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Abstract. We compute the COHA of zero-dimensional sheaves on an arbitrary smooth quasi-

projective surface S with pure cohomology, deriving an explicit presentation by generators and
relations. When S has trivial canonical bundle, this COHA is isomorphic to the enveloping algebra

of deformed trigonometric W1+∞-algebra associated to the ring H∗(S,Q). We also define a double

of this COHA, show that it acts on the homology of various moduli stacks of sheaves on S and
explicitly describe this action on the products of tautological classes. Examples include Hilbert

schemes of points on surfaces, the moduli stack of Higgs bundles on a smooth projective curve and

the moduli stack of 1-dimensional sheaves on a K3 surface in an ample class. The double COHA
is shown to contain Nakajima’s Heisenberg algebra, as well as a copy of the Virasoro algebra.

Contents

0. Introduction 1
1. Cohomological Hall algebra of zero-dimensional sheaves on a surface 7
2. Derived Hecke correspondences 15
3. Deformed W -algebras (projective surfaces) 25
4. Fock space representations of W (r)(S) 35
5. Deformed W -algebras (open surfaces) 41
6. Hecke patterns 46
7. Action on Hilbert schemes 51
8. Action on Higgs bundles 59
9. Some conjectures 63
Acknowledgements 64
Appendix A. Borel-Moore homology for derived stacks 64
References 67

0. Introduction

Let S be a smooth quasi-projective complex surface. In the pioneering work [31], Nakajima
constructed an action of a Heisenberg algebra hS on the direct sum V(S) :=

⊕
n⩾0H

∗(Hilbn(S),Q)
of cohomology groups of the Hilbert schemes of points on S. Here, hS is modeled on the cohomology
ring H∗(S,Q). What’s more, Nakajima identified V(S) with the Fock space representation of hS ,
thereby providing a very fruitful bridge between the enumerative geometry of Hilb(S) and the
representation theory of Heisenberg algebras. This has led to a flurry of remarkable results on
the topology of Hilbert schemes of points on surfaces or of instanton spaces (see, among many
others, [23], [24], [43], [41], . . . ) and has served as model for the theory of quiver varieties. Similar
constructions exist also in the K-theoretic context, see e.g. [33], and may be upgraded to the
T -equivariant setting in the presence of a torus action on S.
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Nakajima operators arise from the correspondences

Hilbn(S)× S Hilbn,n+k(S)
p //qoo Hilbn+k(S)

(and their transposes), where Hilbn,n+k(S) is the nested Hilbert scheme parametrizing pairs of
subschemes Z ⊂ Z ′ of respective lengths n, n+k. The scheme Hilbn,n+k(S) carries the tautological
vector bundle H0(S,Z ′/Z); taking cup product with the characteristic classes of these bundles
yields additional operators, generating a much larger algebra than U(hS). For S = C2 equipped
with the natural (C∗)2-action, such an algebra was studied in [39], where it was identified with
the so-called affine Yangian of gl1 (see also [28] for a different approach)1. In loc.cit. the same
algebra was shown to act on the cohomology of any of the instanton spaces, which are moduli
spaces of higher rank (framed, torsion-free) sheaves on C2. The affine Yangian of gl1 is in turn
a two-parameter deformation of the algebra W1+∞ of differential operators on the circle, and its
representation theory is strongly related to that of affine W -algebras of glr.

The aim of this paper is to provide a generalization of the results (except for the link to affine
W -algebras) to the case of an arbitrary smooth quasi-projective surface S which is cohomologically
pure (for instance, projective). This provides actions of explicit infinite-dimensional algebras that
we call deformed W1+∞-algebras on the Borel-Moore homology of many interesting moduli stacks
of coherent sheaves on S. Our approach is based on the theory of (2-dimensional) cohomological
Hall algebras, which we now succinctly recall.

