holds for the other types
of W-algebras, see § b

Let us now return to COHAs. Let S be smooth and cohomologically pure, and let €ob,,s denote
the derived stack of length n coherent sheaves on S. The COHAs which we are interested in are

Hy(S) := €P H.(Cob,,5, Q)
n=0
and its ‘compactly supported’ version H§(S) := €B,,5 H«(€ob,,5/ Sym"™(S5),Q), which is defined

using hyperbolic Borel-Moore homology with respect to the support map €ob, 5 — Sym™(S), see
Appendix [Alfor definitions. Both H(S) and H§(S) are functorial with respect to open immersions.

Theorem B (§ . There are canonical algebra isomorphisms ©g : Ho(S) ~ WTJr(S) and O :
HS(S) ~ WJ(S) In particular, Ho(S) is spherically generated.

These isomorphisms are compatible with open immersions. We may include the ring of universal
tautological classes A(S) by forming semi-direct products
Hi (5) = A(S) x HYY(S),  HG(S) = A(S) x HE(S).

The isomorphisms above extend to Ho(S) ~ Wf (S) and HE(S) ~ Wf (S). The above results hold
mutatis mutandis in the presence of a torus 7" acting on S.

Corollary. If c;Ag = 0 and there exists ¢ € H?(S, Q) such that ¢> = so, then Ho(S) ~ U(rn*(9)).
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This corollary is in accordance with the general philosophy of Donaldson-Thomas theory for 2
Calabi-Yau categories. In particular, o™ (S) is the Lie algebra constructed by Davison-Kinjo [12];
as a vector space, it is isomorphic to gBF5[u], where gBF® is the BPS Lie algebra of Cohg(S) which
was determined in [§].

Our proof of Theorem [B] involves the construction and comparison of suitable faithful repre-
sentations of both W= (S) and H§(S). Following [22] (see also [11]) we introduce several notions
of Hecke patterns in § @ We deduce from the general formalism of COHAs that a left/right S-
strong, resp. S-weak Hecke pattern gives rise to a left/right action of Hg(S), resp. H§(S) on
V(X) = @, H.(Xa, Q).

We have evaluation map ev : A(S) — H*(X,Q). For any class a € @, H*(S,Q), we let [X,],
resp. [X¢!] be the virtual, resp. classical fundamental class of X,, and we denote by

Vvtaut(X) = @GV(A(S)) N [XO{], Vtaut(X) = @GV(A(S)) n [Xg{l]a

the subspace of virtual resp. classical tautological classes in V(X). Abusing notation, we denote
the induced maps from the Fock space F(") to VVtaut(X) V®aut(X) by ev as well. We collect
properties of Hecke patterns in the following theorem:

Theorem C (Proposition Corollary [7.13)). The following hold:

a) Le e a left S-strong Hecke pattern of rank r. e action preserves an
Let X be a left S-st Hecke patt kr. The action U% Vvt (X and
there is a commutative diagram

T ¢+ T
WH(S) @ ) —=—— F)(3)
(02) i@s@)ev leV
v
Hg— (S) ® Vvtaut (X) Vvtaut (X)
Similar results hold for S-weak Hecke patterns, and for right Hecke patterns.
(b) Let X be a two-sided Hecke pattern, so that we have both an action of WT+ (S) (or Wj‘(S)) and

of Wi (S) (or W (S)) on Vx. Then (0.2) extends to an action of WN(S) on Vi, fitting
in a commutative diagram

W (S) @ F) _® R (S)

Vvtaut (X)

Here the appropriate version of W)(S) depends on whether X is (left or right) S-strong or
S-weak.

(¢) Assuming that X satisfies the regularity condition (2.10), the results of (b-c¢) remain valid if
we replace VY@L (X)) with VUt (X)),

We conjecture that in the case of two-sided Hecke patterns of rank r, the action of W()(S)
on VVtut(X) extends to an action on the whole of V(X). The approach which we take here is,
however, restricted to tautological classes. One may hope to apply the machinery of [I1] to this
problem.

We provide in § [7] and § [§] some examples of regular two-sided Hecke patterns such as Hilbert
schemes of points on S (in which case our results complement those of Lehn [23]) and stacks of
Higgs bundles on a smooth projective curve. The action of the W-algebra on the homology of the
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stack of Higgs bundles is an essential ingredient in the proof of the P = W conjecture which is
given in [I8]. Other examples include moduli of instantons and moduli stacks of one-dimensional
sheaves on K3 surfaces, with possible applications to x-independence problems.

The paper is organized as follows. In § [I] we define various forms of COHAs of sheaves on a
smooth surface S. The formulas for action of length one Hecke correspondences on tautological
classes are established in §[2} We introduce and study deformed W-algebras in §§ Theorem [C]
is proven in §[6] We zoom in on the action of W-algebras on Hilbert schemes of points in § [7]
which results in a proof of Theorem [B] Further examples of Hecke patterns, such as moduli of
Higgs bundles, are considered in § [§ Finally, § [0] contains some natural conjectures, concerning in
particular a possible extension of our results to threefolds. Although we use the language of derived
algebraic geometry, our approach throughout is 'low-tech’ as we work with absolute (rather than
relative) Borel-Moore homology. We believe that it should be possible to lift our results to the
setting of local COHAs in [§] (i.e. to adequate sheaves on the space Sym®(5)).

0.4. Notations. Throughout the paper, all geometric objects are defined over the base field C.

Stacks. In this paper, a (derived) stack will mean a 1-Artin (derived) stack which is locally a
quotient stack of finite type. Let ¢l : X — X be the classical truncation of a derived stack
X. Restriction to X will be often indicated by a superscript (—)¢!. For instance, for any object
£ € D(Coh(X)) we set £ = cl*E. If £ is a perfect complex of finite amplitude on a derived stack
X then we define the total space of £ to be V(E) = Spec Sym(£Y). We will make use of a similar
notion of projectivization P(£), studied by Q. Jiang [I9]. Note that if V is a finite-dimensional
vector space then P(V) parametrizes hyperplanes of V. Unless specifically mentioned, all fiber
products and tensor products are derived.

Borel-Moore homology. For a stack X, there is a well-defined notion of cohomology or Borel-
Moore homology with Q-coefficients which we will denote by H*(X, Q) and H.(X, Q) respectively,
see e.g. [22]. When the stack X is pure dimensional we usually write dx for its dimension and
[X] € Haqy (X, Q) for its fundamental class. If X is smooth then there is an isomorphism of vector
spaces H'(X,Q) = Haq, —i(X,Q) such that ¢ — ¢N[X]. For a derived stack X there is also a well-
behaved notion of cohomology H*(X, Q) and of Borel-Moore homology H.(X,Q), see [20], [35]. The
push-forward map cl, yields isomorphisms H*(X,Q) = H*(X,Q) and H,(X,Q) = H.(X, Q);
we will often identify the two spaces without mention. Note, however that some operators on
cohomology or Borel-Moore homology do depend on the derived structure. We collect some results
of that theory in Appendix [A]

Algebras. The degree of an homogeneous element a of a graded vector space will be denoted by |a].
When considering superalgebras, we apply the rule of sign for the multiplication of tensor products.
In particular, we denote by [—, —] the super-commutator [a,b] = ab — (—1)1*I'®lba, and by {—, -}
the anti-super-commutator [a,b] = ab + (—1)!/1®lpa.

Symmetric functions. Let A be the Macdonald ring of symmetric functions, which is given by
A = Sym(tQ[t]) = Qleq, ea, . . ..

We will use standard notations for the elements in A, as in [26], and will sometimes denote the
unit of A by eg or hg. It is convenient to add a formal element py of degree 0; we will denote by
A = A®C[po] the resulting algebra. The specialization maps mx : A — Clxy, 2, ..., 25| extend
to A’ by setting mx(po) = N. We will occasionally use the following shift operation: for ¢ a formal
(even) variable, there is an algebra map

(0.3) Te : N — Nc], TF(x1,22,...) = F(z1+c,xa +¢,...).
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For instance,

i=0 1=0
for any k>0. For £ a coherent sheaf on a stack X and f = F(ey,ea,...) € A we define
(0.4) F(6) = Flei(€),ea(£),...) € H' (X, Q).

We extend this to elements f € A’ by setting po(€) = rk(E).

1. COHOMOLOGICAL HALL ALGEBRA OF ZERO-DIMENSIONAL SHEAVES ON A SURFACE

1.1. The stack of coherent sheaves on a surface S. Let S be a smooth connected quasi-
projective surface. Unless mentioned otherwise, we will make the following assumption:

The surface S has pure cohomology. ‘

We denote by t1,ts the Chern roots of S, so that the Chern classes of S are ¢; = t1 + ta, co = t1to
and the Todd class is

(1.1) Tdg = tita/(1 — e ) (1 — e~ ).
We will sometimes use its graded version

Tdg(x) = 2?hita /(1 — e 7)1 — e ') = Y~ Td{a",
k>0

Set sy = t? + t1t + t3. We will also consider the cohomology with compact support H(S, Q).
Recall that there is an algebra morphism H (S, Q) — H*(S,Q) and cup product maps HZ(S,Q) ®
HI(S,Q) — H(S,Q). We set K§(S)g = @, H*(S,Q) and denote by

(a,B) =/SaVU6UTds

the Mukai pairing on K§(S)g, where if a = 3", a; with oy, € H2#(S,Q) then oV =Y, (—1)*ay.
Taking the generic rank of a coherent sheaf yields a linear map rk : K§(S)g — Q. The class of
the structure sheaf of a point will be denoted by §. Note that for any «,

(1.2) (a,0) = (4, a) = rk(a).

Let us pick some a € K§(S)g. Consider the derived stack €oh,(S) parametrizing coherent
sheaves £ € Coh(S) with proper support and Chern character ch(€) = «, see e.g. [34]. Its un-
derlying classical stack will be denoted Coh,(S). When the surface S is understood, we may
abbreviate €oh, = €obh,(S) and likewise for Coh,. In addition, when a = r[Os] + o', where
o € @,.oHZ(S,Q), we may write Cob, ., instead of €ob,,. Note that Cob,, is empty for rk(a) # 0
if S is not complete. The stack Coh,, is singular in general, but €ob,, is quasi-smooth and of virtual
dimension d, = —(«@, a). Unless a € N§, the stack €ob,, is of infinite type. However, it may always
be covered by open global quotient stacks which are of finite type. We say that a coherent sheaf £
on S is of dimension >d, for d = 1,2 if it contains no subsheaf with support of dimension strictly
less than d. Let Cohfd be the stack parametrizing dimension >d sheaves in €ob,; it is open in
Cob,,. We denote by &, € Coh(Cob, x S) the tautological sheaf. Its restriction to €oh>? x S will
be denoted £2.
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1.2. The stack of zero-dimensional sheaves. For d € N, the stack €ob s is the derived moduli
stack of (zero-dimensional) sheaves on S of length d. Its underlying classical stack Cohgs is irre-
ducible of dimension d while €ob 5 is of virtual dimension —(dd, ds) = 0. Let us set €oh” = | |, Cob s
and Coh® = €oh,

Example 1.1.
(a) If S = A2, then Cohgs is the commuting stack Cqr, = {(2,9) € g3 ; [z,y] = 0}/GLy.
(b) When S = Tot(L) is the total space of a line bundle £ over a smooth curve C, Cohgs is the
classical stack of L-twisted Higgs sheaves of length d, i.e. it parametrizes pairs (F, ) with F
a length d torsion sheaf on C' and 6 € Hom(F,F ® L).

Let Ag: S = S x S be the diagonal map and
A= Ag.(1) e H(S x S,Q)
be the class of the diagonal. Let p € Coh(BG,,) be the linear character and u = ¢1(p). We have

(1.3) Cohs ~ S x BG,,, Es = Ag.(0Os) R p € Coh(S x S x BG,,),
(1.4) H*(Cohs,Q) = H*(S,Q)[u] , ch(&)=AUe*UTdg".
Since Cohs is smooth, there is an isomorphism

(1.5) H'(Cohs,Q) = Hy_;(Cohs,Q) , c+ cN[Cohg].

We will sometimes assume that the surface S is acted upon by a torus 7T'. In this case there is an
induced action of T' on the stacks Cob s, and all homology groups acquire module structure over
Ry = H*(BT,Q).

1.3. The COHA of zero-dimensional sheaves. We now introduce, following [22] §4], the co-
homological Hall algebra of zero-dimensional sheaves on S. See also [45] for another construction
of this COHA, [29] for the case of the cotangent bundle of a curve, and [39] for the case of S = AZ.
We consider the Z2-graded vector space

Ho(S) = H.(Coh®,Q),  Ho(S)[l,n] = Hy(Colus, Q).

Let us briefly recall the definition of the COHA product. Fix o = ad, 8 = b6 and v = a + 3. Let
€ob,.5 be the derived stack parametrizing short exact sequences 0 — 7' — 7 — T" — 0 with
T,T',T" respectively in €ob.,&ohg and €ob,,. There is a convolution diagram

(1.6) Cob,, x Coby <—— Coh,.5 > Cob,

in which the maps p,, g and ¢, s assign to the sequence 0 — 7' — T — 7" — 0 the object 7 and
the pair of objects (T"”,T") respectively. The classical truncation of that diagram reads
) cl

(1.7) Cohg % Cohg <=2 Cohays —=2 Coh.,.

The map pq,g is proper and representable. The map g, g is neither representable nor smooth, but
it is quasi-smooth. More precisely, consider the complex
Ca,s = RHomg(Ea, Ep)[1] = Rp12.RHom(pis€a, p33Es)[1]

of perfect amplitude [~1,1]. Here p;; stands for the projection from €ob, x €ohsz x S to the i-th
and j-th components. There is a canonical isomorphism of derived stacks over €ob,, x €ob4

V(Ca,p) = Cob, 4



COHERENT SHEAVES ON SURFACES, COHAS AND DEFORMED Wj ;.- ALGEBRAS 9

(recall that V(C,) stands for the total space of a complex C,). We may thus define a virtual pullback
morphism
Gh.5 : Hi(Coha x Cohp,Q) = H;_5( 5y (Cohap,Q).
It is useful to rephrase this construction in classical terms. Let us fix an explicit representative of
the complex Cq, 3
0—=V_1—=Voy—=V1 —0.

Let Cgfﬁ be the restriction of Cq 5 to Cohs x Cohg. Let 7<¢ and (—)SY be the standard and stupid
truncations. By [22], there is an isomorphism

V(7<0(Cal5)) = Coha .
This yields a factorization

V(cg{ﬁgo) é V(Tgocgl,ﬁ) ~ @La;ﬂ

1

Cohgy x Cohg

The map 7 is a linear stack, in particular it is smooth. Hence it yields an isomorphism
7 + Hy(Cohg x Cohg, Q) = Hiyaa, (V(CI5"), Q).

Further, there is a refined Gysin pullback

i (V(CES),Q) = Hi-z4,(Coha,g, Q).
Here dy and d; are the ranks of Cf’oﬁ and V1, so dg — d; = —(a, 8) is the virtual rank of Cglﬂ. We
have q;, 5= ' om*, see [20]. In particular, the morphism ¢' o 7* thus defined is independent of the
presentation of the complex C (see [22] § 3] for a direct proof). We set

* = (Pa,8)« © Qo5 * Hi(Cohy, Q) ® H,(Cohg,Q) = H,(Coha x Cohg, Q) = H,_s4 g)(Coh, Q).

Theorem 1.2 ([22], thm. 4.4.2], [45]). The convolution product * defines on Hy(S) a structure of
a graded associative algebra.

Remark 1.3. Note that (4,d) = 0, hence the product in Hy(S) is degree-preserving.

In the presence of a torus T, we can likewise consider the T-equivariant COHA which is an
algebra with underlying vector space given by

H{ (S) = H (Coh’, Q).

An open inclusion 7 : S — S’ of smooth surfaces gives an open inclusion of derived stacks
i:Coh%(S) — Coh”(S’) and thus to a map i* : Ho(S') — Ho(S).

Lemma 1.4. The map i* is an algebra homomorphism.

Proof. The stack €ob,5(.5) is an open substack of €oh45(S’) for any d, and the convolution diagram
used to define the product is compatible with open base change. O

We will need the following result on the Hilbert series of H(S). We define
h1,(s) (2, w) = Zdim(Ho(S)[la n))(—z)"w'.
l,n

Let hs(z) =), dim(H,(S,Q))(—2)" be the Borel-Moore homology Poincaré polynomial of S.
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Theorem 1.5 (|22, thm. 7.1.6]). Let q,t be formal variables of respective degrees [0,—2] and [1,0].
There is a canonical isomorphism of graded vector spaces

HO(S) = Sym (H*(S X BGmaQ) ® qt@[t])) = Sym (H*(Sa Q) & th[Qat]) .
In particular, the Hilbert series of Ho(S) is given by

2)z 2w
hato(s) (2, w) = Exp ((1 iLsz(—;)(l - w))

where Exp is the plethystic exponential.

Theorem[L.5]is proved for an arbitrary smooth surface S using factorization homology techniques,
which do not extend to the T-equivariant setting. However, in [9] the question of equivariant
formality is treated in the much greater generality of relative COHAs, which includes our COHAs
by [8, §11.1]. In particular, as soon as S is T-equivariantly formal, Hy(S) is a free Rp-module
of (graded) rank given by hgy,(s)(2, w) by [9, Theorems 11.5, 11.6]. By [I5, Theorem 14.1] this
assumption is satisfied for S cohomologically pure.

1.4. The compactly supported COHA of zero dimensional sheaves. When S is not proper,
we will also consider a variant of Hg(S) defined using hyperbolic Borel-Moore homology, see Ap-
pendix its definition and properties. More precisely, set Sym(S) = [], Sym"(S) and let

supp : €oh” — Sym(S) be the support map, 7 : Sym(S) — pt projection to a point. We set
H{(S) = €D HS(Cohas, Q),
d

HE(Cohas, Q) = H.(€ohys/Sym®(S), Q) := H™*(msupp,Deoy,,)-

The map H*(S,Q)[u] = HE(Cohs, Q) given by x — x N [Cohs| is an isomorphism. Here we use the
natural map H(S, Q) ® H.(S,Q) — HS(S,Q). We complete the induction diagram by introducing
the support maps

Pm,n

a)mé;n& - Coh(ern)(S

dm,n

€0[’)1715 X @0[’)7.“;
(1.8) suppi Suppi

S

Sym™(S) x Sym"(S) Sym™*™(9)

where @ is the direct sum (a finite map), which allows us to view €ob,,, 5 x €ob, 5 and Eﬁjmémé as
derived stacks over Sym”*"(S). Note that

H.(Cohpms x Cohps/Sym™ " (8),Q) = H.(Cohps/Sym™(S), Q) ® H.(Coh,s/Sym™(S), Q).
We may now define the convolution product

* = (Pm,n )1 © @yt HE(COhms, Q) @ Hi(Cohps, Q) = H{(Cohms X Cohpngs, Q) — H(Coh(mins, Q)-

Proposition 1.6. The convolution product x endows H§(S) with the structure of a graded asso-
ctative algebra.

Proof. The proof is in all points analogous to the case of the Hy(.S). Alternatively, one can observe
that HG(S) is obtained by taking compactly supported cohomology of sheaf-theoretical COHA
supp,Deopo on Sym(S), see [g]. O
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If the surface S is projective, then we have H§(S) = Hy(S). For each open embedding i : S — S’
we have an open embedding of derived stacks i : €ob,,5 — €ob,,5(S"). Hence, there are pushforward
maps i, : H¢(Cob,,5, Q) — HE(Cobh,,5(5"),Q), which combine to i, : H§(S) — HS(S").

Lemma 1.7. The map 3, : H5(S) — H§(S’) is an algebra morphism.

Proof. Quasi-smooth pullback and proper pushforward in hyperbolic homology are compatible with
open base change, see Proposition O

If 1 : S — S is a smooth compactification of S, Lemmas yield algebra homomorphisms

s

(1.9) H(S) —— H5(S) = Ho () —— Hy(S).

The composition t*1, : H§(S) — Ho(S) is independent of the choice of S. We will denote it by ¢g.
Let hg(z) =, dim(H;(S,Q))(—2)" be the homology Poincaré polynomial of S. We will need
the following variant of Theorem E which can be found in [9, Corollary 7.11].

Theorem 1.8. There is a canonical isomorphism of graded vector spaces
H{(S) = Sym (H{(S x BGm, Q) ® ¢tQ[t])) = Sym (H{(S,Q) ® qtQ[q,t]) .
In particular, the Hilbert series of H§(S) is given by

h&(2)z 2w

As explained after Theorem a T-equivariant version of Theorem follows from [9, §11]
provided that S is pure.

1.5. The COHA of properly supported sheaves. Following [22] §4], one can extend the con-
struction of COHA product to the stack of properly supported sheaves on S. We set

H(S) = @ H.(Coha, Q).

As in the case of zero-dimensional sheaves, for any «, 8 € K§(S)g there is an induction diagram

(1.10) Cob, x Coby <2 Cob,. 5 27 €aby,,

with g, quasi-smooth and p, g proper.

Theorem 1.9 ([22, thm. 4.4.2]). Convolution with respect to the correspondences (1.10)) for all
a,f € K§(S)g endows the space H(S) with the structure of a graded associative algebra. The
multiplication H,(Coha,Q) @ H.(Cohg, Q) — H,(Coha1p,Q) is of homological degree —2{c, ().

Assume that 7 : S — S’ is an open immersion into another smooth surface S’. This gives rise to
an open immersion i : €oh(S) — Coh(S’) and hence to a restriction morphism ¢* : H(S") — H(S).
The proof of Lemma implies that the map ¢* is an algebra homomorphism.

Remark 1.10. There is no higher rank analog of H§(S) because in general there is no useful map
from €oh to a coarse moduli space.
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1.6. Tautological classes. Let us now study a family of cohomology classes ch;(\) for i>1 and
A € H*(S,Q) on each Cohg,.

Fix a smooth compactification ¢ : S — S of S. Since S is pure, the restriction map ¢* :
H*(S,Q) — H*(S,Q) is surjective. Let I(S) C H*(S,Q) be the kernel of this map, which can be
identified with the relative cohomology H*(S,S;Q). Dually, the map « : H}(S,Q) — H*(S,Q) =
H*(S,Q) is injective. The perfect intersection pairing on H*(S,Q) allows us to identify H}(S, Q)
with the orthogonal complement I(S)*. This is a (typically non-unital) subalgebra under the cup
product. Dually, H*(S,Q) and H*(S, Q) are equipped with natural coproducts and +* is a surjection
of coalgebras.

When S is not proper, it will be convenient to formally add a class [pt] of degree 4 to H*(S,Q),
satisfying [pt] U H>%(S,Q) = {0}. Likewise, it will be convenient to formally add a unit 1 to
H:(S,Q); we denote the resulting rings by H (S,Q) and H. (S, Q) respectively. We will modify
the coproduct accordingly, i.e., if A’ is the coproduct on H*(S,Q) we define

A:H'(S,Q) = H(S,Q @ H (S,Q),
A(lpt]) = [ptl@[pt], AN =[pt]@A+A@[pt] +A'(N) (A€ H'(S,Q)).

Let us now define a variant of Macdonald’s ring of symmetric function which is colored by
H*(S,Q). Consider

U(S) = Sym(H"(S,Q) ® Qt]).
For each i>1 and A € H*(S,Q), we denote ch,;(\) = A ® t*, and set deg(ch;(\)) = 2i + deg()\) — 4.
In order to keep track of the rank of coherent sheaves, we add an extra element r of degree 0 and
set U'(S) = U(S) ® Q[r]. We view U’(S) as the free graded-commutative algebra generated by the
elements ch,;(\) and r subject to the relations
ch;(A+p) = ch;(A) +chy(p) , chi(al) =ach;(A) , chy(N) ch;(n) = (_1)“““‘@]'(/1) -ch; ()
for any a € Q and \, u € H*(S,Q).

Definition 1.11. A(S) is the quotient of U’(S) by the ideal generated by the negative degree
elements ch, (A\) for deg(\) = 0,1. The universal Chern character ch(zx) is defined as follows:

ch(z) =r@1+) cha' € A(S)@H (S, Qllz]],  ch; = ch(\) @\,
i>1 A

where > A ®@ A* € H*(S,Q) ® H}(S,Q) is the intersection pairing tensor.

Remark 1.12. The definitions above are compatible with restriction along ¢ : S — S. Namely,

we have a natural quotient A(S) — A(S), such that the image of chg(x) in A(S) ® H*(S)*[[z]] is
precisely chg(x).

Remark 1.13. Note that ch(z) belongs to Q[r] ® 1 + zA(S) ® H: (S, Q)[[z]]-

We define a coalgebra structure on A(S) by requiring the elements ch,(\) and r to be primitive.
In other words,

(A @ 1d)(ch(x)) = ch(x)1s + ch(z)2s € A(S) ® A(S) @ H (S, Q)[ul):

Ezample 1.14. The primitive elements of degree 0 in A(S) are linearly spanned by r and ch,(1),
ch,(\) for A € H2(S,Q).
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We also consider an involution
(1.11) v A(S) = A(S), wv(r)=-1,  wv(ch(N) = —ch(N), (i1, A€ H*(S,Q)).

The elements ch;, being even, commute with each other. Hence we may define an algebra
morphism

p: N = AS)QHLS) , po—r®l ,  pfil—ch , il

We will use the following notation
(112) f= [pHUr L fed . AeT (50,
s

and sometimes simply write fs fA when there is no risk of confusion. For instance, we have
pi(A) =1ilch;(X). Observe that

(1.13) (f- 9N = (Fegam) =Y FAD)(n®)
for f,ge A and \ € " (S,Q), where A(N) = Z)\(l) @ A@ in Sweedler’s notation. In particular,
(Piy - pi)A) = ia! il Y chy (AD) - chy (AD),

We have deg(f(A)) = 2deg(f) + deg(\) — 4.

Remark 1.15. Note that with our conventions we have

ho([pt]) = 1([pt]) =1 € A(S),  po(lpt]) = r @ I([pt]) =r € A(S)

while 1(A) = po(A) = 0 if deg A < 4, regardless of whether S is proper or not. In a similar vein, we
have f([pt]) =0 for any f in the augmentation ideal of Q[p1, p2,...] when S is not proper.

Now fix @ € K§(S)g a class of rank 7 and consider a locally closed substack U, C Coh,(S). Let
&, € Coh(U, x S) denote the restriction of the tautological sheaf to Coh,(S) x S. Consider its
Chern character

ch(Ea,u) =7+ pi(€a)/i!

i>1
We have a unique graded ring homomorphism ev,, : A(S) — H*(Cohq,Q), defined by
(eva ®Id)(ch(u)) = ch(€a,u) € H" (Ua, Q) ® H™(S,Q)"([u]]-
Observe that r = ev,(r). The following lemma is a straightforward corollary of Remark

Lemma 1.16. Assume that the Chern character of &, takes values in Q-1+ H*(U,, Q)@ HX(S,Q).
Then evy factors through A(S). In particular, the classes evo(f(N\)) for f € A and X € H*(S,Q)
are independent of the choice of compactification S. O

The condition of Lemma [1.16]is verified for instance when U, C Coh,. More generally, it holds
when the restriction of £, to Uy x (S'\ S) is a trivial vector bundle; such situations occur when
considering moduli stacks of sheaves on S which are trivialized along S\ S.
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1.7. Extended COHAs. Assume now that a € N§. Composing ev, with the cap product yields
an action e of A(S) on Hy(S) such that

zec=evo(x)Ne , c€ H.(Cohy, Q) , x€A(S5).

This action preserves each H,(Coh,,Q) and is compatible with the (co)homological gradings, i.e.
deg(z @ ¢) = deg(c) — deg(x). The same holds for H§(S), where the action of H*(Coh,,Q) on
H¢(Cohg, Q) is given by Lemma

Ezample 1.17. Assuming that S is proper, let us compute ev,s(p1([pt])). By definition, we have
S evas(pi(N) © A = €1 (Ens):
A

Hence ev,s(p1([pt])) = c1(i%(Ens)) in H2(Cohys, Q) for any closed point i, : Spec(C) — S. The
support of i%(€,s) being of codimension 2, its first Chern class vanishes, hence ev,s(p1([pt])) =0
for any n > 0.

Proposition 1.18. The ring Ho(S) is a A(S)-module algebra, i.e. we have
(1L14)  ze(cr-c)=> ()1 @M ec)- (2P ecy) |, 2 eAS) |, e es € Ho(S),

where A(x) = ngl) ® zl(?). The same holds for H§(S). The map ¢gs : H5(S) — Ho(S) is a
morphism of A(S)-modules.

Proof. We will deal with the case of Hy(S), the other one is similar. We can assume that ¢; €
H,.(Cohg,,Q) for i = 1,2. Set v = oy + aa. Recall the induction diagram (L.6). We abbreviate
D = Pay:as 3d ¢ = Goy;a,- By the projection formula

z e (c1-c2) = evy(2) Npug'(c1 @ c2) = pu(p* (v (2)) N ¢ (1 @ e2)).
There is a short exact sequence of tautological sheaves

0= q"(Eay) = P (&) = ¢ (Eay) = 0

Hence p*(ch(&,)) = ¢*(ch(Eq, ) + ch(&y,)). We deduce that

p+(p"(ev4(2)) N g (e1 @ €2)) = g’ (eVa, ®eva,)(A(2)) N (c1 @ 2))

- S e o ).

The compatibility between ¢g and the action of A(S) results from the projection formula in hyper-
bolic or Borel-Moore homology. O

The semi-direct product Ho(S) = Hy(S) x A(S) is the algebra generated by Hy(S) and A(S)
modulo the relations
(1.15) zoe=3 (-1l @D ec) 2P| e A(S), ¢ € Hy(S).
The multiplication map A(S) ® Ho(S) — H,(S) is an isomorphism of graded vector spaces. We
define the semi-direct product H§(S) = H§(.S) x A(S) similarly.

We finish with the following observation. The degree one piece of H(S) is

Hy(5)[1,—] = H.(Cohs, Q) = H.(S x BG,,, Q) = H.(S,Q)[u].

We consider the linear map

ws : A(S) = H.(Cohs, Q) , = — xe[Cohs]
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Lemma 1.19. The map ws is surjective.

Proof. Since the restriction map H.(S,Q) — H.(S,Q) is surjective, so is the restriction map
H.(Cohs(S),Q) — H.(Cohs,Q). As the latter is a morphism of A(S)-module, it is enough to prove
the statement for S projective. By (|1.4)), we have

ch(&5) = Tdg'e"Ag = Tdg'e" > A@ A
A

where {A}, {\*} are dual bases of H*(S,Q). Since Tdg is invertible, the result follows. O

When S is not pure, the map evs may still be defined but it cannot be surjective since & extends
to the compactification Cohs(S) x S.

Remark 1.20. The definition of the action of A(S) on Hy(S) as well as Proposition and its
proof extend mutatis mutandis from Hg(S) to H(S).

2. DERIVED HECKE CORRESPONDENCES

In this section we consider and describe the simplest type of Hecke correspondence.

2.1. Hecke correspondences. From (|1.10]), we can derive the following induction diagrams:

qns,o Pns,a

Cob,,5 x Cob, —— Q:Uhné o — Coby iy,

(2.1)

anti an&

Q:Ob x Cob nd — Q:Uhnéa no — Q:oba nd-

For the compactly supported COHA it is useful to factor the maps pns o, Py ns as follows:

/ //
Prs,a Prs,a

Q:Ohné el — QtohaJrnJ X Sym (S) — Q:ahaJrnS’

/

Q:Uhné;afnzs 0‘—"‘5> Q:ohozfné X Symn(S) ‘1—"5> Q:Oh

a—nd-*

We call the first/second diagram in (2.1]) the positive/negative length n Hecke correspondences.
Since €oh=? is stable under taking subobjects, the Hecke correspondences restrict to €0f)>d, yielding
the following restricted induction diagrams

Pns,a >d

Q:obné X ¢0h>d Q: bnéa —Co ba+n5’
(2.2)

>d Pa né >d
CohZ? x Qiohms <o ¢Ubn5 a—ns — > CobZT 5,

where we have defined
—>d —
Cob,.p :=Cob,z X Cob

Gﬂha+/3 a+ﬁ

2.2. Locally free resolutions. The Hecke correspondences enjoy much better properties when
the tautological sheaf £ has perfect amplitude in [—1,0] and admits locally a two-step locally free

resolution. This is true in our situation after we restrict to the open substack Coh=1t.

Lemma 2.1. Let v € K§(S)g and let 4 C Qiof),%l be any finite type open substack. The tautological
sheaf €|y 5 admits a 2-step resolution by locally free sheaves 0 — E_1 — & — £, — 0.
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Proof. Having a 2-step resolution by locally free sheaves is a local condition on any stack of finite
type. Indeed, let F € Coh(X), where X is a stack of finite type, and assume that F|y, admits
2-step resolutions by locally free sheaves for some open cover | J, U; = X. Since X is of finite type,
there exists a short exact sequence 0 — £_1 — & — F — 0 with &, being a locally free sheaf. It
is enough to check that £_; is locally free, which may be done locally. Next, as &, |, g is U-flat,
it is enough to check that for any C-point x € {(C) the sheaf €7|{$}X§ admits a 2-step resolution
by locally free sheaves over S. This in turn follows from the fact that &, | (2}x3 18 of dimension >1

and that S is smooth, so that &l 41 x5 has perfect amplitude in [—1,0]. O

In the remainder of this section, we describe the length one Hecke correspondences and compute
their action on tautological classes. Until we let S be an arbitrary smooth connected surface.
A general framework for derived Hecke correspondences has recently been worked out by Q. Jiang
in [I9] §8], in the language of derived algebraic geometry, following the work of Negut [32].

2.3. Length one Hecke correspondences and operators. Fix « and set v = a + 4. In this
section we consider length one Hecke correspondences given by the diagrams in withn =1
restricted to €oh=!. To unburden the notation, we will drop the indices of the maps p, q, etc. Let
K be the canonical bundle of S and set F, = £Y ® Kg[1], a complex over €ob,, x S. By , the
Serre duality gives an isomorphism of complexes over €ob,, x Cob,

(RHomg (&5, E4)[1])Y = RHomg(Ey, Ks @ E5)[1]
= Rp12.(E] ® Ks @ Oay @ p)[1]
= €Y ® K5 ® pll]

where p12 : €ob, X Cohs x S — Cobh, x Cob; is the projection. In particular, the complex F, is the
restriction to €obh, x S of (RHomg(Es,E)[1])Y. Let

TiP(E) S P(E) XS, TiP(Fa) = P(Fa) x 8

be the diagonal morphisms, i.e., the morphisms making the following diagrams commutative:

P(E,) ——P(&,) x S P(Fy) ——>P(Fa) X S
(2.3) wl lprs wl J{prs
Coby, x § — > 8 Cohy x § —> 8

Here, prg is the projection to S.
Let Cohs be the classical truncation of €obs, and let us put

— — ——>1  ——>1
Cohs,o := Cobs., x Cohs, Cohg.,, = Cobs., x Cohs.
" Cob, ’ " Coby

The motivation to consider this partial classical truncation will become clear in §[2.4] We have the
following important result:

Proposition 2.2 ([19, §8, prop. 4.33],[32] §2]).

—>1
(a) There is a canonical isomorphism of derived stacks Cohs.., = P(E,) which identifies the tauto-
logical sheaf (q x 1d)*(&5) with 7.(Op(e,)(1));

—>1
(b) There is a canonical isomorphism of derived stacks Cohs., = P(F,) which identifies the tau-
tological sheaf (q x 1d)*(Es) with T.(Op£,)(—1)). O
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Recall that the classical truncation map Cohs — €oh; induces an isomorphism in Borel-Moore
homology (and likewise in relative Borel-Moore homology). To carry out the computation of length
one Hecke operators, we may and will therefore use the partially truncated induction diagrams

45,0 5721 Psa >1
Cohs x €obZ' <= Cohy., —% Cob=" o

qo,s 21 Pa.s >
CohZ! x Cohs «=> Cohy,,_5 —+ Coh!

a—nd’
obtained by base change from (2.2)).

—>1
Corollary 2.3. The restrictions of the maps p, p’, p and p' to Coh™  are proper and representable.
>

The restrictions of the maps q, G to Coh”  are quasi-smooth.

Proof. We already know that p is proper. Since both &, and F, have perfect amplitude in [—1, 0]
over Coh”l x S, by [19, Lem. 5.4] the maps p’ and P’ are proper and quasi-smooth. Hence P is
proper as well when S is proper. Since €ob,, is an open substack of €ob,(S), we may deduce the
case of an arbitrary S by base change. Indeed, note that there is a cartesian diagram

—>1 ——21

COhé;a(S) - COhé;a(g)

g |
CohZh(S) — Coh ' (S)

«

since for any extension 0 - F — & — O, — 0 with F,& of dimension >1, we have supp(&) =
supp(F). Next, we claim that the maps ¢ and g are the restrictions to suitable open substacks of
the projections

V(RHoms(&;,&X)[l]) — Cohg x Q:Of]a s V(RHomS(é’v,&;)) — Q:Oh"/ x Cohs.

Indeed, the condition for a sheaf to be supported on S C S is open, as is the condition for a
morphism &£, — & to be surjective. As a consequence, ¢,q are both quasi-smooth. O

We will prove a more general version of Corollary 2.3]in §6.1] Thanks to Corollary 2:3] the
truncated induction diagrams yield two types of Hecke operators

Ty =poq*: H.(Cohs,Q) ® H,(CohZ',Q) — H.(CohZ",Q),
T_ =pyoq : Hi(Cohs,Q) ® H*(Coh7>17@) — H*(Cohil, ).
Considering S-hyperbolic homology, we also define
TJ: =7 Op{ o q* . H:(COh«%Q) & .E[*(COhil7 ) — H*(C0h7217(@)7
T¢ = roﬁf oG : H(Cohs, Q) ®H*(Coh51,(@) N H*(Cohil,(@)’

where r : HE(S,Q) — Q is the canonical degree 0 map. We will next use Proposition to compute
their action on tautological classes over suitable open substacks of Coh=1.

(2.4)

2.4. Atlases for length one correspondences. We assume until that S = S is a projective
surface. Let us fix a finite type open derived substack 4 C Cohf ! and a locally free resolution
(2.5) 0—=&_1 =& = &|yg—0.

We keep the notations from the previous section. Let us explicitly describe the projectivization
P(&€,) in terms of the complex £_; — &. Let P(&) be the total space of the projective bundle
associated to & and 7 : P(£y) — U x S be the projection. The points of P(&y) parametrize triples
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(W, y, ) where W € il is a coherent sheaf on S of dimension >1, y € S and A : Eolow,y) — Cisa
nontrivial linear form, defined up to multiplication by a scalar. The morphism 7*(&y) — 7*(£Y)
yields a map Op(gy)(—1) = 7*(£Y). This map can be viewed as a section

s € HO(B(E), 7" (EY1)(1))-

The zero locus Z(s) of s parametrizes the triples (W, y, A) € P(&) for which the map A descends
to W|,. By Proposition we have

Cohga X U=P(€ly.5) ~P(E)  x  P(&).
[

. V(r=(£Y1)(1))

The derived fiber product is taken with respect to the sections s and 0 of 7*(£Y;)(1). Let P(ES)
be the classical projective bundle of S over U x S. By [19] prop. 4.21], the classical truncation
of the derived stack P(&,y,5) is isomorphic to the zero locus in P(E5') of the section s, i.e., we
have

P(E, lyng) = Z(5%).

On the other hand, over the partial truncation Cohs X Cobfl, the complex RHom(&s, EL)[1]
has perfect amplitude in [0,1]. We fix a finite type open derived substack ' of Qobil with a
presentation of the complex RHom (&5, £,)[1] ’Coh(g s
(2.6) 0—=Vo—= V1 =0
Let p: V(Vy) — Cohs x 8 be the projection. The map Vy — V; yields a section

s' € HO(V(W), p*(W1)).
By there is an isomorphism

Cohs.a x W' =V(Vy) x V()
Cob,, V(p* (V1))

where the derived fiber product is taken with respect to the sections s’ and 0. By [I9, prop. 4.10],
the classical truncation is isomorphic to the zero locus Z((s")¢!) € V(V§'). We thus get the following
isomorphisms of derived and classical stacks over any open set on which both presentations (2.5))

and ([2.6) exist:

V) x V(W) = Coby,, ~ P(&) x P(&),
(2.7) Vo (V1)) V(r(£Y,)(1))

V(V§') D Z((s)) = Z(s7) C P(£G).
The case of P(F,,) is similar, let us briefly sketch it. Observe that
RHomg(&,,&5) = RplQ*(g»\Y/ ®&) = RP12*(54\,/ ®0ar ® p) = 57v & p.
Hence there is a factorization

v i a2t
V(g'y (29 p) ~ COhﬁ;a

| 4
Qth x Cohg

where j is an open embedding. Let us restrict everything to an open substack of finite type
U C (’Sohfl. Consider locally free resolution (2.5), and let 7 : V(E) ® p) — & x Cohs be the
projection. We have an obvious section

5 HOV(E) ® ), 7(EY, ® p)-
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The zero locus of 5 in V(&) ® p) is
V(EY @ pluxcons)" = Z(5%)

Likewise, fix an open substack of finite type L' C Qlohil as in (2.6), so that F,|, g has a presen-
tation

0=V =V —0.
We have an obvious section 3 € HO(P(VY),p*(Vi(1))), and the zero locus of (5') in P(V,") is

P(Fulyyg)® = Z((3'))). Therefore, over any open set over which both presentations (2.5) and
(2.6) exist, we have the following isomorphisms of derived and classical stacks

P(VY) x  P(VY)~ Cohso ~ V(E) © p) x V(&Y ® p),
(2.8) V(E*(V1©p)) V(E(EY, @)
P(Vo) 2 Z((5)) = 2(5%) < V(& ® p).

For the future use, note that the image of the map j is the complement of the zero section in
V(EOV e p). Therefore, the section 3 is regular over this complement if and only if the section s
is regular. Similarly, the section (3') is regular if and only if the section (s') is regular.

2.5. Computation of Hecke operators on fundamental classes. We are now in position to
compute the action of Hecke operators on the fundamental classes [CohZ'], [Cohz!] and on the

virtual fundamental classes [Coh='], [Qﬁohf ']. We keep the notation of the previous sections. Fix
finite type open substacks Ll C Cohfl and Y C Cof)il such that

(2.9) g H(Cabs(S) x U) D p ().

Recall that v = a + 6. We will carry out the computation of the action on the non-virtual funda-
mental classes first, under the following assumption:

(2.10) the sections s and (s') are regular.

This condition implies that the sections 5 and (5') are regular as well. This means that qgfa and

pf;fa are of the expected dimension over each irreducible component of 4 and (') respectively.
Recall from §I.2] the isomorphisms

Cohs =8 % BGp,  H"(Cohs, Q) = H*(S,Q) @ Qlu],
where u = ¢1(p) is the Chern class of the linear character p € Coh(BG,,). Let
[Ag] € H*(Cohs, Q) @ H*(S,Q)

be the fundamental class of the diagonal. Let h, be the complete symmetric function of degree n.
Recall the notation h,(&,) in (0.4).

Proposition 2.4. Assume that (2.10) holds. Let r = rk(a).
(a) For any [>0 the following equality holds in H.(4,Q) ® H*(S,Q):

(2.11) T+((ul[A5] N [Cohs]) ® [cohgl]) ‘u = hi1—r (&) N (4]
(b) For any u € H*(S,Q) we have

(2.12) T+((/wl N [Cohs)) @ [cohgl]) (u — 1 (1) ® ).
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Proof. Let j be the open immersion p~1(4) C ¢~ (Cohs x W'). We will work with classical stacks,
but we will omit the superscript ¢l in the notation. Under the assumption (2.10]), we have
§7*4'([Cohs] @ [Coha]) = j*([Z(s)]) = [Z(s)]-

We abbreviate O(1) = Opg,(1). By Proposition we have the following isomorphism of coherent
sheaves over p~1(4) x S:

(j xId)*(¢ x Id)*Es = 7. O(1)
We deduce that

(2.13) (7 x 1d)*(g x Id)'((ch(&s) N [Cohs x S]) @ [Coha]) = ch(m.O(1)) N ([Z(s) x S])
Now, we consider the commutative diagram

Z(s) ———=P(&)

Z(s) x § 21 preg) x 52 4« S

The maps ¢, ¢’ are the obvious closed immersions, the map 7 is the projection to 4 x S, the map p’
is the projection to 4, and the maps 7, 7/ are defined as in (2.3). The bottom row of the diagram
clearly composes to p x Id.