0.1. Cohomological Hall algebras. Let C be a C-linear abelian category (satisfying suitable
finiteness conditions, such as in e.g. [8, § 5.1]) and let MC denote the derived stack of objects in C.
The prime example of interest for us is the category of coherent sheaves on an algebraic surface S.
Extensions in C are controled by the (Hecke) correspondence

(0.1) MC ×MC M̃C
p //qoo MC

where M̃C is the stack of short exact sequences in C. Here p, resp. q associate to a sequence
its middle, resp. extreme terms. The properties of the maps p, q depend heavily on the global
dimension of C; crucially, q is quasi-smooth when C is of global dimension at most 2. When in
addition p is proper, the composition p∗q

! : H∗(MC ,Q)⊗2 → H∗(MC ,Q) yields a structure of an
associative algebra on the Borel-Moore homology H∗(MC ,Q); this is the cohomological Hall algebra
(COHA) of C. Furthermore, any locally closed susbtack M◦

C ⊂ MC for which (0.1) restricts to a
correspondence

MC ×M◦
C M̃◦

C
p //qoo M◦

C

gives rise to a H∗(MC ,Q)-module structure on H∗(M
◦
C ,Q) (such substacks are called Hecke patterns

in [22]). In other words, the same algebra H∗(MC ,Q) acts simultaneously on the homology of all
Hecke patterns. Hecke patterns may for instance be constructed using stability conditions and/or
framings. This construction appears in [38] (in the K-theoretic setting) and in [39] in the context
of quiver varieties and instanton spaces, where it gives rise to Yangians of Kac-Moody algebras, a
family of infinite-dimensional quantum groups. The construction of the COHA was later extended
to much more general contexts, see e.g. [44],[29], [37], [4], [22], [45], [34],. . .

The main object of study of this paper is the COHA of the category of zero-dimensional coherent
sheaves on a smooth surface S. Such COHAs were previously considered in [29], [22] and, in the
K-theoretical context, in [45] and [33], where quadratic relations (of Ding-Iohara type) between
degree one generators were found and actions on smooth moduli spaces were constructed. Here, we

1the K-theoretic version was considered in [38] where it was identified with the elliptic Hall algebra (see also [13])
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focus on the Borel-Moore homology COHA and fully determine this COHA under the assumption
that S has a pure cohomology. As far as we are aware, the only case in which this COHA was fully
determined before was S = A2 with a torus action, see [6], [39].

0.2. Deformed W1+∞-algebras associated to a surface. In § 3 and § 5, to which we refer
for details, we introduce and begin the study of a family of associative algebras W (S) attached to
smooth, pure surfaces S. Let us begin by assuming that S is proper. Let c1, c2 be the Chern
classes of S and s2 = c21 − c2. The algebra W (c)(S) is generated by collections of elements
{T±

n (λ), ψn(λ) |n⩾0, λ ∈ H∗(S,Q)} and a central element c modulo relations among which the
most important ones are

[ψm(λ), T±
n (µ)] = ±mT±

m+n−1(λµ),

[T±
m(λ), T±

n+3(µ)]− 3[T±
m+1(λ), T

±
n+2(µ)] + 3[T±

m+2(λ), T
±
n+1(µ)]− [T±

m+3(λ), T
±
n (µ)]

− [T±
m(λ), T±

n+1(s2µ)] + [T±
m+1(λ), T

±
n (s2µ)]± {T±

m , T
±
n }(c1∆Sλµ) = 0,∑

w∈S3

w · [T±
m3

(λ3), [T
±
m2

(λ2), T
±
m1+1(λ1)]] = 0

as well as the double relation (3.17), which expresses the commutators [T+
m(λ), T−

m′(µ)] as poly-
nomials in ψn’s. We denote by W±(S), resp. W 0(S) the subalgebras generated by {T±

n (λ)} and
{ψn(λ), c} respectively. The algebra W (c)(S) is Z × N-graded, where T±

n (λ), ψn(λ) are put in
degrees (±1, 2n− 2 + deg(λ)) and (0, 2n− 2 + deg(λ)) respectively.

0.3. Main results. Let us now describe our main results, referring to the body of the text for
details:

Theorem A (Theorem 3.2, Propositions 3.12, 3.15, 3.20). Let S be a smooth and proper surface.
The following hold:

(a) There is a triangular decomposition W (c)(S) ≃W−(S)⊗W 0(S)⊗W+(S),
(b) The graded character of W+(S) is given by

PW+(S)(z, w) = Exp

(
PS(z)z

−2w

(1− z2)(1− w)

)
where PS(z) is the Poincaré polynomial of S,

(c) There are embeddings U(hS) ↪→W (c)(S) and U(VirS) ↪→W (c)(S), where hS and VirS are the
Heisenberg and Virasoro algebras modeled on H∗(S,Q); the respective central charges of hS
and VirS as functions of λ, µ ∈ H∗(S) are given by

Ch = c

∫
S

λµ, ηVir = c

(∫
S

c2λµ− (1− c2)

∫
S

c21λµ+ 2ψ0(c1λµ)

)
.