Let i : 4 — Cg[j%l be the open immersion. Applying (p x Id), to (2.13]) and restricting to the
open subset i x S, we get

(i x Id)*T+((ch(55) N [Cohs x S]) ® [Coha]) = (p/ x Id)« (¢ x Id)*(ch(r*(’)(l)) N ([Z(s) x S]))
We claim that
(2.14) ' O(1) = (L x Id)*1,O(1).

Indeed, since s is regular, the maps ¢ x Id and 7" are Tor-independent, and so we may use the proper
base change theorem. Applying Chern character to (2.14)), we get

(7 x Id)*T+((ch(55) [Coh(; X E]) ® [Coha)))

(p" x Id). (ch(r] N (¢ x Id).([Z(s) x ?]))

(p" x Id), (ch(7] ﬂeu( EY1(1)) N[P(&)])

(p" x Id), (eu ( *EV (1)) N7lch(O(1)) N ; N [P(&)])
= ng (p" x Id), 7, (eu (7Y (1)) N ch(O(1)) N [P(&))])
= ngl Ny (eu (7°EY, (1)) Nch(O(1)) N [P(&)])

where we have successively used the fact that s is regular and the Grothendieck-Riemann-Roch
formula for the proper morphism 7. The following formula is well-known.

Lemma 2.5. Let X be a stack. Let E_1, & be vector bundles over X. Set r = k(&) — rk(E_1).
Let m: P(&) — X be the projection. The following formula holds in H*(X,Q):
N 1
2 (eh(O(1)) Uen(r 8%, (1)) = 3 2 b (€0~ £0). 0

neN
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Using the above lemma, we deduce that
. _ 1
(2.15) Ty ((ch(&s) N [Cohy]) ® [Coha]> = Tdg" N Y —hus1—r(€) N L.

The proof of (2.11]) now follows by multiplying throughout by the Todd class Tdg and equating the
terms of fixed homological degrees. Finally, the formula (2.12)) is obtained by taking the intersection
pairing with . O

A similar analysis can be made for negative Hecke correspondences. Once again, we fix finite
type open substacks U C Qﬁohfl and Y’ C Cobil satisfying
(2.16) T Eoh,(S) x WP L) & g (Eoby(5) x ) C pL(Y).

Recall the shift operation 7. : A" — A’[¢], defined by (0.3). For any symmetric function f € A and
A€ H*(S,Q), we write

) = /S p(rey f) U € A(S)

and extend this to an algebra automorphism x — 7 of A(S). Note that we have, for any v € K§(S)q,

v, (FOO) = [ 1(6, @ KY)u.

Proposition 2.6. Assume that (2.10) holds. Let r = rk(a).
(a) For any >0 we have the following equality in H.(, Q) @ H*(S,Q)

(2.17) T ((ul [A<] N [Cohs]) ® [Cohﬁ) ]w — (1) ers 140 (Ea ® KX N [0]
(b) For any p € H*(S,Q) we have
(2.18) T ((,uul N [Cohs]) ® [Cohw]) ‘w — (— 1) Epran (1) » [80]. 0

Remark 2.7. We can express €;’s in terms of e;’s:
" r—n+i
a =3 ("7 eriwuel)
i=0
In the absence of an equivariant parameter we have ¢§ = 0, and so only the first three terms of the

sum above do not vanish. In particular, when S has trivial canonical bundle we have €, (1) = e, (1)
for all n>0, u. Of course, in the situation of Proposition we have r = 7.

In this paper, we will check the assumption (2.10) in two situations of interest: the Hilbert
schemes of points $ilb,,(S) in !, and the stacks of Higgs bundles $iggs, ; over a smooth projective
curve in

Let us now turn our attention to the action of Hecke operators on virtual fundamental classes.

Proposition 2.8. For any «, we have

T, ((,wz N [Cohs]) ® [w;a]) ‘M}l = his1 (1) @ [€0h>"),

T ((Mul N [Cohs]) ® [(‘30%]) ‘cuhil = (=1)'€g14- (1) ® [CobZ"].

Proof. The proof follows along exactly the same lines as the proof of Propositions [2.4] and We
use the fact that the Gysin pullback by a quasi-smooth morphism preserves virtual fundamental
classes, see for more details, and we use the projection formula of Proposition d). O
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Remark 2.9. Given that Proposition 2.8 holds without any regularity assumption, one might wonder
why one should bother considering non-virtual fundamental classes at all. The answer we give is
that the virtual fundamental classes [€oh>!] and [Qohf ! typically lie in a homological degree less
than that of their non-virtual cousins, and hence generate a different (and in many cases strictly
smaller) space of tautological classes.

2.6. Length one Hecke operators on tautological classes. Recall that S = S is proper. In
particular, the map ws : A(S) = H.(Cohs,Q) is surjective by Lemma Hence Proposition
allows us to describe the action of the full subspace Hy(S)[1, —] on the fundamental class [Cohg]
after restriction to suitable open substacks . Using the A(S)-module algebra structure of H(.S),
we will now deduce a formula for the action of Hy(S)[1, —] on the subspace A(S) e[, ] of H* (U, Q)
spanned by the tautological classes. To do so, we consider the linear map
L H*(Cohs, Q) @ A(S) = A(S) , r=0
satisfying the following conditions:
(a) LF(\u!®1) = hiy1(\) for any A € H*(S,Q) and [ € N,
() z-LH(E@y) =3 L(evs(zM)UE @ 2@ . y) for any z,y € A(S) and ¢ € H*(Cohs, Q).
Here we have used Sweedler’s notation A(z) = 3. 2 @ 2(?). By (2.12)) and Proposition we
deduce that for any stacks 4 and i’ as above and for r = rk(a) we have
(2.19) i*((£ N [Cohs)) * (z ® [Cohy])) = i* (L} (£ ® x) @ [Coh,])
Hoping that this will not create any confusion, we will write
LHEAS) 5 AS) , oo L (€@ a).
Then (b) translates into the following relation:
(2.20) [P (A), L ()] = LI (evs(pn(X)) UE).
A direct computation using (1.1)) and (1.4) gives, for any n=>0,
u" — (u—11)" = (u—12)" + (u—1t; —t2)"
@20)  elpa) = f()UA, fa(u = S SR R S
We define an algebra homomorphism Rt and a A(S)-linear map Q% such that
R™:A(S) = A(S) @ H(Cohs, Q) pu(N) = pn(\) @1 1@ fr(u) UA,
QF : A(S) ® H*(Cohs,Q) — A(S) , z@\ul = 2 hy(\).

It will be convenient to extend QF to a map
Q" A(S) @ H*(S,Q)[u,u™"] = A(S)
by setting QF (z ® u!) = 0 for [ < 0. Using these notations, the following formula holds:
(2.22) LIl @z) = QT (! "R ().
Again, it will be convenient to formally extend this definition to any r € Z.

Using Proposition we can write down similar formulas for negative correspondences. The
analog of the relation (b) is

x-ﬁ;(f@y)=ZET_(eV5(U(x'))U£®m”-y) . x,y € A(S),
where v is the involution . This translates to the relation
[Pn(N), £, (§)] = =L, (evs(pn(N)) U E).
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Note that
evs(Fu(N) = [ pu(E5® KV)UN= fulut ) UA = (1) fy (=) U
Thus we obtain the following formula:
L7l @) = (—1)" Q- (W R (2)
where R~ and @~ are the algebra homomorphism and the A(S)-linear map such that
R™:A(S) = A(S) ® H*(Cohs,Q) , pn(A) = 0n(N) @14+ (—=1)"® frn(—u) UA,
Q™ : A(S)® H*(Cohs) = A(S) , z@ '~ z-(=1)'g0).
One can thus recast Propositions by saying that for any & € H*(Cohs) the operators
T ((£N[Cohs]) ® —) act on A(S) e [8h,] via the action of £ on A(S).
For future use, we record here the following easily deduced formulas, valid for any n and A:
RT(pn(N) =Pa(N) ® 1= (=1)" @ fu(—u) UA
R™(pn(N) =pn(M) @14+ 1® frn(u) U

Remark 2.10. Operators defined by conditions like (a) and (b) above are typically given by vertex
operators. In our situation, these take the following form:

Zﬁj(ulﬁ’) ® s~ = {exp ( Z %(7) ®7*S_k)[s<r] exp ( - Z 3/{5(7) ®73”)}

120 yik>1
>

(2.23)

[5<7]

— * —l—r—1 r4+1 Tey * o 6 n
Y Lo(uy)@qtsT T = (=)t {exp(— > %(7)@97 s ’“)[s<77,]exp( > i) B )}

>0 v;k>1 yin=0
Y

where {7}, {y*} are dual bases of H*(S,Q) and the elements {k,(\)} are related to the {pr(A)}
through the relation

[s<]

xn+2 "
(2:24) Y. rm) @9 = (Tds(@) - Y Sopan) @)

! >17°
Yin=0 yin>1 [+=4]

2.7. Hecke operators on open surfaces. Let us now return to the situation when the surface
S is cohomologically pure, but not necessarily proper. Pick a smooth compactification ¢ : S — S,
and fix open substacks 4 C Q:ohfl and ' C CohZ? satisfyin

(2.25) g (Cobs(S) x W) 2p7 (W), g '(Cobs(S) x L) 2 (L).
These conditions imply that the correspondences ([2.1)) restrict to Hecke operators
Ty : H.(Cohs(S),Q) ® H.(4/, Q) — H.(,Q),
T : H.(Cohs(S),Q) ® H.(4,Q) — H.(', Q)

The following simple lemma, which follows from open base change, relates these operators to the
analogous operators for S. Let us denote by j both inclusions { — €0h5 Dand & — Qlohil.

Lemma 2.11. For xz € H,(Cohs(5),Q) and c € H,(41,Q), ¢ € H. (W,Q) we have
FTi(e@d) =T (e ®j7d) € Ha(4,Q),
JFT (z®c)=T_(Fz®j%c) € H (W, Q).

2note the difference between these conditions and l, }
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Next, let us consider the compactly supported Hecke correspondences. Assume that the open

substacks 4 C Qﬁobfl, A C CohZ! satisfy

(2.26) g '(Cobs(S) x W) 2 (p)THUX S), g H(Cohs(S) x &) 2 () THH x 5).
In this case we can define restrictions of Hecke operators :

T% : H{(Cohs(S),Q) @ H.(4',Q) — H.(4,Q),

T¢ : H{(Cohs(S),Q) ® H.(4, Q) — H.(U',Q).

Proposition 2.12. For x € HS(Cohs(S),Q) and ¢ € H, (U, Q), ¢ € H. (W, Q) we have

JFTi((z) @) =T (z®§*), FT_((x)®@c) =T (z ® j*c).
Proof. The two cases being identical, we will prove the statement for T'{. Consider the following
diagram (in which we omit the obvious indices):

’
q P

Cohs(S) x €ob, (S) <——— C,;}/lg,a(?) _— (’:oh,y(g) xS p—“> (’Sof)ﬂ/(g)

vx1Id T Idxe

+ — /

Cohs x €oby,(§) < Cohsa(S) xg § —— = €ob. (S) x § —> Coby(3)

Idxj J jxId jT
e ( /)O I/)O

Cohs x U <—1—— Cohsa(S) X gon. (5)xs (L X §) — 81 x § Cob.,

Observe that apart from the rightmost column, the second row is obtained from the top row by
base change — Xz S. In addition, all of the vertical arrows are open embeddings and the middle
square in the bottom is cartesian. By Proposition (a), we have ¢(u® Id) = iit'. Hence, using
Proposition (b), we get

Plp.d (u(z) @) =plplit(z@d)=p/Ideu)s,t (@ ).

Note further that p (Id®u) = r : HS(S,Q) — Q, see Example[A.F] It follows that T (u(z) ® /) =
rs,t'(z @ ¢’). On the other hand, by base change and functoriality of Gysin pullbacks, we have

5t = 0 = () (e ).
Thus, we have
rslt'(z @) =r(p)(¢°) (z @ 5 (<) = T (x @ (<)) U

One particular instance when both restrictions of Hecke operators are well defined is when
U= Coh?l7 ' = CohZ!. If we further restrict to an appropriate open substack of Coh”! where
the regularity conditions hold, Proposition and Lemma imply that the formulas
of § apply verbatim to the restricted operators Ty, T over {’, 4. Note that proper support
implies 7 = 0. Since the evaluation map ev factors through A(S) by Lemma in this case we
can interpret the operators Eoi as acting on A(S).

Remark 2.13. Proposition and Lemma continue to hold if we replace the embedding S C S
by any open immersion.
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3. DEFORMED W-ALGEBRAS (PROJECTIVE SURFACES)

In this section we introduce and study a class of associative algebras which are associated to our
surface S (more precisely, to its cohomology ring). As these bear a resemblance to the deformed
W14 eo-algebra studied, e.g., in [39] —which corresponds to the case S = A? with an action of the
torus (C*)2?— we will refer to these as deformed W -algebras. In this section, we assume that S is

proper, in which case there is only one such type of W-algebra. The case of open surfaces will be
addressed in § [f]

We fix a smooth projective surface S. Recall that ¢y, co are the Chern classes of S and that
s9 = —ca. Welet Ps(z) = dim(H"(S,Q))(—2)" = hg(271)2z* be the Poincaré polynomial of
S.

3.1. Positive halves of deformed W-algebras.
Definition 3.1. Let W= (S) be the N x Z-graded associative algebra generated by
YN , Tho(A) , n=0 | A€ H*(SQ)

together with a central element ¢ modulo the following set of relations for a,b € C, n,m>0 and
A e H*(S,Q):

(a) Ym(aX +bp) = athy, (N) + by (1),
(b) To(aX +bp) = aTy(A) + 015 (p),
(c) [V (A), ¥n ()] =
(d) [V (N), T ()] = mTpin-1(An),  (m=0)
(e) (T (M), Tn (V)] = [T (A), T ()]
() [T (A), Tog3 ()] = 3[Tin41(A); Tog2 ()] + 3[Tint2(A), Tger (1)) = [Tin43(A), T (1))

= [Tin(A), Tt 1 (5200)] + [T 1 (N), Tu(s20)] + { T, T} (e1 AsAp) = 0,
(g) Z w [ m3()‘3) [ mz()‘Q) m1+1(/\1)]] 0,

weS3

(h) Y, (A) =0 if 2n — 2 4+ deg(A) < 0.

The expression {Ty,, Ty, }(c1AgAp) above is the super-commutator of T,,, and T;,, whose arguments
are taken from the symmetric 2-tensor c;AgAu € H*(S,Q) @ H*(S,Q). The generators have the
following degrees:

(3.1) deg(Tn(N) = (1,2n—2+deg(N)) , deg(¥n(N)) = (0,2n—2+4deg())), , deg(c)=(0,0).
Let W2(S)[m,n] be the subspace spanned by all bidegree (m,n) elements, and define W*(95),
resp. WO(S) to be the graded subalgebra generated by {T,,(\); n>=0, A\ € H*(S,Q)}, resp. by
{c,¥n(N); n=0, A € H*(S,Q)}.

Like A(S), W°(S) is just a supercommutative algebra generated by elements indexed by pairs
(n, A). It will be convenient to identifyﬂ them as follows. Set

=Y

n=0

P(x) =~ c®1+2w ) @A € WO(S) @ H*(S, Q)[[«]].

3This identification is why we included the central element ¢ in W= (S) rather than just in W (S).
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There is a unique graded algebra isomorphism i : W9(S) >~ A(S)
ity(x) 27 'r®@ 1+ 2 (ch(z) — r ® 1)Tdg(z).

Through this identification, we may consider elements p(\) € WO(S) for a symmetric function p
and A € H*(S,Q).

Theorem 3.2. The following hold:
(a) The graded character of W (S) is given by

Ps(2)22w ) |

In

(b) The elements Dy, o(X) for m=1, X € H*(S,Q) generate a free graded commutative polynomial
algebra bJSr,

Definition 3.3. Assume that ¢; = 0 and that there exists ¢ € H?(S,Q) such that ¢> = s,. We

define the Lie algebra w>(S) to be spanned by 2™ D"\ with m,n € N and A € H*(S,Q), and a

central element ¢, with the Lie bracket given by

(D +m'q)" D™ — D"(D + mq)"
q

We let vt (S) be the subalgebra spanned by 2™ D"\ for all m>1,n>0 and A € H*(S,Q).

(3.3) [2™D"\, 2™ D" ] = 2"t

AL

Remark 3.4. More explicitly, the right hand side of (3.3)) is given by
b

a
Z (j) nzzm+nDa+b—zqz—lAM _ Z (]) m? Zm+nDa+b_qu_lA/,L.

i=1 j=1

Note that the g!-term of this sum only depends on (m + n) and (mn’ —nm’) in accordance with
the last claim of Proposition [B.8] below.

When s; = ¢ = 0, we write D,, ,(A) = 2™ D™\. The Lie bracket the degenerates as follows:
(3.4) [Dinn(A)s Dins s ()] = (nm/ - mnl)Dm+m’,n+n’fl()‘/~‘)-

We will denote this degenerate Lie algebra by m? (S). This Lie algebra is well-defined for any S.

Theorem 3.5. Assume that c; = 0 and ¢°> = so. Then the assignment Ti(A) — 2D'\ extends to
an isomorphism W= (S) ~ U(r?(S)), which restricts to an isomorphism W (S) ~ U(ro*(S)).

We will prove Theorem [3:2)in §§ [3:7] and Theorem [3.5]in § 3-8

3.2. Structure of W=(S) in the non-deformed case. In this section we assume that s; = 0
and ¢; = 0, so that the relation @) simplifies to

(3.5) [T, Tgs(w)] = 3[Tin41(A), Tr2 ()] + 3[Trt2(N)s Trg1 ()] — [Tin43(A), T ()] = 0.
Theorem 3.6. Assume that so =0 and ¢; = 0. Then the assignment
(3.6) Y (A) = Don(A) , Tho(A)—=Dip(A) , c—c

extends to an algebra isomorphism ® : W= (S) — U(mO)(S)).
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Proof. For simplicity, we will denote the elements T,,(1),,(1) simply by T}, 1,. The elements
Do,n(A), D1,n()) satisfy the relations (fa)-(g). Hence the assignment above yields an algebra homo-
morphism. We claim that the following defines an inverse homomorphism ¥ to the map ®

nl

(3.7) U : Diyn(A) = Dy n(A) = m(— Ad7) ™ Pmin(N).

To prove the Theorem, we need to check that the elements ﬁm’n()\) satisfy the defining rela-
tions (3.4). Note that they are trivially satisfied for m = n = 0. We begin by explicitly computing
a few commutators of low rank.

Let us first observe that by relation , for any k£ and any A, we have

[Ty, Ti(N)] = [Thi(N), T1] =0
since T3 is even. In particular, unraveling the definition of l~)m,n(,u) we obtain
(3-8) [To(\)s Dinn (19)] = —=nDim1n1 (M), n=1.

In the same way, the relations (d)), imply that [¢)1(X), To(p)] = To(Ap) and [1p1(N), ¥, ()] = 0.
So we get

(3-9) W}l ()‘)v Em,n(ﬂ)] = mﬁm,n()‘ﬂ)~

Let us now consider the commutators [T (), Ti(11)]. By (g), it’s enough to assume that A = 1.
As above,

[T, Te ()] = [Tk (n), Tie] = = [T, The ()] = 0
for any k, u. Likewise,

[T, Tr1 ()] = =[Thgr (1), Ti] = —[Thy1, Tr ().
Using (3.5)) first for m € {n,n £ 1} and then successively for m > n and m < n we deduce that for
any n, the commutators [Tg, Ty, —x(p)] for £ =0,1,...,n are all proportional to one another, hence,

say to [T, To(1)] = nDa 1 (1) But since ®(Dy (1)) = Da (), we deduce that
[T (V) Tk ()] = [T, Tk (Apt)] = (2k — n) D1 (Ap2)

as expected. Further taking commutators with iy () = lNDO,k(u), we get

(3.10) [D2,5(A);, Do, ()] = =2kDa j k1 (A).

Next, we consider commutators with 52,0. Relation (jg)) implies that [132,0, To] = [[T1, To), To] = 0,
and more generally one has [Ds¢(\), To(p)] = 0. Using (3.8), we deduce from (3.10)) by induction
on m that

(3.11) 120N Do ()] = == [T, [P0V, Do 142 1]
= 2[T0> ﬁerl,n()‘:u)]

= _2nﬁm+2,nfl (Aw)

for any n>1.
Finally, from relations (3.11), (3.8), (3.9) and the definition of D,,, we deduce in turn the
following equalities

(3.12) (T1(N),
(3.13) [1h2(N),

mon ()] = (M —n) D1 n(Ap),
m,n(,“)] = Qmﬁm,n-&-l()‘ﬂ)

o
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for all m,n>0. Assume now that the relations hold for a given pair (m,n) and all pairs (m’,n’)
with n’>1. Then, by applying Adp, or Adr,, resp. Ady, and using or , resp. (3.13)), we
deduce that the same is true for the pairs (m+1,n), resp. (m,n+1). Starting fromm = 1,n = 0, we
deduce that holds for any pair (m,n) with m>1 and n’>1, and thus, by symmetry, whenever
m’>21 and n>1. The only remaining cases occur when m = m’ = 0 (for which trivially holds)
and when n = n’ = 0, which we now deal with. We’ll prove by induction on m + m’ that

(3.14) [Din,o(A), Dy 0 ()] = 0.
Fix s and assume that (3.14) holds whenever m + m’<s. Note that the above calculations show

that this is indeed the case for s = 3. If m,m’ > 0 satisfy m +m' = s + 1 then by the induction
hypothesis and what we’ve already established we have

[To. Din—11(M)] = =Dimo(N): [0, Drr—1.1()] = =Dt o),
[T07 5m,O(A)] = 07 [TO7 Bm’,o(ﬂ)} = 07
1 .~ ~ ~ 1 ~ ~
W[Dmfl’l()‘)va’,O(M)] = Dy 0(Ap) = _E[Dm,O()‘)va’fl,l(/ﬁ)]'
Applying Adg, to this last equation we deduce [5m70()\), 5m/’0 (1)) = 0. We are done. g

3.3. Order filtration. Let us return to the case of an arbitrary projective S. We will introduce
a filtration and provide a set of linear generators of W=(S). Let F, be the smallest filtration of
W2(S) such that ¢ € Fy and

- (N, Tn(N) € F, for all m € N, A € H*(S,Q),

- FnFn’ CFn+n’7

- [Fn, For] C Frpn—1-
We call F, the order filtration. The algebra W= (S) is bigraded by (3.1]). Set

Frm = E, NWZ(S)[m, —].