When the surface S has trivial canonical bundle, the W -algebra turns out to be the enveloping
algebra of a Lie algebra. More precisely:

Theorem A′ (Theorem 3.5). Let S be a proper surface, such that c1 = 0 and s2 = q2 for some
q ∈ H2(S). Then

W+(S) ≃ U(w+(S)),

where w+(S) is the Lie algebra spanned by elements zmDnλ with m⩾1, n⩾0, λ ∈ H∗(S,Q), subject
to the relations

[zmDnλ , zm
′
Dn′

µ] = zm+m′ (D +m′q)nDn′ −Dn(D +mq)n
′

q
λµ.
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We also construct a natural representation F(r)(S) of W (r)(S) := W (c)(S)|c=r for any integer
r⩾0, which we call the level r Fock space. As a vector space,

F(r)(S) := Λ(S)[s, s−1]|r=r

where Λ(S) = Q[pn(λ), r | n⩾0, λ ∈ H∗(S,Q)]. The space Λ(S) may be understood as the ring of
universal tautological classes on the stack Coh(S) of coherent sheaves on S, see § 1.6. We prove in
§ 4 the following

Theorem A′′ (Corollary 4.7, Remark 2.10). For any r ∈ N, there is an action of W (r)(S) on
F(r)(S) via Fourier modes of the vertex operators

Θ+(z) = exp
( ∑
γ;k⩾1

pk
k
(γ)⊗ γ∗s−k

)
[s<r]

exp
(
−
∑
γ;n⩾0

∂

∂κn(γ)
⊗ γsn

)
Θ−(z) = exp

(
−
∑
γ;k⩾1

τc1pk
k

(γ)⊗ γ∗s−k
)
[s<−r]

exp
( ∑
γ;n⩾0

∂

∂κn(γ)
⊗ γsn

)
where {γ}, {γ∗} are dual bases of H∗(S,Q) and where the elements {κn(λ)} are related to the
{pk(λ)} through relation (2.24) involving the Todd class of S, and where τc1 is a certain shift
automorphism of Λ(S), see § 0.4. This representation is faithful for r > 0, but is neither irreducible
nor highest weight.

In the case of open surfaces S, we may replace H∗(S,Q) by either H∗(S,Q) or H∗
c (S,Q), the

cohomology with compact supports. It turns out that both are important for applications. This

leads us to define not one, but four versions W
(c)
↑↑ (S),W

(c)
↑↓ (S),W

(c)
↓↓ (S) and W

(c)
↓↑ (S) of deformed

W1+∞-algebra, depending on a choice of H∗ or H∗
c for each half W+(S),W−(S). Assuming that

S is pure, we extend Theorems A, A′ and A′′ to the setup of open surfaces, see § 5. All the above
results continue to hold in the presence of a torus T acting on S, where we now consider all spaces
as (free) modules over H∗(BT ). Finally, from the construction, it is immediate that the assignment

S 7→W
(c)
↑↑ (S) is functorial with respect to open immersions; similar result holds for the other types

of W -algebras, see § 5.

Let us now return to COHAs. Let S be smooth and cohomologically pure, and let Cohnδ denote
the derived stack of length n coherent sheaves on S. The COHAs which we are interested in are

H0(S) :=
⊕
n⩾0

H∗(Cohnδ,Q)

and its ’compactly supported’ version Hc
0(S) :=

⊕
n⩾0H∗(Cohnδ/Sym

n(S),Q), which is defined

using hyperbolic Borel-Moore homology with respect to the support map Cohnδ → Symn(S), see
Appendix A for definitions. Both H0(S) and Hc

0(S) are functorial with respect to open immersions.

Theorem B (§ 7.6). There are canonical algebra isomorphisms ΘS : H0(S) ≃ W+
↑ (S) and ΘcS :

Hc
0(S) ≃W+

↓ (S). In particular, H0(S) is spherically generated.

These isomorphisms are compatible with open immersions. We may include the ring of universal
tautological classes Λ(S) by forming semi-direct products

H̃
(c)
0 (S) = Λ(S)⋉H

(c)
0 (S), H̃c

0(S) = Λ(S)⋉Hc
0(S).