The filtration F, can be given more explicitly as follows. By a Lie word we mean a combination of
Lie brackets applied to the generators of W= (S). By a monomial we mean a product of Lie words.
We assign a weight to any Lie word by summing up the indices of the generators and subtracting
the number of brackets. We assign a weight to any monomial by adding up the weights of the Lie
words. Then F, is the span of expressions of weight <n. Note that the relations of W= (S) are not
homogeneous for the weight.

Lemma 3.7. We have Fy,_1 =0, and Fp, _p, =0 for any m > 0.

Proof. We must show that the weight n of any non-zero monomial of degree mis n > —m if m > 0
and n > —1 if m = 0. Since degrees and weights are additive for products, it is enough to prove the
statement for generators and Lie words. The generators have weights > 0, so they satisfy the claim.
Next, take a non zero Lie word of the form [f, g] for two Lie words f, g of degrees m, m’ and weights
n, n' respectively. We prove the claim by induction. The weight of [f, g] is n +n’ — 1, its degree is
m+m'. If m,m’ >0, then n > —m and n’ > —m’, hence n + n’ — 1 > —m — m/. Now suppose

m = 0. We have W=>(9)[0,—] = A(S). Hence, the algebra W=(9)[0,—] is super-commutative.
Thus f cannot be a Lie bracket. So we have f = 1, (\) for some A € H*(S,Q). Since 9o(A) is
central, we have n > 0. Hencen+n' —1>2n" > —-m/ = —-m —m/. O

Proposition 3.8. There are elements D, ,(\) € W=(S) for each m,n € N and A € H*(S,Q),
such that

(a) DO,n(A) = qpn(A); Dl,n(/\) = Tn()‘)a
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(b) F_1 =0, and F, is spanned by all products Dp,, 5, (A1) - Dy ony (Ak) with Y, ni<n,
(c) the relation (3.4) holds modulo Fipn/—3.

Proof. The graded vector space Gre W= (S) =3 -, F,/F,,_1 has two operations: a graded (com-
mutative) multiplication and a Lie bracket of degree —1. Consider the Lie algebra g generated
by the elements v, (\), T, (A) for n>0,A € H*(S,Q). The relations (a))-(e), hold in g, as well
as the simplified version of the relation (ED By Theorem the Lie algebra g is spanned
by the elements D,, ,,()\), and therefore Gr, W= (S) is generated by these elements as an algebra.
In particular, we have F,,/F,_1 = 0 for n < 0, hence Lemma implies that F_; = 0. Further
F,/F,_; is spanned by all products Dy, n, (A1) - Dy np (Ak) with Y. n; = n. Therefore the first
two claims of the theorem are satisfied with any lift of the elements D,, ,()\) in g to W= (S). We
also get a weak version of last claim, i.e., the identity holds modulo F,, 1, —2. In order to get
this identity modulo F,,1,_3, we repeat the argument above with the (possibly non commutative)

algebra ), Fy,/Fp . O

Definition 3.9. The algebra Wi (S) is generated by t,()\), Tn(\) for all n, A subject to the

relations @—@, and .

By the proof of Theorem we have Wi (S) = U(wZ (S)), where w7 (S) is the degenerate
Lie algebra (3.4). Proposition thus implies the existence of a canonical surjective algebra
homomorphism

(3.15) p: Sym(rg (S)) — CryW=(8)
as well as a morphism of Lie algebras (with the Lie bracket on GreW=(.S) being of degree —1)
(3.16) p w2 (S) = GryW=(S).

3.4. Deformed W-algebras. We now proceed to define a 'doubled’ version W(®)(S) of W=(S).

Let us set 0(z) =3, 5 2" and put 0(z) = >_, , hn2". Recall that 6(z) = 7, (6(z)).

Definition 3.10. The algebra W(®)(S), called the deformed W -algebra of S, is generated by ele-
ments 1, (), T:F (X) for n>0, A € H*(S, Q) and a central element ¢ subject to the following relations:

e Relations (a)), (b)), and () of §3.1 with T:F()) in place of T),());

o [Wm(N), T ()] = £mT,y (A);

e The assignment T}, (X) — T (X), resp. Ty, (A) — T, (A), extends to a homomorphism, resp. to
an anti-homomorphism W+(S) — W) (S);

e The double relation, which is best expressed in terms of generating series:

(3.17) T3 (2), T (y)] = — exp(ime) [1 (1 - "i“”) 5@) (Au)]

c1x 0(x) x iy

where TE(2) = 32,50 TF(M\)2" and where A(z,y) 4 stands for the truncation of a power

n=0"n
series to its terms x%® with a,b>0. Explicitly, one may rewrite this relation as follows:

c—j+1

(3.18) T4 (N, T,y ()] = — exp(ime) Y (1)j< i+1

o<i<ijs<m+n

) huntn—jej—i(C1AR).
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We will denote by WT(S), W= (S) and W°(S) the subalgebras generated by T.F(\), resp. by
T (\), resp. by ¥,(\), ¢ for n>0 and A € H*(S,Q). We likewise define W= (S), W<S(S). The

n

algebra W(¢)(S) is naturally Z2-graded, with
deg(Ty (V) = (£1,2n — 2+ deg(})),  deg(s(n)) = (0,2n — 2+ deg(})),  deg(c) = (0,0).
We will write W(€)(S) for the central specialization of W(€)(S) to ¢ = e.

Remark 3.11.
(i) The elements T}, (A) satisfy the following sign-corrected version of (f)):

() (T (A)s Tots ()] = 3[Tin41(A)s T2 (V)] + 3[Tn2(N), Trgr ()] — [Trnt3(A), Tn ()]
= [T (A)s Tnga (s2)] + [T (V) T (s2) | —{ T, T} (1 As An) = 0,
(ii) When ¢; = 0, the r.h.s of reduces to (up to the factor — exp(inc))

Z (C_ k)(_l)khn—i-m—keIC ()\N) = C(Sn-i-m,O()\M) - Z k(_l)khn—i-m—k@c ()\N) = pn-i—m(/\/f')'
0<k<n+m o<k<n+m
If, in addition s5 = 0 (equivalently, co = 0) then we also have Tdg(x) = 1 and p;(\) = lih—1 (V).
(iii) Note that the relation has a formal term exp(imc). For any central specialization ¢ = e
it becomes just a complex number. Moreover, in all cases of interest for us, ¢ will be a
non-negative integer, so that exp(irc) = (—1)¢, and W) (S9) is defined over Q.

Proposition 3.12. The natural maps W= (S)°? — W(©)(S), W=(S) — W)(S) are embeddings
of algebras, and the multiplication map W~ (S) @ WO°(S) @ W (S) — W()(S) is an isomorphism
of vector spaces.

Proof. Analogous to [42 Appendix A]. O

Remark 3.13. The same proof as in [42) Appendix A] also shows that W (S) is isomorphic to the
algebra generated by the T;(\) subject to the relations (]ED, @, @ and .

In the undeformed case, we have a presentation of W(C)(S ) as the enveloping algebra of a Lie
algebra again. More precisely, consider the Lie algebra to(S) generated by elements Dy, ,,(A), m € Z,
n €N, A € H*(S,Q), whose Lie bracket is given by (3.4]), where we set D; _1 := §; oc.

Theorem 3.14. Assume that ss =0 and ¢; = 0. There is an algebra isomorphism ® : W(C)(S) —
U(w(S)), which sends 1, (X) to Do, (N), T;F (A) to D1 n(X) and T, (M) to exp(ime)D_q n(N).

Proof. Denote by o™ (S), o~ (S) the Lie subalgebras of w(S) spanned by D, ,,(\) with m > 0, m <
0 respectively. The restriction of ® to W* defines isomorphisms of algebras W*(S) ~ U(w*(9))
by Theorem An inductive argument analogous to the proof of Proposition below shows
that the commutation relations between ot (S) and ro~(S) hold in W(®)(S) as well. We conclude
by Proposition [3:12] and the PBW theorem for universal enveloping algebras. O

3.5. Heisenberg subalgebra. The Heisenberg algebra hg of S is the Lie algebra generated by
elements

{qn()‘)ﬂc | n 7é 07>‘ € H*(Sa(@)}a
(with, as usual, the relation q,(A 4+ 1) = qn(A) + g, (1) for any n and A, ) with Lie bracket given
by

(3.19) [ (\), 92 (12)] = M6 s C / AUp,  Cis central.
S
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Recall the elements D, ,(\) € W= (S) from Proposition Let us consider the homomorphism
O : WH(S) — W~ (S) defined by ©(T,F (\)) = (=1)"T,, (N). We set D_, n(A) = O(Dy, n(N)). The
same theorem implies that elements D, o(A\) with m>1 and A € H*(S,Q) super-commute with
each other, and are uniquely determined by the following formula:

(3.20) Diy1,0(N) [D1,1(1), Dm,o(A)].

_ 1
m
Proposition 3.15. The assignment C +— ¢ and

an(A) = D o(N), 4-n(A) = =€ D_p (M) (n>0)
defines a morphism of algebras U(hs) — W) (S). In particular, Theorem (b) holds.

Proof. Denote Ly = D11(1), Lo = ¢1(1). By definition, we have [Li, g+ (A)] = mas(mi1) ().
Moreover, the following equalities are easy consequences of relation (3.18]):

(321)  [mN).ao(n)] = e /

S

AUp,  [Lagm (V)] = 20 F (g)/sxu@,

[Lo,L+] = +Ly, [Li,L_]=2Lo— cio(c1) + <§> / cl.
S

In view of Theorem [3.8] it suffices to check the relations [q_., (), qn(1)] = nCdpm n(A, 1) for
m,n > 0. We proceed by induction. First, note that [Lo, q+,] = ngi,:

L (@ (Zos L] + [ [0, Zo)) = Gt + (L 0]

1
L = —[Lg,[L = ——
[ annJrl] n[ 07[ +7Cln]] n

= (n + ]-)qn+1~
Next, [L+, q5n(N)] = Fnqx(n—1) for n > 1

00O = s [0 a0 = = (s (B L)+ B 1, L4 T)
=20 n—[L,d_(n-p)] = —(n+ 1)qn.

It is easy to see that [qi1(N), ()] = 0 for n > 1:

_ %[q_lm, Ly, dn ()]
1

== (L [an(p), a1 )] + [an (p), la-1(A), L+]]) = 0.

Finally, for any positive m, n we have by induction
1

—a-em+1y(A), [L+ an ()]

1 m+1

g[Lij [qf(erl)()‘)a qn(/J’)]] + T[qu()‘)a qn(:u)]

c(m+ 1)5m,n/ AU,
s

[q—l(A)a Jn+1 (:u‘)]

[q,(mﬂ)()\), Gnt1(p)] =

which proves the desired statement. O

Remark 3.16. Note that (3.21)) contains central terms which do not appear in [23, Theorem 3.3].
The reason is these terms vanish for the Hilbert schemes (see § , since in this case ¢ = 1 and
Yo(\) = 0 for all A € H>2(9).
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The relations (c-d) imply that Do (\) = 10()\) is central in W(€)(S) for any A € H>2(S). Denote
by Z(S) the super-commutative subalgebra generated by Dgo(A)’s, and by Wrg(S ) the quotient
of W(®)(8) by the (two-sided) ideal generated by Z(S).

Lemma 3.17. If I C Wr(ecg(S) is a two-sided ideal such that I NU(hs) = {0}, then I = {0}.
Similarly, if It C WH(S) is a two-sided ideal with IT N U(hE) = {0}, then IT = {0}.

Proof. The proofs of the two claims being completely analogous, we will only prove the first one.
We follow the proof of [39] Lemma F.7].

The algebra Wr(eC (; (S) admits the order filtration as in § Recall that Gr, I/Vr(ec (} (S)is a graded
super-commutative algebra, equipped with a Lie bracket of degree —1. Let Gro I C Gr, rcc G{(S )
be the associated graded of I with respect to the induced filtration. Using Theorem instead of
Theorem we can repeat the proof of Theorem [3.8]to get an algebra surjection v : Q[Dyn (A)] —
Gre W, md (S) Set J = v=(Gr, I). It is enough to show that J = {0}.

The ideal J is graded by the weight. Let x € J be a non-zero element of minimal weight n. Since

U(hs) C Grg Wr(,g(S), we have JNU(hs) = {0}. Hence n > 0. We write
x_ZCZHDmm% ij) an =n.

Assume that for each i, j we have elther Ngj > Ny 41, OF Ny = Ny 41 and my;=>m; j41. Let
= {n;1>n;2>...}. Let T be the index of the maximal tuple among all n;’s, with respect to the
1ex1cographlc order. We write ny = {m1>... 20} and mz = {1 > ... >, }.
The space Q[D,y ()] is equipped with the Lie bracket given by and Leibniz rule. Consider
the operators o; = Ad(D; (1)) of degree —1. We have

(322) Jl(Dml,nl ()‘1) o Dmk 'nk )‘k = -l an mi, n1 )‘1 DmiJrl,ni*l()‘i) T Dmk,nk ()‘k)

The ideal J is preserved by the action of the operators ;. Fix [ > max{m;;}. Let us compute the
coefficient in o;(z) of the monomial

Day i, -1(A1) Dry iy (A2) -+ - D, (As)

The condition on [ implies that the only monomial in x which can contribute to this coefficient
is the monomial corresponding to 7. Using the formula 7 we obtain that this coefficient is
—l ;g t, where t is the maximal number with 7; = 77 and 7; = 1. This coefficient is non-zero.
Hence, we have o;(z) # 0. However, we have o;(x) € J and deg o;(z) < degz. This contradicts the
minimality of the weight n. O

3.6. Virasoro subalgebra. Let us introduce another Lie subalgebra of W(C)(S ). The results of
this section will not be used anywhere, but seem to be of independent interest.

Definition 3.18. Let n: H*(S,Q)®% — Z(S)][c] be a bilinear map. The Virasoro algebra Virg(n)
of S of central charge 7 is the Lie algebra generated by

{£.(N),v,c|neZ, e H(S,Q),y€ Z(S)},

where v € Z(S) and c are central, and the Lie bracket is given by
n®—n
(3.23) [En(A), Lalw)] = (n = 1m) Linin (A1) = =5 0-mnn(A, 1).

Remark 3.19. Our definition differs from the standard conventions by a sign; in other words, we
are considering the opposite Lie algebra of the usual definition.




COHERENT SHEAVES ON SURFACES, COHAS AND DEFORMED Wj ;.- ALGEBRAS 33

Let us fix a specific choice of elements D4, 1, n>2 in W(C)(S):
+1

P11, Danal-

1
Dy, = i§[Di1,27Di1,o], Dinyny,y =

Let us also define the following elements:

-1 1
£,(A) = Dpa(N) + quO(Cl)\) +50n0 (g) / GA n=0,
S

(n+1)c

£,(\) = exp(imc) (Dn,l()\) — 5

Dn,o(c1)\)> , n < 0.
Proposition 3.20. The assignment £,(\) = £,()\), ¥ — 7, ¢ — ¢ defines a morphism of algebras
U(Virs(n)) — W©(S), where the central charge 1 is given by

O 1) = (/5 oMt — (1— ) /S A+ 2¢0(C1Au)) .

Proof. Note that the relation for m, n of the same sign follows from Proposition For
other commutators, note that Virg(n) is generated over Z(S5)[c] by the elements £,, |n|<2. Once
we check the commutation relations between these elements, the rest of the relations can be deduced
by an inductive argument as in Proposition [3.15] The computation for the five elements above is
straightforward, albeit laborious; we leave it to the interested reader. It is performed using the
definitions of elements £, ()\) and the defining relations of W(®)(S). Let us briefly comment on the
appearance of c¢o in the formula . While does not manifestly depend on cs, after writing
out its r.h.s. in terms of v;’s for m + n = 4 we obtain

— exp(ime) (4vs(M) = Beva(er ) — 2ov) (erh) + (€2 — e+ 2 (Eh) — 20 (eahyn) + - )

where the omitted summands belong to the center of W(C)(S ). The underlined term is precisely
the one which gives rise to [ coAu. O

3.7. Proof of Theorem [3.2)(a). Recall that we have obtained an upper bound on the graded
dimension of W2 (S) in § In order to obtain a lower bound, we consider the descending algebra
filtration G* of W) (S) obtained by putting the generators T;F(\),1;()\) in degree deg(\). From
the defining relations and Proposition it follows that GV be spanned by all monomials

Ty (g ) Ty (i i () =g (i) T () - 'T;;L (1)

with > deg(A;) + > deg(uf)}N. In particular, the restriction of this filtration to W= (S) is given
by the same definition without T~’s. Tt is clear that each G is a two-sided ideal in W1)(S).
One defines a double Wél)(S’) = U(mél)(S)) of W (S) in an obvious way, using relations as in
Theorem The images of ¢,,(A)’s and T:=(\)’s in Gr® W= (S) satisfy the relations (al)-(€), (g).
As the last three summands in @ have higher G-degree than the first four, the relation (3.4)) holds
in Gr® W= (S) as well. For the same reason, relation with ¢; = s3 = 0 holds too. We deduce

that there is an algebra homomorphism ¢ : WO(D(S) — Gr®* W (S) which maps 1, (A) to Gr ), (\)
and T:F(X) to GrTiE(N).
Lemma 3.21. The morphism ¢ : Wél)(S) — Gr* WW(S) is an isomorphism.

Proof. The morphism is surjective by definition of G*. Its restriction to U(H(S)) is non-zero (and
of central charge ¢ = 1); the kernel of this map is a two-sided ideal of U(H(.S)), which has to be
zero by a standard argument. We conclude by Lemma [3.17] O
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Proof of Theorem[3.4(a). The map ( restricts to an isomorphism WO> (8) =~ Gr* W=(S), compatible
with the grading. Tt suffices to observe that the Hilbert series of W (S) = U(wg (S)) is given

by . O

3.8. Structure of W= (S) in the semi-deformed case. Suppose that ¢; = 0, and ¢ € H?(S,Q)
is such that ¢? = so. Recall the Lie algebra o= (S) from Definition The following proposition
is a slightly more precise version of Theorem

Proposition 3.22. Assume that ¢c; = 0 and sy = ¢* for ¢ € H?(S,Q). There exists an algebra
isomorphism ® : W= (8S) ~ U(w?(S)) such that

(T, (N) = 2D\, ®(hp(A) =D "A+ Y _an D" g\
i>0

for some explicit rational numbers (a;;).

Proof. It is straightforward to check that the relations @, @— hold between ®(7.F(\)). Note
that we have

[D™N, 2D" ] = mzD™ T\ + Z (T) 2D™T
i=2
Let A = (a;;) be the inverse of the matrix B = (b;;), where b;; = %(Jil) for i>j and 0 otherwise,
and define ®(¥,(N)) = 32,50 ann—iD"'q"A. Since B is upper-triangular with 1’s on the diagonal,
®(1),,(N)) has the required form, and the relation @ holds by definition, as well as the tautological
relations (@), (). We have thus obtained a well-defined homomorphism ® : W= (S) — U(>(S5)).
Observe that the Lie algebra o= (S) is generated by the elements D"\, zD"\. In particular, ®
is surjective. Finally, the graded dimension W2 (9) is equal to the graded dimension of U(w?(S5))
by Theorem [3.5(a), so we may conclude. O

Remark 3.23. In [25], an action of a certain Lie algebra Wg on the cohomology of Hilbert schemes
of points on S was constructed via vertex algebra methods. Its basis is given by elements J&, (1)),
m € Z,p € Lo, A € H*(S,Q) and the Lie bracket is, up to central charge,

D,q

_ Qpa-
[32,(N), 32(10)] = (gm — pn)IELE " (M) — 5 JoE 3 (o),

where QP4 is given by formula (5.2) in loc. cit. This Lie algebra by definition lives in a certain

completion of W) (S), but in the case when ¢; = 0 it is an actual subalgebra of W) (S) by
Lemma 5.2 in loc. cit. Let us set

TEN) =35, ¥aN) =35 (N).

One can check by a direct computation that the relations of W) (S) with ¢; = 0 hold. Therefore we
obtain a homomorphism of algebras W) (S) — U(Ws), which may be shown to be an isomorphism
by a simple dimension check. We want to emphasize that the existence of this homomorphism
crucially relies on the fact that ¢ = 0, which is true in H*(S, Q) for degree reasons. In the presence
of a torus action this vanishing typically fails (hence the results of [25] do not apply) and one
obtains instead the semi-deformed algebra U(r0>(S)). Note that our presentation does not involve
the factor 22:9

m,n:*
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4. FOCK SPACE REPRESENTATIONS OF W (")(S)

In this section, we construct a Fock space representation of W(T)(S ) for any r>0 by considering
the action of Hecke correspondences on tautological cohomology rings. We still assume that S is
projective.

4.1. The algebra of universal Hecke operators. Recall from (2.22)) the algebra homomor-
phisms RT and the A(S)-linear maps Q*. We define the elements ¢,,()\), n € N and ¢(\) in A(S)
by the following generating series:

) =)+ T o) = T

n=0 n=0

xn—l

Dn (Tds(x) U )\) € A(S)((x)).

n!
Note that ¢(A) = 0 if A ¢ C[pt] while ¢([pt]) = po([pt]) = r. Let us denote by the same symbols
¢n(A), c(N) the operators of left multiplication in A(S). For n € Z, we put, following § 2.6
(4.1) Ly A(S) = AMS), [ = Q¥ (" RE(f)).

We recall §(x) = 3, ~ hma™ from § and we set
L (@) =3 Li(V)a".

ne”Z

Proposition 4.1. The assignment 1, (\) = ¢n(A),c = r,TEN) = LEN) for n>0 and \ €
H*(S,Q) extends to respective actions of W= (S) and W<(S) on A(S).