The isomorphisms above extend to H̃0(S) ≃W⩾
↑ (S) and H̃c

0(S) ≃W
⩾
↓ (S). The above results hold

mutatis mutandis in the presence of a torus T acting on S.

Corollary. If c1∆S = 0 and there exists q ∈ H2(S,Q) such that q2 = s2, then H0(S) ≃ U(w+(S)).
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This corollary is in accordance with the general philosophy of Donaldson-Thomas theory for 2
Calabi-Yau categories. In particular, w+(S) is the Lie algebra constructed by Davison-Kinjo [12];
as a vector space, it is isomorphic to gBPS[u], where gBPS is the BPS Lie algebra of Coh0(S) which
was determined in [8].

Our proof of Theorem B involves the construction and comparison of suitable faithful repre-
sentations of both W⩾(S) and Hc

0(S). Following [22] (see also [11]) we introduce several notions
of Hecke patterns in § 6. We deduce from the general formalism of COHAs that a left/right S-
strong, resp. S-weak Hecke pattern gives rise to a left/right action of H0(S), resp. Hc

0(S) on
V(X) :=

⊕
αH∗(Xα,Q).

We have evaluation map ev : Λ(S) → H∗(X,Q). For any class α ∈
⊕

iH
2i(S,Q), we let [Xα],

resp. [Xcl
α ] be the virtual, resp. classical fundamental class of Xα, and we denote by

Vvtaut(X) :=
⊕
α

ev(Λ(S)) ∩ [Xα], Vtaut(X) :=
⊕
α

ev(Λ(S)) ∩ [Xcl
α ],

the subspace of virtual resp. classical tautological classes in V(X). Abusing notation, we denote
the induced maps from the Fock space F(r) to Vvtaut(X), Vtaut(X) by ev as well. We collect
properties of Hecke patterns in the following theorem:

Theorem C (Proposition 6.8, Corollary 7.13). The following hold:

(a) Let X be a left S-strong Hecke pattern of rank r. The action Ψ+
X preserves Vvtaut(X) and

there is a commutative diagram

W+
↑ (S)⊗ F(r)

ΘS⊗ev

��

Φ+
// F(r)(S)

ev

��
H+

0 (S)⊗Vvtaut(X)
Ψ+

X // Vvtaut(X)

(0.2)

Similar results hold for S-weak Hecke patterns, and for right Hecke patterns.
(b) Let X be a two-sided Hecke pattern, so that we have both an action of W+

↑ (S) (or W+
↓ (S)) and

of W−
↑ (S) (or W−

↓ (S)) on VX . Then (0.2) extends to an action of W (r)(S) on VX , fitting
in a commutative diagram

W (r)(S)⊗ F(r)

ΦX

''

Φ // F(r)(S)

ev

��
Vvtaut(X)

Here the appropriate version of W (r)(S) depends on whether X is (left or right) S-strong or
S-weak.

(c) Assuming that X satisfies the regularity condition (2.10), the results of (b-c) remain valid if
we replace Vvtaut(X) with Vtaut(X).

We conjecture that in the case of two-sided Hecke patterns of rank r, the action of W (r)(S)
on Vvtaut(X) extends to an action on the whole of V(X). The approach which we take here is,
however, restricted to tautological classes. One may hope to apply the machinery of [11] to this
problem.

We provide in § 7 and § 8 some examples of regular two-sided Hecke patterns such as Hilbert
schemes of points on S (in which case our results complement those of Lehn [23]) and stacks of
Higgs bundles on a smooth projective curve. The action of the W -algebra on the homology of the
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stack of Higgs bundles is an essential ingredient in the proof of the P = W conjecture which is
given in [18]. Other examples include moduli of instantons and moduli stacks of one-dimensional
sheaves on K3 surfaces, with possible applications to χ-independence problems.

The paper is organized as follows. In § 1 we define various forms of COHAs of sheaves on a
smooth surface S. The formulas for action of length one Hecke correspondences on tautological
classes are established in § 2. We introduce and study deformed W -algebras in §§ 3-5. Theorem C
is proven in § 6. We zoom in on the action of W -algebras on Hilbert schemes of points in § 7,
which results in a proof of Theorem B. Further examples of Hecke patterns, such as moduli of
Higgs bundles, are considered in § 8. Finally, § 9 contains some natural conjectures, concerning in
particular a possible extension of our results to threefolds. Although we use the language of derived
algebraic geometry, our approach throughout is ’low-tech’ as we work with absolute (rather than
relative) Borel-Moore homology. We believe that it should be possible to lift our results to the
setting of local COHAs in [8] (i.e. to adequate sheaves on the space Sym•(S)).