Proof. We will deal with the positive operators only, the second case being identical. To unburden
the notation, we suppress + from the notation. We have to show that the operators ¢, (A), L, ()
satisfy the defining relations @-@ of W2(S). The relations @, (]ED, being immediate, we
concentrate on the remaining ones. We deduce from that

Z %W: evs(Pm(N) = 22" Tdg" ()N
m2=0
In particular, we get
03 L] = 3 & o (Tds(2)\), Lo (p)]
m=0 ’
= 3 T Q" (o — Rip))(Tds )N R(-))
m=0 ’
= 2Q(p Y0 evipn)(Tds (2N R(-))
m>0 ’
I,m+1 ™
= 2Q(w e AuR(-)) = > W@memkﬂzzaﬁﬁﬁmwﬂm
m=0 m21

which proves the relation @ Note that thanks to this, it suffices to check relations @, @ and
when evaluated at 1.
Let us write
2

T,y) = y * z, a7t )
Q(z,y) A=y =)y — 1) H*(S,Q)[z, 2™ ][[y]]
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Lemma 4.2. We have the following identity:
La(z)Lu(y)(1) = m(6(z) © 6(y))(1 — AQ(x, y))(A © p)
where we denote by m : A(S) ® A(S) — A(S) the multiplication map.

Proof. Let us first note that
k

D=y ) = exp (Y pn) ()

n>0 k>1

Using formula (2.21)), we get after applying R:

R(L,()(1) = R ( e (X y,fchk)m> = o (3 Lt — (i)

k>1
=[96Xp(zy;((chk) eXP( Zy A fi(u )3#2
k>1
Z/Sp(9( )12 eXp( A}; fk )23 2.

In the above, we use indices to specify the position in the tensor product, i.e. ps =1® u® 1, etc.
Since A% = t,t3/A, we can compute the exponential term:

exp(—AZykuk_(u_t1>k_(u_t2)k+(u—t1 —tz)k)

1 ktito

1+tﬁ2(eXp(Zyk“k(Ut1)k(uktz)hr(utltz)k) 1)

k>1
A ((1 —yu)(1 —yu+yt +yta) 1)
tita \ (1 —yu+ yt1)(1 — yu + yta)
y’A
(I —yu—tyt) (I —yu+yta)
By the definition of the operator @), we have the following equality

Z Q(z™u™TIN) = 27" Z " hm (N)

me7Z m=0

Putting everything together, we conclude that

La(@) L) (1) = Q(A Y ()" RE, (n)(1))

neEZ

y*Ag3
- JL o Srsewin - )
n yQAQ
- /SQ(A? nze;m) POl = T ytl)(lg— yzT + ytz))”3)
y*A

- /S 20D 200 (1~ T )

— m(8(x) ® 6(y))(1 — ARz, y))(A® ).
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In the above, we have made use of the relation Y, ., (uz)"A(u) = >, o (ux)" A(z~1) which is valid
for a Laurent series A(u). d

Now, by Lemma [£.2] we have
(L), Lu())(1) = —/S Sp(9($))12 p(0(Y))s (AQ(z,y) — AQ(y, x))23 A2 p3
= ()0

which implies relation @
Next, let us put z =y~

(2° = 2(52 @1+ 1® 52)/2 — 51A) (1 — AQ(z,y))
=(2% = 2(50 @1 +1®52)/2 4+ 51A)(1 — AQ(y, 2)).

Unpacking the generating series and using Lemma we see that the relation (]ﬂ) holds when
evaluated at 1 (hence it holds in general).
Let’s finally turn to . Similarly to Lemma we have

Ly, (1) Ly (w2) Ly (3) (1) = m(6(w1) ® 0(22) @ 6(x3)) [ J(1 = AQ(wi,25))i; (1 @ As ® Ag).

i<j

L' — 271 The following relation results from a direct computation:

Note that the product of € functions is well-defined as a Laurent series. Using this formula and
expanding the products, one can show that

(L, (1), [, (22), Lag (23)]](1) = m(0(x1) @ 0(z2) @ 0(23)) A123 K (21, 22, 73) (M @ A2 @ A3),
where A123 = A12A23 = A12A13 = A13A237 and
K(z1,29,23) = (1 — 023)(1 + 013)(21, 22, 23)
where we have set

F(xl, Ta, I3) = (Q(l‘1, JEQ)Q($2, 1‘3) + Q(xl, .1?2)9(331, .733) + Q(l‘l, 1‘3)9(332, 373)

— tthQ(.’L‘h .’1?2)9(3?2, $3)Q<.’171, wg))

and where o;; stands for the transposition of the indices (4, 7). In order to prove the relation @,
we need to show that the following expression vanishes, as a (Laurent) series:

> wlLa, (1), [Lay (w2), 25 Lo, (23)]](1) = (6(21) @ 0(w2) @0(3)) Aras K' (1, 22, 23) (M @ A2 @ A3),
wES3
where K'(z1,72,73) = )¢5, w(zy 'K (21, 72,73)). We will show that K’ vanishes. Using the

observation that

Z w:cgl(l — 0'23)(1 + 0'13) = Zw(l‘g_l — 0'23$2_1 + 0'13171_1 - 0'230'13562_1)
wES3

w
= Zw(xfl — 225t a2zt
w

we obtain
K'(x1,10,23) = Z w((xl_l — 2yt + x;l)F(zl,xQ,xg,)).
weS3
We verify by a direct computation that
(7t — 225t + 23 D) (Qx1, 22)Qwa, 13) — titaQ(zy, 22)Q(w2, 23) (21, 3))
= (173_1 - xl_l)(Q(xl,xg)Q(xl,zg) — Qx1,23)Qx2, 23)).
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Therefore, we can express K’ as follows:

K'(x1,19,23) = 2 Z w ((3:3_1 — 3:2_1)9(3:1,362)9(331,3:3) + (5131_1 — J;Q_l)Q(xl, mg)ﬂ(xz,xg)) .

wES3

Note that the first term in parentheses is antisymmetric is xo and x3, and the second one is
antisymmetric in x; and xs. Therefore their respective symmetrizations vanish, and we obtain
K’ = 0. Thus the relation holds, and the proof is complete. Note that we considered in the
above calculations elements L, (\) with n < 0, but the only relations which we are interested in
are those involving only the generators L,(\) for non negative values of n. Proposition is
proved. O

4.2. Level r Fock space representation of W (), Let us fix an integer >0, set
AS)r = AS)p=rs  +Ly(0) = Lnjazr(0),  (n€Z,0€ H*(S,Q))
and consider the normalized currents
LER) =2, (2) € End(A(S)),)[z, 27 ']

We recover the currents L (o) of the previous section for r = 1.

Proposition 4.3. The following relation holds in

(4.2) [TL§<x>,TLu<y>]++[1 (1@”)6@)@#)] € End(A(S)},)[[z, y]]-

c1x 0(x) x iy
Proof. We begin by evaluating the Lh.s. of (4.2) on the element 1.

Lemma 4.4. We have
_ 1 0(x) Yy
L (x), L l=—(1-=—]6(=)(A
[ )\(1')7 p(y)]_;,__t,_ [Clx < 9($)> (.’E)( /’L)
Proof. The proof bears some resemblance to that of Lemma We have
L) 1= Q (') = (—y)'é(n) = 0(y) "' (1) = exp ( > ‘%13 )
! l k>1

A computation using (2.23) yields

T, (y)-1= + 2" u"0(y) 15 ex ()"
Ly (=)L, (y)-1 /XSQ <Z 0(y)13 p(zk:

S neZ

++

- A }l
k

_ n, ny, —1 (_y) _
_/5st+ <Zx u"0(y)13 exp(zk: el 1)A)23>\2M3>~

nez

Here we have used the classical result that for any Laurent series F(v) € A((v)) with coefficients in
a ring A we have §(vw)A(v) = d(vw)A(w ™), where d(u) =Y, ., u"
One computes

ak Aa? —

exp(Z?Afk(b)) =1t g, —: Q(a, b).
k>1

Using this, one obtains

(4.3) Ly (2) Ly (y) - 1 = m(0(z) @ 0(y) ") Q~y, —2~ ) (A @ p)
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and likewise
(4.4) L, ()L} () -1 =m(0(z) @ 0(y) ")z, 5~ YA @ p).

Observe that Q(—y, —x~1) = Q(z,y~!) as rational functions but ([{.3)) and (4.4) should be expanded
out in A(S)((2))[[y]] and A(S)((y))[[x]] respectively since by construction L (o) -1 = 0 for n < 0.
In other words, we have

L3 (@) L ()] - 1= 2"y m(0() @ 6(y) ) (Qa,y ™4 = Qla,y ™)) (@ p)

where + and — subscript indicate expansion in A(S)((z))[[y]] and A(S)((y))[[z]] respectively. From
the formal equality

_ A 1 1
—1y
Qz,y )_1+cl(x1y1_:c1(y161)>

we deduce
(o)™ (@) = Blay™)) = (6 (@—yy)> 5 (1),
Thus we get
(4.5) L), L, ()] - 1 :/ %(A(x,y) + B(x,y)) Aap3
SxS ¢1
where
Alwy) = (2) m(o() 0 ) ) 6(2E=22)
(O o o2 ) (202,
_ 1y fzx(1=c1y)
= m(@(x)r® o(z)~") 5(%)
Blay) = ~(5) mO@) )™ 5(2) = —m(06) 2 0)) 5(2).

In simplifying A(z,y) we used the following calculation

0(y)(\) = /Srcl exp (Z y]:pk) /eXp (Z Z( )pzcl ’)

k>1 k>1 " i=0

(Cly)k (k - 1) —i
= [ exp|r g exp E . —pzcl A
/S ( k>1 k KSiz1 1—1/ 1

=(1- cly)_r/sexp (Z Z(l—ylcly)lpl) A

i=1

- Y
=(1- "0 A
(e () o
Substituting in (4.5)) and observing that

A A _/x(l—c
{/ A(m7y))\2/¢3] = [/ 75<7( 1y)))\2M3} =0
Sxs AT 4+ Sxs 1% Y

++
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A
l:/ (5<y>)\2[1,3:| =0
Sxs C1T \T iy
we easily deduce Lemma [4.4] O

and

In order to extend Lemma to the whole of A(S),, we next consider the commutation relation
between Ci;(\, u) := [.Lf (), »L; (1)) and 9 (v). Below, we drop the index r for simplicity.

Ur()Ciy (0o 1) = ) LE WL (1) — () L5 ()L (V)
= (L5 VL () w) = KLE L5y (o) + KL W)L (1)

)
— (L5 L Nk w) + KLF (1)L 01 (W) = KL,y () I (V)
= Cij(A ) Yr (V) + k (Civrk—1,; (A, ) = Ci jrr—1 (A vp))
We have therefore obtained
(4.6) [Wr(V)/k, Cij(A\ )] = Cigr—1,;(Av, 1) = Ci jrp—1 (A, vp).

Applying (4.6) to 1 and using the fact that, thanks to Lemma Cij(A, 1) - 1 only depends on
1+ 7 and Ap we see that

(4.7) [r(v)/k, Cij(A, )] - 1 = 0.
Using (4.6)) and (4.7)) recursively, one gets that
[Cij(/\’:u)vwh (v1) - 'wkz(yl)} 1=0
for any (k1,v1),. .., (ki,v;). This proves Proposition d

Unraveling formula (4.2)), we obtain

r—k+j

(4.8) [TL?(A),TL;_Z»(M)F ) (‘1)k< j+1

) h—ker— (] M)
0<j<k<n
which highlights the dependence on 7.

Remark 4.5. Note that the “same sign” commutators [L; ()), Lj(u)] are independent of i — j only
in the non-deformed case, see Remark [3.4]

4.3. Fock space representations of () (S).
Definition 4.6. The level r Fock space associated to S is the graded vector space
F()(S) := A(S)p=r ® C[s,57'].
We may restate Propositions and as follows:
Corollary 4.7. The assignment
U (A) = madt. by (), TN =,Li(N)s, Ty (A) = (=) Ly(\)s™

defines a graded W) (S)-module structure on F()(S). O
Proposition 4.8. Assume r > 0. Then the action of W) (S) on F()(S) is faithful.
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Proof. Recall that Z(S) denotes the subalgebra of W) (S) generated by 1g(\) for A € H*(S,Q).
Consider the subspace Z(S) - F(")(S) ¢ F(")(S). Since Z(9) lies in the center of W) (S), this is a
W) (S)-submodule. Moreover, the action of W) (S) on Fg()i(S) = F)(8)/Z(S)F()(S) factors

through Wr(crg (S) by definition, and we have isomorphisms of vector spaces

FU)(S) ~ Sym(H*(S,Q) ® £2Q[t]),  F")(S) ~ A(S) @ FUL(S),

where A'(S) = Sym(H>2(S,Q) ®t). Since A'(S) is the regular Z(S)-module, it suffices to prove
that the action of W) (S) on FU)(S) is faithful. Using Lemma we only need to prove the
faithfulness of its restriction to U(hg). The central charge being non-zero, this last statement follows
from a standard argument. O

5. DEFORMED W-ALGEBRAS (OPEN SURFACES)

In this section we do not assume that S is proper anymore, and define several versions of W-
algebras, modeled on the cohomology resp. cohomology with compact support of S. Throughout,
we fix a smooth compactification ¢ : S — S. The W-algebras which we consider will end up being
independent of this choice of compactification.

5.1. Positive halves. We begin with a general construction. Consider a graded ideal I ¢ H*(S, Q).
Note that A(I) C I ® I hence It is also an ideal. We denote by J the quotient of H*(S,Q) by I.

Definition 5.1. Let Wj (I) be the smallest graded subalgebra of W (S) containing D,, o()\) for

all n>0, A € I, and stable under operators Ad(y;(u)), for all I > 0 and p € H*(S,Q). Likewise,
let VVTJr (J) be the quotient of W (S) by the two-sided ideal ZT generated by Wf([ ). We define

W, (I),W; (J) in the same way. Finally, we let WO(J) be the quotient of WO(S) by the ideal
generated by elements 1;()\) for [ > 0 and X € I (thus ¢ descends to a non zero element of W0(.J)).

Remark 5.2.
(1) WJ(I ) is in general different from the subalgebra of W (S) generated by T.F (\) with n>0
and X € I. For instance, let S = P2 and I = Q|pt]; then Wj([) is a commutative algebra

with basis given by monomials in D,, ,,([pt]), which is not generated by {D1 ,([pt])}n-
(ii) However, it is easy to see that ZT is generated as an ideal by T,5 (\) with n>0 and X € I.

Recall the elements D, () € WT(S) considered in Proposition in connection to the order
filtration F,. They are not canonically defined unless m<1 or n<1; in this subsection, we fix them

to be
1 _
DonnA) = ———[thni1(1), DoV, A€ H*S,Q), m>1, n>1.
n(A) m<n+1)[¢ +1(1), Do ()] € H*(5,Q), m>1, n
By construction, the elements D,, ,,(A) belong to Wj([) if xel.

Our first result concerns the size of the algebras Wj (1), VVTJr (J).
Proposition 5.3. The Hilbert series of Wj (I) and W#(J) are respectively equal to

Pr(2)z 2w Py(z)z"%w
PWj(I)(Z’w) = Exp ((1—122))(1—10)) ) PWT*(J)(Z,UJ) = Exp ((1522;(1_1")) )
)

where Pr(z) =Y, dim(I N HY(S,Q))z¢ and P;(z) = Pg(z) — Pi(z).
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Proof. We begin with the first statement. Let A C W (S) be the subalgebra generated by all
Lie words in T5,, (A1), ..., Th, (As) for which [], A; € I. From the inductive definition of Dy, o(\)

we see that WJ(I ) C A. We will later show that this is in fact an equality. Let W*(S) be
the free algebra generated by elements {T,,(\) ; A € H*(S,Q),n>0}, modulo the sole relations
T (aX+bp) = aTy(N) +bT, (11). There is a canonical morphism 7 : W+ (S) — W+(8) whose kernel
R is generated by the collection of relations (a))-(g) of §[3| The order filtration Fy on W(S) lifts
to a filtration F, on W*(S), in which a Lie word L = L(Tp,, (A1), ..., Tn.(Xs)) belongs to ﬁO(L)
with o(L) =1—5s+),n;. Let Acwt (S) be the subalgebra generated by Lie words as above for
which [T, A; € I. Thus 7(A) = A. We claim that

(5.1) r(F,nA)=F,NA
which is equivalent to the equality
(5.2) (F,NA)+R=(A+R)NF,+R

The only relations which do not preserve the order are those of type @ Observe that if the symbol
(with respect to ﬁ.) of such a relation belongs to A then so does in fact the relation itself (indeed,
if Au € T then sodu € I and ¢;AMp € I ® I). Equations and follow.

From Lemma we have GreW*(S) =~ Sym(t{ (S)) and there is a Lie algebra morphism
g (S) — GrosW*(S). Since the symbol of a Lie word L = L(T,,, (A1), ..., Tn. (X)) is a multiple of
Dy o1y (I]; Mi), we deduce from that

(5.3) Gr,(4) = Span{Dmhnl()\l) «+Diyne (As) Znign, AM,..5As € I} C F,/F,_1.

Because D, »(A) belongs to Wj'([) if A € T we deduce that GreA C Gr.Wj'(I), from which we
deduce that GreA = Gr.Wf‘ (I), hence in fact A = Wj' (I). The formula for the Hilbert series of
Wf (I) now follows from ({5.3).

Let us now turn to the second equality. Let WT(J) denote the graded algebra defined by

generators and relations as in § |3} but with J in place of H*(S,Q). The results of § [3| may be
repeated mutatis mutandis for W+ (J). In particular, we have

Py(2)z2w ) .

Pw+(J)(Z, w) = EXp ((122)(110)

There is a canonical surjective morphism W+ (S) — W (J), which factors to a surjection WT+ (J) =
W*(J). In particular, PW+(J)(z,w)<PWT+(z,w) (coefficientwise). We will show that this map

is an isomorphism by proving the reverse inequality. Let Z C W(S) be the two-sided ideal
generated by Wf([) Recall that D,, (1) € Gr, Wf([) for p € I and any m>1,n>0, hence

Sym(tog (I)) C Gre Z, where
g (I) = Span{ Dy, n (1) ; m>1,n>0, p € I}.
We deduce that
Py () (2, 0) <SPy o 39 (2 W) Py o (1) (5 0) = Py () (2:w) = Powe (2, w)

which gives the desired reverse inequality. O

In the course of the proof, we obtained the following useful characterization of Wf[ (I):
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Corollary 5.4. For any ideal I C H*(S,Q), the subalgebra Wf[(l) is generated by all Lie words
L(Ty, (M), ..., T (Ns)) for which T], \; € I. O

By definition, the action of Ady,(,) preserves Wf(]) for any [ and any p € H*(S,Q). This
induces an action of W°(S) on both WfE (I) and on WTi(J)

Lemma 5.5. The action of W°(S) on WTi(J) factors through WO(J). The action of W°(S) on
Wf(]) factors through WO(H*(S,Q)/I+).

Proof. The first statement is a simple consequence of the fact that [¢;(u)), WE(S)] C Wf([) if
w € I, which may be checked on the generators T, (\). The second statement is a consequence of
the following claim: for any [>0 and p € I+ we have

(5.4) [Wu(p)), WE(I)] = {0}

We sketch the proof of this claim, leaving the details to the reader. Let W (g),ﬁ. and 7 :
WH(S) — W+(S) be as in the proof of Proposition and let R C W+(5) be the ideal of
relations, R,, = RN F,. For a Lie word L(T,, (A1), ..., T,.(As)) we put ¢(L) = [1, N € H*(S,Q).
From relations (E[), @ and @ one checks the following: for any r € R,,/R,_1 which is a linear
combination of products of Lie words Lq,...,L; such that ¢(L1) = --- = ¢(L) = « there exists

a lift v € R, of r which is a linear combination of products of Lie words Lj,..., L. satisfying

c(L) € aH*(S,Q) for all i. In particular, for any two Lie words Ly, Ly for which ¢(L;) = ¢(L2) =0
and Ly — Ls € R, /R,,—1 C F,,/F,,—1 we have

(5.5) m(Ly — L) € Span{ﬂ(L’l L) |V, e(Ll) =0, ZO(Li) < n}

For any Lie word L € W*(?), the symbol of 7(L) with respect to F, is equal to a multiple of
Dy, () for some m,n and X\. As D, ,(0) = 0, we deduce from (5.5) by induction on the order
that for any Lie word L with ¢(L) = 0 we have m(L) = 0. This yields (5.4) as a particular case. O

We will be mostly interested in the ideals Is := H}(S,Q),I5 ~ H*(S,S) and the quotient
Js = H*(S,Q) ~ H*(S,Q)/IZ. Recall that S being pure, the maps ¢ : H?(S,Q) — H*(S,Q) and
t*: H*(S,Q) — H*(S, Q) are respectively injective and surjective.

Definition 5.6. We put
WE(S) = Wi (Is), WiE(S) = Wi (Js), WO(S) = WO(Js) ~ A(S),
WZ0(S) = WO(S) x WiH(S),  WZOS) =WO(S) x W[(S),
and define WfO(S), WfO(S) in the same way.
Composing the inclusion Wf(S) C W#(S) with the projection W*(S) — WTi(S) yields an

algebra homomorphism
s : Wf(S) — WTi(S)

Corollary 5.7. The Hilbert series of WJ(S),W#(S) are given by

(5.6) Py s (s) (2 w) = Exp (%) ’

Ps(2)z 2w

5)

(5.7) PW#(S)(z,w) = Exp <(122)(1
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where P§(z) =Y dim(H}(S,Q))(—u)" and Ps(z) =), dim(H"™(S,Q))(—u)".

5.2. Full W-algebras. There are four different types of W-algebras which one can associate to S,
namely

W), wis),  wiPs), WP
These depend on the choice of compactly supported vs. ordinary homology for each half, and are
all naturally defined as subquotients of W () (S). For instance, WT(TC )(S ) is the quotient of W (©)(S)
by the two-sided ideal generated by Wf(Ié‘) and WO(I%) while WT(f)(S) is the quotient of the
subalgebra of W(®)(S) generated by W<(S), Wf([ s) by its two-sided ideal generated by W°(I%)
and W~ (IF). It is easy to see that WT(TC)(S) may be presented just as W) (S), where we replace
H*(S,Q) by H*(S,Q) everywhere.
For any r € Q, we let WT(TT)(S), ... be the specialization of V[/T(,f)(S)7 ...toc=r.