0.4. Notations. Throughout the paper, all geometric objects are defined over the base field C.
Stacks. In this paper, a (derived) stack will mean a 1-Artin (derived) stack which is locally a
quotient stack of finite type. Let cl : Xcl → X be the classical truncation of a derived stack
X. Restriction to Xcl will be often indicated by a superscript (−)cl. For instance, for any object
E ∈ D(Coh(X)) we set Ecl = cl∗E . If E is a perfect complex of finite amplitude on a derived stack
X then we define the total space of E to be V(E) = Spec Sym(E∨). We will make use of a similar
notion of projectivization P(E), studied by Q. Jiang [19]. Note that if V is a finite-dimensional
vector space then P(V ) parametrizes hyperplanes of V . Unless specifically mentioned, all fiber
products and tensor products are derived.

Borel-Moore homology. For a stack X, there is a well-defined notion of cohomology or Borel-
Moore homology with Q-coefficients which we will denote by H∗(X,Q) and H∗(X,Q) respectively,
see e.g. [22]. When the stack X is pure dimensional we usually write dX for its dimension and
[X] ∈ H2dX (X,Q) for its fundamental class. If X is smooth then there is an isomorphism of vector
spaces Hi(X,Q) = H2dX−i(X,Q) such that c 7→ c∩ [X]. For a derived stack X there is also a well-
behaved notion of cohomologyH∗(X,Q) and of Borel-Moore homologyH∗(X,Q), see [20], [35]. The
push-forward map cl∗ yields isomorphisms H∗(X,Q) = H∗(Xcl,Q) and H∗(X,Q) = H∗(X

cl,Q);
we will often identify the two spaces without mention. Note, however that some operators on
cohomology or Borel-Moore homology do depend on the derived structure. We collect some results
of that theory in Appendix A.

Algebras. The degree of an homogeneous element a of a graded vector space will be denoted by |a|.
When considering superalgebras, we apply the rule of sign for the multiplication of tensor products.
In particular, we denote by [−,−] the super-commutator [a, b] = ab − (−1)|a|·|b|ba, and by {−,−}
the anti-super-commutator [a, b] = ab+ (−1)|a|·|b|ba.
Symmetric functions. Let Λ be the Macdonald ring of symmetric functions, which is given by

Λ = Sym(tQ[t]) = Q[e1, e2, . . .].

We will use standard notations for the elements in Λ, as in [26], and will sometimes denote the
unit of Λ by e0 or h0. It is convenient to add a formal element p0 of degree 0; we will denote by
Λ′ = Λ⊗C[p0] the resulting algebra. The specialization maps πN : Λ→ C[x1, x2, . . . , xN ]SN extend
to Λ′ by setting πN (p0) = N . We will occasionally use the following shift operation: for c a formal
(even) variable, there is an algebra map

τc : Λ
′ → Λ′[c], τcF (x1, x2, . . .) = F (x1 + c, x2 + c, . . .).(0.3)
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For instance,

τc(pk) =

k∑
i=0

(
k

i

)
pic

k−i, τc(ek) =

k∑
i=0

(
p0 − i
k − i

)
eic

k−i

for any k⩾0. For E a coherent sheaf on a stack X and f = F (e1, e2, . . .) ∈ Λ we define

f(E) = F (c1(E), c2(E), . . .) ∈ H∗(X,Q).(0.4)

We extend this to elements f ∈ Λ′ by setting p0(E) = rk(E).

1. Cohomological Hall algebra of zero-dimensional sheaves on a surface

1.1. The stack of coherent sheaves on a surface S. Let S be a smooth connected quasi-
projective surface. Unless mentioned otherwise, we will make the following assumption:

The surface S has pure cohomology.

We denote by t1, t2 the Chern roots of S, so that the Chern classes of S are c1 = t1 + t2, c2 = t1t2
and the Todd class is

(1.1) TdS = t1t2/(1− e−t1)(1− e−t2).

We will sometimes use its graded version

TdS(x) = x2t1t2/(1− e−t1x)(1− e−t2x) =
∑
k⩾0

Td
(k)
S xk.