Proposition 5.8. For a pair (a,b) € {1,1}?, the multiplication map induces an isomorphism

W (5) = § Wa (5) ©WO(S) @ W (S) (a,b) # (1,1),
" W (8) @ WO(S)eco ®WH(S)  (a.b) = (1,1)

Proof. Let T2, Z< be the two-sided ideals of W= (5) and W< (S) respectively generated by W (I¥)
and {¢y(A\) | 1 > 0,\ € I&}. Arguing as in the proof of Lemma and using Proposition it
is enough to check the following inclusions (and their dual versions):

77 - W= (8) CW(S) - 2% + cW©(3),

WH(S) - IS CIS - WH(S) + W9 (S),

W (S) - W (S) C W (S) - W(S) - W[ (S),

WH(S) - IS CIS-W[H(S)

These are in turn easily verified using (3.18]), Corollary together with the fact that Z% is

generated by TiF()\) for A € I&. Note that [T, (M), Ty ()] = ¢ when A = [pt] so that c is indeed
in the two-sided ideal of W(°)(S) generated by Wf(S ). O

To finish, we mention the following analogue of Theorem For a pair (a,b) € {1,1}2, we

define a Lie algebra m((;;;)(S) as follows. It has a basis given by a central element ¢ and elements

Dy, (X) where m € Z, n>0, and X belongs to H*(S,Q) or HX(S,Q) according to the following
rule: for m =0, A € H*(S,Q); for m < 0, resp. m > 0, A € H*(S,Q) if a, resp. b is equal to 1 and
A € HX(S,Q) otherwise. The Lie bracket is given by

[Dinn(A)s D e ()] = (' — m'10) Dy s -1 (AR),
where we have set Dy, 1 = ; 0c, and where the product Ap is either induced by the cup product
on H{, (S,Q) or by the product H*(5,Q) ® Hi(S,Q) — HZ(S,Q) (or its composition with the
natural map H}(S,Q) — H*(S,Q)).

Corollary 5.9. Assume that ss =0 and c;A = 0. There is an algebra isomorphism

(e)
W (S) ~ {U(%(s» (@.) £ (1.1)
U(mﬁ (S))\C:O (aa b) - (Ta T)

which sends 1, (X) to Do, (N) and TE(X) to Diy n(N).
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Proof. This follows from the explicit identification Igt = Span{D,, ,(A) | £m > 0,n>0,\ € Ig}
(and similarly for I3 ). Note that the condition ¢;(S) = 0 may be relaxed to c1(S)Ag = 0 in this
context: indeed, the condition really is ¢y Ay = 0 for any A, p in H}(S,Q) or H*(S,Q) (according
to the situation). O

Ezample 5.10. Let S = A? together with the natural action of a two-dimensional torus 7. In
this case the Chern roots t1, to are precisely the linear characters of T, and we have A = t;ts.
Identifying H;(A?%) with Q[t1,ts], we have H;:T(Az) = t1t2Q[t1, t2]. In particular, the difference
between VV;L ’T(Az) and Wj ’T(Az) is just multiplication of generators T;" by t;ta, so we will abuse
the notation and omit the subscripts.

It is instructive to compare the output of our constructions with the affine Yangian Ytl,tz (gly)

as considered in [42] (see also [2]). Recall that it is generated by elements e;, f;,¢; with >0,
modulo certain relations (Y0-Y6), see loc. cit. for details. We can define a morphism of algebras

Vi, 0 (gl) — Wéc) (A?) by sending
€; — Tz’+7 fl — Tii,

and Jl maps to the expression on the right hand side of (4.8)); in particular {/;1 is quite different

from v; € W}C)(Ag). The only relations that are not immediately obvious are (Y4-Y5). Since they
are almost identical, let us concentrate on (Y4):

[i+s, e;] — 3[isa, ejy1] + 3[1Zi+1,€j+2] - [Ji>€j+3] + (8 + tats + 13) ([ig1. 5] — [¥s, ejr1])
+ tita(ts + tz){{/;ia ej} =0

The relation (Y1) is precisely the relation (f) in our Deﬁnition Using the relation [e;, f;] = '(ZiJrj

and applying Ady, to (Y1), we can see that proving (Y4) for (4, ) is equivalent to proving it for

(i — 1,7 +1). Thus it suffices to check (Y4) for i = 0. Using (Y4’), the formula we need to check is
(757, T5 ), T;F] = 6T, + 2¢ctata(ty + t2) T}

Unpacking the right hand side of formula (4.8 for n = 3, we can get an explicit formula for [T5", T ]
and check the relation above applying (2.20]).
Using the triangular decomposition of both sides, it is easy to see that the map above is actually

an isomorphism Y3, ¢, (gl;) ~ W:(FC) (A2).

5.3. Fock space representations. In § we defined a representation F(")(S) of W(©)(S). We
now consider variants of F(")(IS) in the case of open surfaces.

First observe that we have a canonical projection ¢* : F(")(S) — F()(S), induced by the sur-
jection H*(S,Q) — H*(S,Q). The kernel of ¢* is generated by the tautological classes 1, (\) with
Ael é‘ The formulas and the definition of the operators R*, Q* imply that ker(:*) is a
W) (S)-submodule of F(")(S) and that dually 7. (\)F () (S) C ker(:*) for any A € I&. From these
observations, one deduces the following:

Proposition 5.11. The action of W) (S) on the Fock space F(")(S) descends/restricts to an action
ofWT(f)(S), Wf;)(S), Wﬂ)(S) on F()(S) for any r, and to an action ofW%O)(S) on FO(S). These
representations are faithful when r # 0.

Proof. Let us only address the faithfulness. We only need to consider WT(?(S), Wg)(S), since
Wff ) (S) is a subalgebra of W () (S). Similarly to Proposition these algebras contain a copy of



46 A. MELLIT, A. MINETS, O. SCHIFFMANN, E. VASSEROT

the Heisenberg algebra hg of central charge r, where half of the generators are labeled by HX (.S, Q).
Since r > 0, we conclude by Lemma [3.17} O

6. HECKE PATTERNS

In this section we introduce a general framework to construct modules over the algebras Ho(S5)
and H§(S) by using a compactification S of S and by restricting the multiplication in H(S) to
suitable substacks. For this we fix a smooth compactification S of S.

6.1. Hecke patterns and Hecke correspondences. The following is a variation on the notion
of a Hecke pattern which appears in [22] §5].

Definition 6.1. A (two-sided) Hecke pattern on S is a locally closed derived substack X =| |, X,
of ¢0h>1(§) satisfying the following properties:
(a) for any short exact sequence 0 — & — F — G — 0 with G € €oh”(S) and F € X we have
£eX,
(b) for any short exact sequence 0 — & — F — G — 0 with G € €oh?(S), £ € X and F €
Coh”!(S) we have F € X.

We call X an S-weak Hecke pattern if the conditions (a-b) only hold for G € €oh°(S). We say that
a Hecke pattern is S-strong if both conditions (a-b) imply that G € €oh’(S).

We say that X is of rank r if X, is nonempty only if rk(a) = r; every Hecke pattern is clearly
a disjoint union of Hecke patterns of a well defined rank. Note that the conditions of being a
usual/S-strong/S-weak Hecke pattern imply the conditions (2.9}f2.16), (2.25]), (2.26) respectively.

Remark 6.2. A substack X C €0h>1(§) satisfying (a) alone may be called a left Hecke pattern,
while a substack X C ¢0h>1(§) satisfying (b) may be called a right Hecke pattern. We can consider
the S-weak/strong versions of these notions separately.

Ezxample 6.3. The property of being of dimension > d, d = 1,2 is stable by passing to a subsheaf,
and for any extension 0 - & - F - G — 0 with dimG =0, £ € Coh>? and F € €oh”! we have
F € €oh??. Therefore ¢0b>d(§), d = 1,2 is a Hecke pattern. One can similarly see that €0b>1(5)
is an S-strong Hecke pattern. More generally, any S-weak Hecke pattern contained in €0b>1(5) is
automatically S-strong. The collection of Hilbert schemes of points on S (see § is a left S-weak
and right S-strong Hecke pattern.

Lemma 6.4. A left Hecke pattern is S-strong if and only if X C €oh>1(§). A right Hecke pattern
is S-strong if and only if every sheaf in X is locally free at any point in S\ S.

Proof. The first claim follows from the fact that for any x € S, any sheaf £ with £, # 0 admits a
surjection to Q.. For the second claim, let & C &£ be the maximal 1-dimensional subsheaf. Since
Ext'(O,, &) — BExt'(O,,€) is injective, £ has to be supported away from S\ S. We conclude
by observing that the cokernel of the double dual map €|z, q,ppe,) = (El5\suppey)) " cannot have

support in S\ S either. O
An S-weak two-sided Hecke pattern X yields two families of induction diagrams. We define

Qohné;a = Q:Ubné;a(g) x _ Qob,s )’Zn&a = Q:Obné;a X Xasta-
Cob,,5(S) Cobps4a(S)



COHERENT SHEAVES ON SURFACES, COHAS AND DEFORMED Wj ;.- ALGEBRAS 47

Conditions (a) and (b) yield the following diagrams with Cartesian squares

o

qms a Pns,a

Q:obnzi X Qoha(g) <~ Q:Obm; a Q:oba+n5(g)

| ]

Kng,a fad Tné,a

Cob,5 X Xqo Xns:a - Xotns
(6.1)
0,>1 Do n —
CohZ1(5) x Cobyy ~=" Cobrn s Lot €oh>L ()

T

X XQ:Uhn(S(—Xnéa né%Xa no

The maps 5, and 7o ns may not be proper. Luckily, they factorise as

-
Tns,a

s
Xms o Xthm; X Sym (S) —5> Xaer;,

0(71,5 a'n.6

XnSa n5—>Xa néxsym (S)—>Xo¢ no-

Lemma 6.5. The following hold:

(a) the morphism mm; o and Ro s are quasi-smooth,
(b) the morphisms 7rmS o and ﬁix,nﬁ are proper and representable.
Proof. Quasi-smoothness is preserved by derived base change. Hence k5 is a quasi-smooth mor-
phism. Next, by construction éi—ovbi;a_né is open in V(RHom(&,,&,5)) and as the sheaves over S

parametrized by Coh>1 have no zero-dimensional subsheaves,
Ext%(Ea, Ens)|xuxcon,; = Homs(Ens, Ea ® Ks)|x.xeon,; = {0}

Statement (a) follows. In order to prove (b), we introduce for all § a full flag version of )~(m;;5 as
follows:

Xgn;g = {.7'—” CFno1 C---CFo | Fo € X5+n5, v i,fi/fi+1 S C0h5}.

Note that because X is a Hecke pattern, each F; belongs to X. There are commutative diagrams

v ol > ol
Xé";a Xné;oz X&";a—n& - Xné;oz—né
W\L \Lﬂ';ﬁ:a Qpl iﬂ';éza
n ldXt n ldxt n
Xa+n5 x S *>Xa+m§ X Sym (S) XQ,m; x S ——— Xa,m; X Sym (S)

where 7,7, ¢, ® are obvious forgetful maps and ¢ is the projection. The map ¢ being finite, it is
proper and representable. Moreover, as any length n sheaf on S admits a full flag of subsheaves,
the morphisms 7,7 are proper, representable and surjective. Thus to prove that 77;57 and 7, né
are proper and representable, it suffices to show that the same holds for the maps ¢, . In order to
show this we consider the chains of forgetful morphisms

-~ @ fad P®. P e
X&n;ﬁLXén—l;BXSg"' 1X55><Sn 1H-X5><Sn

and

=~ © =~ © > 9 Pn-1
X[Sn;ﬂ 4()) X(;n—l;lg_;'_é x S 41> e — X5;6+(n71)6 x S" L X5+n5 x S™
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Observe that the composition of these chains for § = a — nd respectively yield ¢ and ®. Thus
we are reduced to checking that each ¢; and P, is proper and representable. By definition of a
two-sided Hecke pattern, ¢; and @, are respectively obtained by base change from the maps

e >1 . gan ) >1
p €0h§;5+i6 — Qof]ﬂ+(i+1)5 X S, p €0b5;5+(n7i)6 — Q:Ohﬁ—&-(n—i)é X S

The maps p’,p’ above are respectively the projections from the projectivization P(€B+(i+1)6) and

P(ES, (_iys ® Ks[1]). Since € and £V @ Ks[1] are both of perfect amplitude [0, 1] over X x S it

follows that p’, 0’ are proper and representable (see [I9, Lemma 5.4]). The same therefore holds for
©i, ®;, and we are done. -

Let X = {X,} be an S-weak two-sided Hecke pattern. By base change from the diagrams (6.1),
we may analyze length one Hecke correspondences for X in the same fashion as for €oh. We will say
that the two-sided Hecke pattern X is regular if there exist, for each a, an open cover X, =, Uo(f)

and locally free resolutions &g @) of length two for which the condition holds when restricted
to X. Equivalently, X is regular if and only if the morphisms x§ 5 and K s are lci and of the same
dimension as their derived enhancements.

6.2. Hecke patterns and Hecke operators. Let X be an S-weak two-sided Hecke pattern. We
define

a+Z§ @ H a+n6a )

nez
Let r be the projection

r: Hi(Sym™(S), Q) — Hg(Sym"(5),Q) = Q.
We define the maps
Ma,—ns =170 (T ns)s © (Rans)' + He(Xa, Q) @ HY(Cohns, Q) = Hi(Xa-ns, Q),
Mnsa =10 (Ths a)x © (Fnsa) : HE(Cohns, Q) © Hu(Xa, Q) = Hu(Xains, Q).

These maps have cohomological degree 2(c,nd) and 2(715 «a) respectively. The proof of the fol-
lowing proposition, which is analogous to Theorem [1.9] is left to the reader.

(6.2)

Proposition 6.6. The map Mys.a+ms defines a left action Tt Y. and the map Mayms,—ns o Tight
action Uy of HG(S) on the space V(X)ayzs. If X is just a left/right S-weak Hecke pattern, we
have only the left/right action. O

Remark 6.7.

(i) Suppose that X is a usual Hecke pattern. We can write diagrams (6.1) with €ob,, 5 replaced
by €ob,,5(S). In this case the maps 76,4, Ta,ns are automatically proper for all n and «, and
the actions UE can be lifted to Ho(S).

(ii) Similarly, if X is an S-strong Hecke pattern, the maps 7,5 q, Ta,ns become proper, and so the
actions W can be further lifted to Ho(S).

(iii) For X = @oh?! and n = 1, the maps Ma,—ns, Mns,o are the negative and positive Hecke
operators defined in §2.3]

By Example we have both a left and a right Hy(S)-module structure on the space

>d
S)Z4zs = P H.(CohZL, 5. Q).
neZ
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Similarly, we have left and right Hg(S)-actions on H(g)fiz 5

6.3. Hecke patterns and tautological classes. Let X be an S-weak two-sided Hecke pattern.
Let

evy : A(S) —» H*(X,, Q)
denote the restriction of tautological classes on €ob,,(S) to X,. This defines a representation
o : A(S) X V(X)aizs = V(X)aizs

This representation of A(S) is compatible with the left and right H§(S)-actions: for any ¢ € A(S),
u € H§(S) and 2z € Vx we have

c o nmnsa(u®z) = Z( )‘6(2)| g0 () 0 u) ® (052) - 2),
ce ma,—né(u ®z) = Z( )‘5(2)| luly, —né(U(Cgl)) ou)® (cl(?) 2).

In particular, the left and right HE(S)-actions on V(X )4z extend to actions of H§(S). The proof
is identical to that of Proposition Analogous statements hold for usual and S-strong Hecke
patterns, and the actions defined in Remark [6.7]

6.4. The case of regular Hecke correspondences. Let X be a two-sided Hecke pattern. Set

Hiam( s Q) ( ) [Xd] ) VtaUt(X)aJrZJ = @ HIaUt(Xaer?v Q)
nez
We consider the linear map
v 1 F(S) - VP (X)yzs ., au"—aze XY 5, xeA).
Let Endx (F(S)) be the subspace of all endomorphisms of F(S) preserving the kernels of the maps
ev’. Propositions and yield the following.

Proposition 6.8. Let X be a regular two-sided Hecke pattern of rank r. Then there is a commu-
tative diagram of homomorphisms

<I;.:(:
- T T _
W*(S) — > Endy (F(5)) —— End(F(9))

’
ev
+
oy i

End(V*(X) . 75)

in which ®* <I>§ are algebra homomorphisms. Moreover, for any & € H*(S) and n>0, we have
DY (T (€)) = Ty (Eu ") = W (€u™ "1 N [Cohs)),
Dy (To(€)) = T (Eu™ ") = U (Eu " N [Cohs)),

and the maps (I>)i( glue into an algebra homomorphism ®x : W) (S) — End(V*™"(X)g425). When

X is S-strong, all the assumptions above hold with S replaced by S, and we get an algebra homo-
morphism ®x : WT(TT)(S) — End(V*™"(X)5126).
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When X is only an S-weak Hecke pattern, regularity is not sufficient to ensure the actions of
Wf(S) in our setup. The reason is that Wf(S ) is defined as a subalgebra of W (S); furthermore,
it is typically not generated by degree 1 elements. Because of this, we will have to postpone the
proof of an analogous statement until the end of §[7] see Corollary [7.13]

Thanks to Proposition |2.8] a result in all points analogous to Proposition holds without any
regularity assumptions if we replace V2"t by its virtual cousin

VYRt (X ) = A(S) e [X4].

6.5. Base change for Hecke patterns. Let S be a smooth surface and let X be an S-weak
two-sided Hecke pattern on S.

Proposition 6.9.
(a) Lett:S° — S be an open embedding. Then X is an S°-weak two-sided Hecke pattern on S°
and we have UE o1 = UL : HE(S®) — End(V(X)ayzs),
(b) Letj: X° — X be an open immersion and assume that X° is also an S-weak two-sided Hecke
pattern on S. Then we have a commutative diagram

v
T T
H§(5) —— Endxe (V(X)a+z5) — End(V(X)azs)

N res
Yo

End(V(X®)a+zs)

where Endxo (V(X)a1zs) is the subset of endomorphisms preserving the kernel of the map
7 V(X)agzs = V(X)aqzs-

Proof. We treat the case of U, the other being similar. Consider the diagram

’
TS5, o

Coly5(5) x Xo X Xos % Sym'(S)

.

K =~ «@
Coby(S°) X Xo =" Z —"" X5 x Sym'(S°)
where Z = X X X o1 xSymi(S) (Xatis X Sym'(5°)) and the vertical maps are all open embeddings.
Both squares are cartesian by definition of Hecke patterns. Statement (a) follows from base change
properties of the morphism ¢1), see Proposition [A.6] Now consider the diagram

#
Kls o ~ T

Coby5(S) X Xo = Z —"> X0 i15 x Sym'(S) .

I

”zs,a

Coby5(S) x Xg <% Ko % xo e Sym!(S)

Again, both squares are cartesian, and the vertical arrows are all open embeddings induced by j.
Statement (b) follows from proper base change in hyperbolic homology, see Lemma O
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7. ACTION ON HILBERT SCHEMES

In this section we construct actions of Hy(.S) and H§(.S) on the homology of the Hilbert scheme
of points on S, and we explicitly describe the action on tautological classes using the results of
We assume everywhere that the surface S is pure.

7.1. The Hilbert scheme and stack. Let Pic be the derived stack of invertible coherent sheaves
on S, BG,, — Pic the closed immersion of the substack parametrizing trivial invertible sheaves,
and Perf the derived stack of perfect complexes. There is a morphism of derived stacks QohiQ_n s
Perf; _,,5, which, composed with the perfect determinant map Perf; _,s — Pic defined in [40],

yields a morphism of derived stacks Qfoth_ms — Pic. We define the Hilbert stack of S to be the
derived fiber product

filb, = Coh?? s x BG,,
’ Pic
We write $ilb = | ], Hilb,,. Let Hilb,, be the Hilbert scheme of n points on S, whose points

parametrize ideal sheaves Z C Og and of colength n. It is the coarse moduli space of Hilb,,.

Lemma 7.1. The following hold:

(a) $Hilb, is isomorphic to its classical truncation and Hilb, is the coarse moduli space of $ilb,,
(b) there is a canonical isomorphism of stacks $Hilb,, ~ Hilb,, x BG,,.
Proof. Since the morphism Cof)fzn s — Pic is Picd-equivariant, we have
vdim($ilb,) = vdim($ilb,,) — vdim(Pic) — 1
([Os] =nd, [Os] —nd) — ([Os], [Os]) — 1
=2n—1.

The classical truncation of $ilb,, parametrizes inclusions of colength n ideal sheaves 7 — Og. It is
smooth and of dimension 2n — 1. The stack $ilb,, is quasi-smooth. Part (a) follows using the fact
that a quasi-smooth derived stack with smooth classical truncation and whose virtual dimension
coincides with that of its classical truncation is underived.

We now turn to (b). The stack $ilb,, parametrizes simple rank 1 sheaves. Hence it is a G,,,-gerbe
over its coarse moduli space Hilb,,. Fixing a splitting of this gerbe is the same as choosing a universal
sheaf U, on Hilb,, x S. But such a canonical sheaf is given by a subsheaf of O, M Og. O

Fix a smooth compactification ¢ : S — S. We define $ilb,,(S), Hilb,(S) and Pic(S) as above,
with the surface S replaced by S. Let p be the degree one line bundle on $ilb,,(S) pulled back
from BG,,. Let U, and T, ~ U, X p be the universal ideal sheaves in Coh(Hilb,(S) x S) and
Coh($ilb,,(S) x S) respectively. Let us also simply denote evg;p by ev.

Lemma 7.2. We have ¢;(p) = ev(p1([pt])) = [5c1(Zn) - [pt].
Proof. Since T, is of generic rank one, we have ¢1(Z,) = ¢1(Uy) + c1(p). We may write
ca(Zy) =evipi(pt)) @ 1+y , y€ H*(Hilb,(S),Q) @ H>°(S,Q).
Thus, given any point s in S, we have
ev(pi([pt])) = c1(p) + Cl(un|Hilbn(§)><{s})v
It remains to prove that ci(Un |y, (3)x(s3) = 0. There is a short exact sequence of sheaves

0—-U, — OHilbn(g) &O§_>7:1 —0
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over Hilb,, (S) x S, where T,, is a coherent sheaf whose restriction to {¢} x S is zero-dimensional

for any ¢ € Hilb,(S)(C). Let Hilb; (S) be the open subscheme of Hilb,,(S) parametrizing zero-
dimensional sheaves whose support does not contain s. Its complement is of codimension 2, hence
the restriction map H*(Hilb,(S),Q) — H*(Hilb; (S), Q) is an isomorphism for ¢ < 4, in particular

for ¢ = 2. The restriction of 7, to Hilb, (S) x {s} is zero. We deduce that

Cl(un‘Hﬂbn(é)x{s}) = _01(7;Z|Hilbn(§)><{s}) =0. U

As a consequence, we have an isomorphism
(7.1) H.(Hilb,,(5),Q) = H.($ilb,(S),Q) / p1([pt]) e H.($ilb,(5),Q).
We define
V(S) = P H.(Hilb,(5),Q) , V(5) =P H.(5l0,(5), Q).
We define V(S) and V(S) similarly. Unless S = S, the cohomology group H*(S, Q) vanishes, hence
the class p1([pt]) vanishes in A(S). Nevertheless, Lemma and (|7.1) hold if we use instead of

p1([pt]) the restriction to H*(Hilb,,Q) of the class pi([pt]) in H*($ilb,(S),Q). Note that this is
not in conflict with Lemma [T.16] since its conditions are satisfied for Hilb,,, but not $ilb,,.

7.2. Purity and generation of the cohomology by tautological classes. In this section we
collect some facts on purity and tautological classes on Hilbert schemes and Hilbert stacks.

Lemma 7.3. The stack $ilb,, is pure for all n.
Proof. Tt is enough to prove that Hilb,, is pure. For any partition A = (1™12™2 ...) we set
Sym*(S) = Sym™ () x Sym™2(S) x --- .
By [16, Thm. 2] there is an isomorphism of mixed Hodge structures
H™2" (Hilb,, Q) ® Q(n) = P HN (Sym* (), Q) ® QU(N)),
A

where X runs among all partitions of size n. Hence, it is enough to prove that each symmetric power
Sym™(S) is cohomologically pure. We have an isomorphism of Hodge stuctures

7« H*(Sym™(S),Q) = H*(S™,Q)®.
The lemma follows. O

Corollary 7.4. For any n, the cohomology of $ilb,, is generated by tautological classes, i.e., the

evaluation map A(S) — H*($ilb,,Q) is onto. The same holds for the evaluation map A(S) —
H*(Hilb,, Q).

Proof. The evaluation map factors through H*($ilb,,(S), Q). The map A(?)ﬁ% H*($ilb,,(9),Q) is
surjective by [36, Thm. 7.5 and Lemmal7.1] The restriction map H*($ilb,(S), Q) — H*($ilb,, Q)
is surjective since the cohomology of $ilb,, is pure, and $ilb,,(S) is its smooth compactification.

This proves the first claim. For the second claim, note that the evaluation map factors through
A(S) by Lemma [L.16] O
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By Corollary[7.4] the collection of evaluation morphisms A(S) — H.(Hilb,, Q) yields a surjective
linear map ev’ : F(S) — V(S). The same holds for the surface S. There is a commuting diagram

*

F(5) ——=F(S)

’

ev !

ev

-~

V(5) - V(S).

7.3. COHA actions on $ilb. We now endow the spaces V(5), V(S) with actions of the CO-

HAs Ho(S), Ho(S) and their compact versions. This is a reformulation of Nakajima’s classical
construction and of Lehn’s results, see [3I], [23]. Let us denote by $ilby_, (S) the flag Hilbert
stack:

Hilby_p 1k (S) ={T CZCOs:1gZ)=k—n, 1g(J) =k}
In terms of Hecke patterns of § |§|, these are precisely )?m;;[og],k(; for Xjo ks = $ilb(9).

Proposition 7.5. The stack $Hilb(S) is a regular two-sided Hecke pattern. The stack $ilb is a
reqular right S-strong and left S-weak Hecke pattern.

Proof. The proof of the fact that $ilb is a two-sided Hecke pattern is the same for S and S and
relies upon the following simple observation.

Lemma 7.6. Let 0 = F % G — T — 0 be a short exact sequence of coherent sheaves on a smooth
surface, with F,G torsion-free and T zero-dimensional. Then avV : FVV ~ GVV.

Proof. Tt suffices to consider the case when T is of length one. Applying the derived duality functor
D yields the long exact sequence

— H(DT) — H'(DG) X8 HO(DF) —» H'(DT) — .

Since DT ~ T[—2], we obtain an isomorphism G¥ = H°(DG) ~ H°(DF) = FV. Note that because
F,G are torsion-free, FV,G" are vector bundles. O

Let Z C Og be an ideal sheaf of finite colength and let 7 be a finite length sheaf. For any short
exact sequence 0 - J — Z — T — 0, J is obviously a finite colength ideal sheaf. For any short
exact sequence 0 — Z — J — T — 0 with Z € €oh=!, the sheaf 7 is torsion-free (otherwise it would
contain a one-dimensional subsheaf £, whose support would intersect S\supp(7), contradicting the
fact that Z is torsion free). Finally, by Lemma there is a canonical isomorphism JVV ~ ZVV
hence J € Hilb as wanted. The S-strongness on the right follows from Lemma

Let us now prove the regularity of these Hecke patterns. Again, the argument is the same for
S and S, we will only treat the latter case. Note that $ilby(S) is of finite type and included
in Cohfiké(g) for any k. It follows that we may find global resolutions for both & _;s; and

RHom(&5, &1, (k+1)s)[1]. We will follow the notations of § It is well-known that Hilby(S) and

Hilbg x4+1(S) are both smooth and connected, of respective dimensions 2k and 2(k + 1). Since
$ilby(S) and $Hilby x11(S) are G,,-gerbes over Hilby(S) and Hilby, ;41(S) respectively, it follows
that the former are smooth, irreducible and

(7.2) dim($ilby(S)) = 2k — 1, dim(Hilbyy1(9)) = dim($Hilbg x41(S)) = 2k + 1.

The tautological sheaf £ _js on ﬁi[bk(g) x S is of rank one. The section s is thus regular if and
only if dim(Hilby x41(5)) = dim(Hilb,(S) x S) + rk(E1,—ks) — 1 = dim(Hilb(S) x S). Likewise,
s' is regular if and only if dim(9ilby ;41(S)) = dim(Cohs(S) x Hilbk1(S)) — (6, (1 — (k + 1)8)) =
dim(Cohs(S) x $Hilby11(S)) — 1. Both of these equalities follow from ([7.2). O
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Remark 7.7. Let S be projective, and H an ample divisor. Suppose that the Assumptions A and S
of [32] hold, and fix 7 > 0, c € H?(S,Z). A proof similar to Proposition yields the regularity of
Hecke pattern M, ., which is the moduli of H-stable torsion-free sheaves on S of rank r and first
Chern class c.

For simplicity, we will denote the Hecke patterns $Hilb and ~6*»[[)(?) by $ and 9 respectively.
Proposition [6.6] yields two representations

Ul HE(S) — End(V(S)), ¥y : Ho(S) — End(V(S))
such that the subspace HS(Cohg , Q) maps into
[[Hom (H.($ilb,., Q). He ($ilbrrr, Q)) -

We get similar representations for S. Since both $ilb and §ilb(S) are right Hecke patterns, by
Remark ﬂ(l) we can lift ¥ to an action of Ho(S). By Proposition regularity of the Hecke
patterns above yields representations

O W (S) = End(V(5)) = End(V(S)), @ : Wy (S) = End(V(S)),
which for S glue to a representation W) (S) — End(V(S)).
Lemma yields an isomorphism
V(S) =V (S) /pi([pt]) e V(S)
Since the class p; ([pt]) = ¥o([pt]) belongs to the center of W (S), the representations @% descend to
representations of W*(S) on V(S) which we will simply denote by @%. Since ev,s(p1([pt])) = 0 for
any n > 0, see Example the representations \I/% descend to representations of Hy(.S) on V(.S)

=

5 Similar claims hold for the representations \Ifﬁ, P, associated

which we will simply denote by ¥
to S.

7.4. Nakajima operators and COHA actions. In this section, we briefly recall the construction
of the Nakajima operators, see [31] and [23] for details, and we relate them to the action of Hy(.5),
H§(S). We begin with the case of a proper surface S. For each k > 0 and [ > 1, we consider the
reduced subscheme

Zk+l,k(s) - Hﬂb}Hl(S) X Hﬂbk(S)

parametrizing pairs of ideal sheaves (Z,J) with J D Z for which the support supp(J/Z) consists
of a single point. There is a support map

S Zk—o—l,l(?) — g N S(j,I) = Supp(j/I)'

This allows us to view Zi1,(S) as a subscheme of Hilby;(S) x S x Hilbg(S). For any subset
I C {1,2,3} let pr be the projection to the factors in I. For each A\ € H*(S,Q) and [>1, the

Nakajima operator q;(A) € End(V (9)) is

Qi(N) ¢ H. (Hilby(5), Q) — H. (Hilbe11(5),Q) 5 ¢ pra(p3a((AN [S]) @ €) 1 [Zks1k (S))
Note that the restriction of p; to the support of Zj;  is proper. Exchanging the roles of Hilby, (S)
and Hilby,(S) and using the isomorphic subscheme Zj 4, C Hilbg(S) x S x Hilby;(S) in place

of Zy41.5, we get the operator q_;(\) € End(V(S)) given by

q-1() + Hi(Hilbe41(S), Q) = H.(Hilbr(5),Q) ¢ = (=1)'pr(p3s(AN[S]) @ ) N [Zipe41(S)])
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As proved by Nakajima in [31], §8], the operators qn(i) with A € H*(S,Q), n € Z\{0} generate
an action of the Heisenberg algebra hg modeled on H*(S,Q), see (3.19) for relations, with central

charge C' = 1. The space V(S) is isomorphic to the Fock space representation of hg; in particular,
the action of U(hg) on V(S) is faithful.

Now, assume that S is any quasi-projective smooth surface. We may apply the exact same
construction, with the following modifications: the operators q_;(\) decreasing the number of
points are labeled by classes A € H!(S,Q), and the commutator relations are defined using the

intersection pairing H*(S,Q) ® H*(S,Q) — Q, see [31] §8].

Proposition 7.8. Let S be any quasi-projective smooth surface. For any I > 0 and any A €
H*(S5,Q), n € H:(S,Q) there exist elements Ej(A) € Ho(S) and E_j(n) € HE(S) such that

Vs (Ei(N) = ai(A) and TE(E_1(p)) = a-1().-
Proof. We begin with the case of operators q_;(u). Let h: S — Syml(S) be the diagonal embedding.
Set
Cobly = Cobys Xgymi(s) S-
Let s: Qiobf; — S the projection and ¢ : Qﬁof)f&t — Cob,;5 the closed immersion. Given k21, let Ek,k_l

be the derived stack parametrizing inclusions Z C J of ideal sheaves of colength k and k£ — 1. We
have the following commutative diagram with Cartesian squares

Cobys x Hilby, <" Hilby, s ——> Hilbj,_; x Sym!(S)

tXIdT i’T i//T

()"

Cobys x $Hilby, s gk,kfl Hilb_; x S

The map kP! is quasi-smooth, because s is quasi-smooth. The class u € HS(S, Q) yields a class
s* (1) € H*(Cohjs /S, Q)
We define
E_y(p) = (=1)'t:(s* (1) N [Cohis]) € H.(Colus/ Sym'(S), Q).
The proper base change in Proposition implies that

(") (t x 1d)y = ()i (kP1)! = if' (x)]" (")
Composing with the projection r, we get the relation
V(B (w)(e) = (=)o (7) (x") (s*(W) N [Cohz])) @ ¢) . ¢ € Hu(Hilby, Q).
After pulling everything back from $ilb to Hilb, we have
(KP*)! (s (1) N [Cous]) @ €) = (N [S]) ® ¢ @ [Hilby—i]) N [Zg5—1]-
Applying the proper pushforward to the projection to the factor Hilbg_;, we get the equality
UE(E_i(p)) () = q-1(p)(0).

We now turn to the case of operators q;(\). Using the cartesian diagram

§ilby,(S) x Coby5(8) <"— Hilby, x11(S) ——= Hilbg ()

]

Hilby, x Colyg < Hilby, 11— Hilbyyy



56 A. MELLIT, A. MINETS, O. SCHIFFMANN, E. VASSEROT

in which all the vertical arrows are open embeddings, we are reduced to the case of a proper surface
S = S. For this we may repeat the arguments used in the case q_;(u) above. g

7.5. The Heisenberg subalgebra and Nakajima operators. In this paragraph, we will identify
the action of the Heisenberg subalgebra hg on V(S) with the action of Nakajima operatorb. We
begin with the case of a proper surface S, in which case we may consider both actions <IL

Proposition 7.9. For any A € H*(S,Q) and I>1 we have the following formulas in End(V (S))
(7.3) OL(Dio(N) = (=D'a(N) , @5 (Dio(N) = (V).
In particular, both representations @% of U(bg) are faithful.

Proof. Assume first that [ = 1 and consider the diagram

Cohs(S) X $Hilbjy1(S) <—— Hilbji1 1 (S) ——= Hilby(S)

le jo j3T
!’ ’
p

S x Hilby 11 (S) =——— Zi11.%(S5) Hilby,(S)

in which the vertical arrows are induced by the maps S — S x BG,, = Cohs(S) and Hilb, (S )
Hilb,,(S) x BG,, = $ilb,(S). Note that the right square is cartesian. Moreover, filt brr1k(S

) an
Zk+1.1(S), are smooth and the maps ¢, ¢’ are lci. In this situation, for ¢ € H,(Hilbg;1(S), Q) an
A€ H*(S,Q), we have

1-1(A)(e) = =L (@) (AN [S]) @ ¢)).
Note that by construction, the projection H,($ilb,(S),Q) — H,(Hilb,(S),Q) coincides with the
pullback by the morphism Hilb,,(S) — $ilb,,(S). By base change, we have
O (D1,o(N)(0) = J3(pd' AN [S] @ ¢) = plizd AN [S] @ )
= ()T (AN [S] @) = =41 (V) (ji (¢)

as wanted. Note that as the map 5%;”17;6(3) — Cohs(S) x $ilby(S) is lci, the refined Gysin
pullback is well-defined without any need to consider derived enhancements.

In order to extend the above relation to arbitrary I > 1, recall Lehn’s formulas [23, (2)]. Put

U = 7,.(T) where T is the universal subscheme on Hilb(S) x S and 7 is the projection along S.
Setting 0 = ¢; (U) we have

[0, 91(1)] = 4y (1)
[qil:l(l)a qim()‘)] = 7mqi(m+1)(>‘)7 A€ H*(ga Q)a mz1.

Observing that @ = —15(1) and comparing (3.20) with (7.5)) we deduce the statement by induction
on m. Note that the difference in signs is due to the fact that <I>§ is a right representation. O

(7.4)

(7.5)

We now turn to the case of “an arbitrary cohomologically pureﬁ surface % where (& priori) only
5 is defined. Fixing ¢ : S — S, the operators q;(A) for [ > 0 and A € H*(S5,Q) are easily seen to

4When S is not pure, the same construction yields an identification of the action of the element Dy, o(«) for
o € H . (S,Q) with the corresponding Nakajima operators g, ().

pure
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be compatible with the restriction maps from ¢* : H, (Hilbg(S), Q) — H,(Hilbg(S), Q) in the sense
that there is a commutative diagram

*

H, (Hilby,(5), Q) —— H,(Hilb,, Q)

\qu(A) \qu()\s)

H.(Hilby4(S), Q) — H.(Hilbj, Q)

We claim that the same base change formulas hold for the operators ®~ (D, 0())) for m>1. Indeed,
it follows from the cartesian diagram

Hilby(S) x Coby <—— Hilby, os1(S) ——> Hilby,1(S) x S

o]

Hilby, X Cobhy <——— Hilby j 11 ——> Hilbgyy x S

and open base change that there is a commutative diagram

H, (Hilby(5), Q) —* > H,(Hilby, Q)

\LDI,TL(A) lDl,n(AS)

*

H,(Hilby41(S),Q) —— H,(Hilbys1,Q)

for any n. Since the collection of elements D1 x(A) generates W (S), and in particular by, we
deduce the following:

Corollary 7.10. For any pure S and any pair (m,\) we have
D5 (Dm.o(A) = am () € End(V(S5)).
In particular, the representation ®g of U(hy) is faithful.
We are now in position to prove the following:

Proposition 7.11. For any pure S, (@, V(S)) is a faithful representation of W{(S) If S is
proper then the same holds for (@g,V(S)).

Proof. Let I = Ker(((bg)‘wg(s)). By definition, it is a two-sided ideal of W~ (.5). If non-zero, I must

have a non-zero intersection with U(hg) by Lemma But this would contradict Corollary
The second statement is proved in the same fashion. O

7.6. Comparison between COHAs and W-algebras. In this section we prove Theorem [B]
We will begin with the case of Hy(S), then deduce the case of H§(S) by using the morphism

¢y H5(S) — Hy(9).

Proof of Theorem@ior Hy(S). Let H{(S) be the subalgebra of H(S) generated by the subspace
H(5)[1, —] and set H{(S) = A(S) x H{(S). Results of § yield homomorphisms of algebras (we
drop the index $ilb for simplicity)

(7.6) W<(S) —2> End(V(S)) <—— Hg(S)°P
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hMoreover, <I>‘_W,(S) is injective by Proposition and for any n>0, m > 0 and A € H*(S,Q) we
ave

(7.7) U (A" N [Cohs(9)]) = @7 (Tn(N)), ¥ (m(A) = 2~ (dm(N))

(recall that Hilb is a Hecke pattern of rank r = 1). By ([7.7)), we have &~ (W~ (S)) = ¥~ (H{(S)°P).
Hence, for any n, [, we have the chain of inequalities of graded dimensions

dim(W*(S)[n,1]) < dim(¥(H,(S)[n,1])) < dim(H)(S)[n, 1]) < dim(Ho(S)[n, 1)).

But by Theorems and we have dim(W™*(S)[n,l]) = dim(Hy(S)[n,]). This forces all the
inequalities above to be equalities. As a consequence, Ho(S) = H{(S), i.e. Hy(95) is generated
in degree one, the map W, o is injective, and in fact the morphism T;,(A) — (Au™) N [Cohs(S)]
extends to the desired isomorphism of algebras ©g : W+ (S) = H(S). This isomorphism extends
to W= (S) = Ho(S). O

Proof of Theorem [B| for H§(S). Recall that S is assumed to be pure. Let us fix a smooth com-
pactification ¢ : § — S and consider the algebra homomorphism ¢, : H§(S) — Ho(S) =~ W*(S).
By Proposition $Hilb(S) is a two-sided S-weak Hecke pattern, so in particular we have a (left)

action \II% : HE(S) — End(V(S)). Moreover, by Proposition there is a commutative diagram

Yy —. ey _
H§(S) —— H(S) <—— W*(9)

vt
ot 7 ot
5 5

End(V(S))
Let us put A = \P%(HS(S)) By Proposition A contains the subalgebra generated by all
operators q_;(A) for A € H}(S,Q) as well as the collection of operators @%(Dl,m()\)) for m>0 and

A € H}(S,Q) which arise as length one (compactly supported) Hecke operators. We know that O
is an isomorphism and by Proposition , the map @% is injective. It follows from the definition

of W:“(S) that A contains @%(WJ(S)) In particular, the graded dimension of A is bounded below

by that of WJ(S ). Since by Theorem there is an equality between these graded dimensions, we
deduce that we have a chain of isomorphisms

vt il
c B B
HE(S) —2> A —— @%(Wj(S)) ~——W(9)

as desired. This also shows that the map ¢ is injective and concludes the proof of Theorem |E| for
an arbitrary pure surface S. O

Remark 7.12. The proof of Theorem [B] above goes through almost verbatim in the case when S
is equipped with an action of an algebraic torus 7. The only thing that we need in addition is
equivariants counterparts of Theorems which are provided by remarks after said theorems.

The results above now yield:
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Corollary 7.13. Let S be a pure surface, X a two-sided Hecke pattern of rank r, and X° C X an
open two-sided S-weak Hecke subpattern. Then there is a commutative diagram

Pt

N -
W5(S) — Endx (F"(5)) — End(F)(9))

lev
X

q>:t
End(Vut)

which glues into an action of Wﬁ")(S) on V¥ (X)) provided that the conditions of Lemma are
satisfied.

Proof. We have an analogous diagram for W= (S) by Proposition For the first claim, it suffices
to show that Wf(S’) lands in Endx.(F()(S)) under ®*. This follows from Proposition and
the fact that Wj(S) ~ Hg(S9) as subalgebras of WT(S). Adding tautological classes in, & priori
we get actions of WO(S) x Wf (S). However, the map F((S) — V&t factors through F((S) by
Lemma and so the two actions above glue to WJELT )(S). O

In particular, we have an action of WT(j)(S) on V(S), which descends to a faithful action of

WT(j,)red by Lemma

Remark 7.14. By Lemma any two-sided S-weak Hecke pattern which is S-strong on the right
is automatically S-strong on the left. In particular, the action of Wg ) (S) always has central charge

r = 0 and lifts to the action of WT@ (S). However, we expect that one can obtain actions of Wf;)(S)
with non-zero central charge out of Hecke patterns living in other hearts of D*Coh(S).

8. ACTION ON HIGGS BUNDLES

In this section we show how to apply the machinery developed in this paper to obtain explicit
formulas for the action of Hecke operators on the homology of the stack of Higgs bundles on a
smooth projective curve C.

8.1. The stack of Higgs bundles. Let us consider S = T*C, where C is a smooth connected
projective curve of genus g. Let S = P(Q¢ @ O¢) be the projective completion of Q¢, which is
a smooth compactification of S, and let p : S — C be the projection. We consider the (derived)
stack $iggs, , classifying Higgs sheaves on C of rank r and degree d, or equivalently via the BNR
correspondence, coherent sheaves £ on S whose support does not intersect Do, = S\S and for
which p.(€) € Coh(C) is of rank r and degree d. When r = 0 we recover the stacks Cob 5(S). We
will sometimes view a Higgs sheaf as a pair (F,0) where F € Coh(C) and 6 € Hom(F,F ® Q¢).
The correspondence is given by £ — F := p,(€) and reads as follows on the Chern classes:

co(€) =0, c1(&) =, &)=rr+1)(1-g) —d
Note that a Higgs sheaf £ is of dimension >1 is and only if it is pure of dimension 1 if and only if
the associated sheaf F on C'is a vector bundle. We will denote by Higgs, 4 the classical truncation
of Higgs, 4.
As opposed to the case of the moduli stack of coherent sheaves on a curve, the stack $iggs, ,; is
not irreducible. Luckily, as soon as g > 1, the stack .V)iggsi,d parametrizing Higgs bundles of rank
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r and degree d is irreducible. More precisely, denote by ﬁiggsffj;:l the locally closed substack of
$iggs,. ; parametrizing Higgs sheaves whose maximal torsion subsheaf is of degree .

Proposition 8.1. Assume that g > 1. Then the Zariski closures of .V)iggsﬁ?;:l for 1=20 form a
complete set of irreducible components of $)iggs, 4. Moreover the stack Higgsf;i’g:l is of dimension

2r2(g — 1)+ 1+ 1. In particular, we have dim Higgs; ; = 2r2(g— 1) + 1.

Proof. Let us first show that the stack ﬁiggﬁi‘ﬁzo of Higgs bundles of rank r and degree d is
irreducible. This can be easily deduced from [3, Section 2], we sketch the argument for the sake
of completeness. Let Bun, 4 be the stack classifying vector bundles on C' of rank r and degree
d. Tt is a smooth, irreducible stack of dimension (g — 1)r?, with a non-empty open substack
Bun;'; parametrizing stable vector bundles. The canonical morphism 7 : ﬁiggsii’;:o — Bun, 4
identifies $iggs, ; with the cotangent stack of Bun, 4. It follows that any irreducible component of
Higgs; 4 is of dimension at least 272(g — 1) + 1 (one can see this, for instance, by locally realizing
Higgs; , as a symplectic quotient). On the other hand, the morphism 7 is representable and
7~ Y(F) ~ Ext’(F, F)*. By Serre duality, dim 7~ '(F) = (g — 1)72 + dim End(F). In particular,
w‘l(?{iggs%d) is irreducible, of dimension 2(g — 1)7? + 1. To see that there is no other irreducible
component, it is enough to check that for any n > 0, the constructible substack X,, C Bun, 4
parametrizing objects whose automorphism group is of dimension n, is of codimension at least n,
i.e. of dimension at most (g — 1)r? — n. In other words, one must check that Bun,. 4 is very good
in the sense of [3, Section 1]. This is done in loc.cit. (2.10.5) for the stack Bungy, (over a curve of
genus g > 1); the proof is easily adapted to our case.

Next, let us fix I > 0. Projecting a Higgs sheaf to its vector bundle quotient and torsion
subsheaf yields a morphism ﬁiggﬁiﬁ’;‘:l — 9iggs, 4 X Higgs,; which is a stack vector bundle of rank
0 (indeed, the fiber over a pair of Higgs sheaves (V, T) is equal to R Hom(V, 7)[1] which is of perfect
amplitude [—1, 0] and of virtual rank ((r, d),10) = 0). Hence Higgsii’g:l is irreducible, of dimension
2(g — 1)r? + 1 + 1. Finally, it is easy to see that the union ﬁiggsff;gl = unglﬁiggsi'fg:" is an

open substack for any n. Since the dimensions of the irreducible locally closed substacks ﬁiggsi?gzl

tor=l

increase with [, we deduce that the Zariski closures of each $iggs,; is an irreducible component
of Higgs, 4- g
Remark 8.2.

(i) For ¢ = 0 or 1 the situation is quite different. When g = 0, the stack S’Jiggsi)d has infinitely
many irreducible components whose classical truncations are all of dimension —r2. In that case
.V)iggs,‘id coincides with the global nilpotent cone. When g = 1, the classical stack Higgs; ,
is also not irreducible, but the dimensions of the irreducible components may vary between 1

and r. Similar results hold for Sﬁiggsi?l;:l for any positive .

tor=l

(ii) For any g and [, the stack $iggs,’y " is of (virtual) dimension 2(g — 1)7%. In particular, this
dimension is independent of [.

8.2. Regularity of the Hecke pattern. For any r>1, let us put $iggs, = | |, ﬁiggﬁi’d. The aim
of this paragraph is to prove the following result:

Proposition 8.3. Assume that g > 1. Then the substack $iggs, is a reqular S-strong two-sided
Hecke pattern on S =T7*C.
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Proof. The fact that $iggs, is an S-strong two-sided Hecke pattern follows from Example
Since C' is of genus g > 1, Higgs; ; is irreducible and of dimension 2(g — 1)r2 + 1 for any d.
Let us fix d € Z and set o = (r,d),y = a+6 = (r,d + 1). We write &, for the tautological
sheaf on $iggs, x S. Let i be any finite type open substack of ﬁiggﬁfr xS, let £ — & be a
presentation of £, as a perfect complex, and let s be the associated section. The (virtual) rank

of £, being equal to zero, the (virtual) dimension of the map 75, : 9iggss.,, — 9Higgs, is equal
to 1. It follows that dim(%g;a)> dim(Higgss) + 1. We will show that s is regular by proving

that dim(%é;a)g dim(Higgs2) + 1, which will in fact imply equality. This will also give the
regularity of the section ¢, see (2.10)). For this, let us denote by

.
pHiggss, — A= @HO(C, Q8"
i=1
the Hitchin map. If a € A we write C, for the corresponding spectral curve, and we denote by
C C A x S the universal spectral curve. For i>1, we set

Ri:={(a,(x,8)) €C|p, : Ca — C is ramified of order i at (z,£)} C A x S.

We denote by Agz*f) C A the fiber over (z,¢) of the projection R; — S. Note that R>; = |_|j>1- R
is closed and R>1 =C. We set R; = (1 x 1d) 71 (R;).

Lemma 8.4. For any i>1 and (x,£) € S we have codimA(Agz’g)) =3.

Proof. Since Q¢ is base-point free, the evaluation at x € C' yields a surjective linear map i} : A —

@._, T;(C)®". The locally closed subset Agx’g) is the inverse image of the subset of degree r — 1
polynomials in one variable y € T;C vanishing with order ¢ at £&. This condition defines a subset
of codimension i. O

Since g > 1 the map p is flat by [I4, Cor. 9]. It follows that codimyiggse (u’l(AEx’g))) =1

hence codimyiggse xs(Ri)) = i. Recall the morphism 7 : ﬁ;\g_g/sz,a — Higgss, x S which sends a
filtration H C & to (G, supp(€/H)). By construction, 7 lands in the closed substack R~;. For any
Higgs bundle F whose support is ramified at (z,&) of order i we have dim(Homog (F, Oy ¢)))<i.
It follows that dim(7=1(&, (z,€)))<i — 1 if (€, (z,€))) € Ry, hence

dim(7 ™1 (Ry))< dim(R;) +i — 1 = dim(Higgss, x ) —i+i—1=dim(Higgs]) + 1.
Since this is true for all e = 1,...,r, we get the desired dimension estimate. O

Remark 8.5.

(i) Refining the above dimension estimates, one can show that for g > 1 the Hecke correspondence
[e]

Higgss . is irreducible.
(ii) When g = 0,1, $Higgs, is not a regular Hecke pattern. For instance, if ged(r,d) =1 and r > 1
then a generic (stable) Higgs sheaf & = (F,0) has a scalar Higgs field, hence the fiber of p; o

—~—0
over £ is of dimension r—1 (and thus Higgs; , has a component of dimension r+dim(Higgs;!,)
lying over Higgss',).
o

(iii) A similar argument also shows that the stacks of ﬁiggsﬁ’ of L-twisted Higgs sheaves with
deg(L) > 2(g — 1) form a regular two-sided Hecke pattern on Tot(L).
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8.3. Action on tautological classes. Unlike the case of the stack of coherent sheaves on C' [I7],
the homology of the stack of Higgs sheaves on C is not generated by tautological classes. Note,
however that by Markman’s theorem [27] this is the case after restriction to the stack of stable
Higgs sheaves in the case (r,d) = 1. This motivates the study of Hecke operators on the subspace

of tautological classes of H,($iggs®, Q). By Propostion there is an action of WT(TO)(T*C) on

Vi o Moreover since H*(S,Q) = H*(C,Q), by degree reasons we have 2 = cy = 0 and

c1Ag = 0. Analogously to Corollary H we conclude that WT(E) (T*C) ~ U(rp~c) where

r-c = @ @QDM,H(’Y)v H:{l,’}/l,...7’}/2g,W}
m,n=20 vell
(m,n)#0

with 41, ...,724 a symplectic basis of H(C, Q), with relations
[Dm,n(’}/), Dm’,n’ ('7/)] = (mnl - m/n)Dm+m’,n+n’fl (’7’7/)

for all tuples (m, m’',n,n’,~v,v").

We should stress that Corollary [£.8 does not apply in this case, because Higgs bundles have zero
rank as sheaves on T*C. This is also evidenced by the fact that, contrary to the case of Hilbert
scheme, the action of both W and WfL on V%ﬁ‘;tgso is not faithful. However, this non-faithfulness is
a feature; it is related to the existence of a certain “rational” degeneration of Wf (T*C), which was
used in [I8] to prove the P = W conjecture of de Cataldo-Hausel-Migliorini; see also § [8.4] below.

Ezample 8.6. Consider Higgs bundles of rank 1 on a curve C of genus g > 1. In this case 9Higgs; ; ~
JacC x BG,, x H°(C,Q¢). We have the Poincaré line bundle P on (Jac? x BG,,) x C, and it is
known that
a(P)=u®@l+» b,®F+1 [pt],
¥
where u is the generator of H*(BG,,,Q), and b, form the basis of H'(C,Q) C A*H'(C,Q)
H*(Jacg, Q). Starting from this observation, an easy but tedious computation shows that

illpt]) = a,  i(y) = by, do(lpt]) =1,

where the classes ¢; are obtained from the universal sheaf on a natural compactification of $iggs] ;x
T*C in accordance with § This means that the cohomology of ﬁiggsid is generated by the
classes 11. In particular, 12(1) can be expressed in terms of these classes for all d at once, so that
the action of W(T*C) on V%ai‘;gsg is not faithful. Applying Adp, (1) twice to such an expression,
we see that g2(1) expresses in terms of q;’s, and so the action of WT+ (T*C) is not faithful either.

1

8.4. One-dimensional sheaves on K3 surfaces. Let us now briefly consider another example.
Let S be a K3 surface, and fix a smooth curve C' C S of genus g > 1 which is a very ample divisor.
We denote by 9tutai, the moduli stack of coherent sheaves £ of purely 1-dimensional support on
S, such that ¢1(£) = rC. It is well known [30, [7] that 9Mutai, behaves similarly to $iggs,; in
particular, it admits a morphism Mutai, — P =D+ with properties analogous to the Hitchin
map Higgs, — A.

It follows again from Example that Mutai, is a two-sided Hecke pattern. While we expect
that Mutai,. is in fact regular, let us for simplicity’s sake restrict our attention to the subspace
Vﬁi‘éﬁm C H.(9Mutai,, Q) of classes obtained by capping the virtual fundamental class [9utai, ]y
with tautological classes. Invoking Proposition 2:8] we can apply an analogue of Proposition [6.§]
obtain an action of W(®)(S) on Vyfait. = While ¢; = 0, it is known that sy = —24[pt]. Thus we
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are placed in the semi-deformed situation of § where we can take ¢ = (— [ C?/24)~12C up
to passing to a finite extension of QQ in the coefficients.

Similarly to Example it is easy to check that the action of W((S), or indeed of W*(S) on
V%’i‘gir is not faithful. However, with an argument analogous to the one found in [I8, Section 6],

one can show that the action of W= (S) degenerates to the action of the algebra U(mlsog), where
m};’g has basis 29"\, m,n € N, A € H*(S,Q), and the Lie bracket is given by

[xmaa)\7xnabu] — ZZ' ((j’) (72) _ <l:) (T)) mernfianerfiqifl)\‘u.
i>1

One way to think of this is that tog looks like the Lie algebra of differential operators on C* with
coefficients in H*(S,Q), and so rational degeneration should look like the Lie algebra of differential
operators on C.

Note that the defining relations of mlsog imply that {x2/2,20 + 2q,0?/2} is an sly-triple, which
should control the perverse filtration on the cohomology of the stable locus of Mutai,.. We plan to
return to this in the future work.

9. SOME CONJECTURES

9.1. Action beyond tautological classes. Let us informally summarize what we proved, omit-
ting most adjectives. First, given any two-sided Hecke pattern X, we have two actions of W¥(.9)
on the Borel-Moore homology of X. Second, for a regular Hecke pattern these two actions glue to
an action of W(®)(S) on the subspace of tautological classes. Somewhat frustratingly, our methods
do not prove the relation for non-tautological classes. This reflects the fact that W () (S) is
supposed to be related to a Drinfeld double of Hy(.S), which has not yet been defined. In view of
Proposition [2.8] it also seems natural drop the regularity condition.

Conjecture 9.1. For any two-sided Hecke pattern X of rank r, there is an action of W, .(S) on
H,.(X) for appropriate x € {1,]}.

Our main theorems were proved under the assumption that S has pure cohomology, but we
conjecture that they hold without this assumption. The reason for this assumption is that we need
Vtaut(S) to be a faithful representation of U(hg) in order to compare the deformed W-algebra with
the COHA as subalgebras of End(V*(S)). We plan to address this problem in future work by

considering another family of tautological classes on Hilb(.S), obtained from the correspondence
S +—— @, —— Hilb,(95)
where @, is the universal subscheme.

9.2. W-algebras for 3-dimensional varieties. Let S be a smooth surface. The Borel-Moore
homology of the stack Coh®(S) is isomorphic to the critical cohomology H; (Coh®(M)) of the
stack of finite length sheaves Coh®(M) on the Calabi-Yau threefold M = Tots(Kg) by dimensional
reduction [2I]. For any 3-Calabi-Yau M, the space HS (M) = H7,, (Coh®(M)) is an associative
algebra, called critical COHA, at least admitting Joyce’s conjectures [I, Conjecture 5.22]. We
expect that an isomorphism similar to the one of Theorem [B] should hold for critical CoHAs as
well:

Conjecture 9.2. Let W (M) be an algebra generated by T, (\), n>0, X\ € H*(M), modulo the
relations (]ED, @— of Deﬁm'tion where we replace so by co(TM), and ¢c1Ag by Apr. Then
HE (M) = W+ (M).
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One may wonder if a similar statement can be made without Calabi-Yau condition. Our pre-
liminary computations suggest that the analogues of relations @, become significantly more
complicated. We hope to return to this in future work.
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APPENDIX A. BOREL-MOORE HOMOLOGY FOR DERIVED STACKS

A derived stack X is a functor R — X (R) assigning an oo-groupoid to every simplicial commuta-
tive ring, that satisfies étale hyperdescent. We say that X is 1-Artin if its diagonal is representable
by an algebraic space and if there is a scheme Y with a smooth and surjective morphism ¥ — X.
This morphism is called a smooth atlas for X. Unless specified otherwise, in this work all derived
stacks are supposed to be 1-Artin, and locally quotient stacks of finite type. We will work over the
ground field C.

A.1. Dualizing complexes and virtual classes. We will use the formalism introduced in [20],
to which we refer for details (see also [35]). In particular, for any derived stack X there is an
oo-category Shg(X) of constructible Q-sheaves on X, and these satisfy a six-functor formalism
(see 20, Thm. A.5]). The dualizing complex is defined as Dx = p'Q where p : X — Spec(C) is the
map to the point. The sheaf of Borel-Moore chains on X is
CEM(X,Q) = p.p'Q = p.Dx € Shg(Spec(C)) = D(Q-mod).
The Borel-Moore homology is obtained as usual by taking derived global sections H;(X,Q) =
HEM(X,Q) = H{(CBM(X,Q)). Likewise, the sheaf of cochains and the cohomology groups are
defined as
C.(XvQ):P*P*Q:p*Qxy HI(XaQ):HZ(C.(XvQ))'
These satisfy all the usual properties, see [20, Section 2]. In addition, Borel-Moore homology is
insensitive to the derived structure, in the sense that the direct image map H; (X, Q) — H;(X,Q)
is an isomorphism for any X and i. Of crucial importance for us are the notions of Gysin pullback
and virtual fundamental classes for quasi-smooth morphisms. Let f : X — Y be a quasi-smooth
morphism of dimension d. There is a map f' : H;(Y, Q) — H,24(X, Q) which is in fact induced by
a morphism
[floir : [ Dy — f'Dy[-2d] = Dx[—2d].
In particular, when X is itself quasi-smooth then the (virtual) fundamental class of X is defined
as [X] = p'(1) € Hadimy (X, Q). Note that if X is smooth and classical then [X] is just the usual
fundamental class; in general, [X] and [X¢] differ —in fact they typically live in different homological
degrees of He(X,Q) = Ho (X, Q).
We collect here some of the basic properties of derived pullbacks which we will use.
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Proposition A.1. Let f: X = Y be a quasi-smooth morphism of derived stacks. The following

hold:

(a)
(b)

()
(d)

A2

If f is an open embedding then f' = f*,

If g: Y — Z is quasi-smooth then [glvir[flvir = [9f]vir : 9% f* Dz — Dx[—2dim(f)—2dim(g)];
in particular, (gf)' = ¢'f' : H.(Z,Q) — H 49 dim(f)42 dim(g) (X, Q), and hence (YD) = [X],
Compatibility with cap product: for any ¢ € H*(Y,Q),c € H.(Y,Q) we have f'(cNc) =
Fre)n (e,

Assume furthermore that f is proper representable, of finite Tor-amplitude, so that f. :

H*(X,Q) —» H*(Y,Q) is well-defined. Then the following projection formula holds: for any
class c € H*(X,Q) and any a € H,(Y,Q), we have fi(cN f'(a)) = fu(c) Na.

Let

X/ $ Y/

be a cartesian diagram of derived stacks with f quasi-smooth and g proper. Then the proper
—1
base change formula holds: g,f = f'g: H.(Y,Q) — H.(X', Q).

Relative and hyperbolic homology. Let X be a derived stack, S a scheme and let 7 :

X — S be a morphism. Let us also denote by p : S — pt the projection. We define the space of
relative Borel-Moore chains on X/S as

CPM(X/8,Q) = mDx € D*(S),

and we define the S-hyperbolic, or simply hyperbolic homology, as

H;(X/S,Q) = H “(pm.Dx).

Ezample A.2. Taking X = S we get that H.(S/S,Q) is the usual homology of S. On the other
hand, if S is a point then H,.(X/S, Q) is the Borel-Moore homology of X.

When S is understood from the context, we might abbreviate Hf (X, Q) = H,;(X/S,Q). There is

a canonical isomorphism H¢(X Q) & HS(X,Q). Dually, we define the space of relative cochains
on X/S as

C*(X/S,Q) = 7.Qx € D*(S),

and we define the S-hyperbolic, or simply hyperbolic cohomology as

H(X/S,Q) = H'(pm.Qx).

There is a natural morphism 7* : H*(S,Q) — H*(X/S, Q).

Lemma A.3. There is a natural action N of H*(X,Q) on H.(X/S,Q):

N: H(X,Q)® H;(X/S,Q) — H;_;(X/S,Q)

for all i, j. Likewise, there is a natural cap product

N: H(X/S,Q)® H;(X,Q) — H,;_;(X/S,Q)

for alli, j.
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Proof. Consider the following diagram

X— T o9
lA li\g\
Xx X x5 29 P fpt)

where pro : S x S is the second projection. We have A*(Qx X Dx) = Dyx. The adjunction
Id - ALA* yields a map Qx X Dx — A,Dx. Applying (7 x 7). we get a morphism (7 x 7),(Qx X
Dx) — ALm.Dx, hence a map pipro. (7 X 7). (Qx XD x) — pimDx. The construction of the second
cap product is similar. O

Lemma A.4. Let X,Y be derived stacks, S a scheme. Letwx : X - S;ny : Y = Sandf: X —-Y
be morphisms such that my o f = wx. Then

(a) Assume that f is quasi-smooth of relative dimension d. Then there is a canonical morphism
f* : HZ(Y/Sa Q) — Hi+2d(X/Sa Q)7

(b) Assume that f is proper. Then there is a canonical morphism f. : H;(X/S,Q) — H;(Y/S,Q).
Moreover, the projection formula holds, i.e. for any ¢ € H*(Y,Q) and any x € H,(X/S) we
have £.(f*(c) Nz) = ¢ f.(z),

(¢) For any cartesian diagram of S-stacks

f

X ——

Pk
X/ # Y/
with f smooth and g proper we have glf! = flg: H.(Y/S,Q) — H.(X'/S,Q).

Proof. Let p: S — pt be the projection. Assume that f is quasi-smooth of dimension d. The virtual
fundamental class gives a morphism f*Dy — Dx[—2d]. Applying pirx. and using the adjunction
Id — f.f* yields a canonical morphism piry.Dy — pirx.Dx[—2d], proving (a). The construction
of the direct image morphism follows directly from the adjunction fif' — Id. We leave the proof of
the projection formula to the reader. It boils down to the commutativity of the following diagram

Qy — f+Qx 15ALA"

f*DX &QY — f*DX &f*QX — (f X f)*A*DX = A*f*]D)X
f*]D)x—ﬂDyl J{f*Dx—)]D)y
Dy X Qy S A, Dy
The proper base change statement (c) is obtained by taking compactly supported cohomology of
the proper base change over the base S. O

We will also need to consider base change operations associated to an open immersion ¢ : S° — S.
For mx : X — S a derived S-stack we set X° = X xg S° and denote by tx : X° — X and
% @ X° — S° the induced maps. We define a pushforward map ix: : H.(X°/S°,Q) — H.(X/S,Q)
as the following composition of identifications and morphisms:

. .
1 1 | is1ig—1
Ptk Dxo = pnik,ixDx = plignxDx = piisitgmx.Dx — prx.Dx.
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Ezample A.5. Assume that S is proper. Then the composition ¢*1; : HE(S°,Q) = H.(5°/5°,Q) —
H,.(5/5,Q) = H.(S,Q) — H.(5°,Q) is the canonical morphism from usual homology to Borel-
Moore homology.

Proposition A.6. Let 5°,S be as above. Let mx : X — S,my :' Y — S be two derived S-stacks,
f:X =Y a morphism of S-stacks and let f° : X° — Y° be the base change of f. The following
hold:

(a) If f is quasi-smooth then fliyy = ixif° : H.(Y°/S°,Q) — H, 9 4im(5)(X/S,Q),
(b) If f is proper then fiix) =iy1f° : H.(X°/S°,Q) = H.(Y/S,Q).

Proof. This follows from some tedious but unimaginative diagram chasing (see also [35}, §3, 4] where
similar results are proven in a dual context). O
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