Set s2 = t21 + t1t2 + t22. We will also consider the cohomology with compact support H∗
c (S,Q).

Recall that there is an algebra morphism H∗
c (S,Q)→ H∗(S,Q) and cup product maps Hi

c(S,Q)⊗
Hj(S,Q)→ Hi+j

c (S,Q). We set Kc
0(S)Q =

⊕
iH

2i
c (S,Q) and denote by

⟨α, β⟩ =
∫
S

α∨ ∪ β ∪ TdS

the Mukai pairing on Kc
0(S)Q, where if α =

∑
k αk with αk ∈ H2k

c (S,Q) then α∨ =
∑
k(−1)kαk.

Taking the generic rank of a coherent sheaf yields a linear map rk : Kc
0(S)Q → Q. The class of

the structure sheaf of a point will be denoted by δ. Note that for any α,

(1.2) ⟨α, δ⟩ = ⟨δ, α⟩ = rk(α).

Let us pick some α ∈ Kc
0(S)Q. Consider the derived stack Cohα(S) parametrizing coherent

sheaves E ∈ Coh(S) with proper support and Chern character ch(E) = α, see e.g. [34]. Its un-
derlying classical stack will be denoted Cohα(S). When the surface S is understood, we may
abbreviate Cohα = Cohα(S) and likewise for Cohα. In addition, when α = r[OS ] + α′, where
α′ ∈

⊕
i>0H

2i
c (S,Q), we may write Cohr,α′ instead of Cohα. Note that Cohα is empty for rk(α) ̸= 0

if S is not complete. The stack Cohα is singular in general, but Cohα is quasi-smooth and of virtual
dimension dα = −⟨α, α⟩. Unless α ∈ Nδ, the stack Cohα is of infinite type. However, it may always
be covered by open global quotient stacks which are of finite type. We say that a coherent sheaf E
on S is of dimension ⩾d, for d = 1, 2 if it contains no subsheaf with support of dimension strictly
less than d. Let Coh⩾dα be the stack parametrizing dimension ⩾d sheaves in Cohα; it is open in

Cohα. We denote by Eα ∈ Coh(Cohα × S) the tautological sheaf. Its restriction to Coh⩾d × S will
be denoted E⩾dα .
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1.2. The stack of zero-dimensional sheaves. For d ∈ N, the stack Cohdδ is the derived moduli
stack of (zero-dimensional) sheaves on S of length d. Its underlying classical stack Cohdδ is irre-
ducible of dimension d while Cohdδ is of virtual dimension −⟨dδ, dδ⟩ = 0. Let us set Coh0 =

⊔
d Cohdδ

and Coh0 = Coh0,cl.

Example 1.1.

(a) If S = A2, then Cohdδ is the commuting stack Cgld = {(x, y) ∈ gl2d ; [x, y] = 0}/GLd.
(b) When S = Tot(L) is the total space of a line bundle L over a smooth curve C, Cohdδ is the

classical stack of L-twisted Higgs sheaves of length d, i.e. it parametrizes pairs (F , θ) with F
a length d torsion sheaf on C and θ ∈ Hom(F ,F ⊗ L).

Let ∆S : S → S × S be the diagonal map and

∆ = ∆S∗(1) ∈ H∗(S × S,Q)

be the class of the diagonal. Let ρ ∈ Coh(BGm) be the linear character and u = c1(ρ). We have

Cohδ ≃ S ×BGm, Eδ = ∆S∗(OS)⊠ ρ ∈ Coh(S × S ×BGm),(1.3)

H∗(Cohδ,Q) = H∗(S,Q)[u] , ch(Eδ) = ∆ ∪ eu ∪ Td−1
S .(1.4)

Since Cohδ is smooth, there is an isomorphism

Hi(Cohδ,Q) = H2−i(Cohδ,Q) , c 7→ c ∩ [Cohδ].(1.5)

We will sometimes assume that the surface S is acted upon by a torus T . In this case there is an
induced action of T on the stacks Cohdδ, and all homology groups acquire module structure over
RT = H∗(BT,Q).

1.3. The COHA of zero-dimensional sheaves. We now introduce, following [22, §4], the co-
homological Hall algebra of zero-dimensional sheaves on S. See also [45] for another construction
of this COHA, [29] for the case of the cotangent bundle of a curve, and [39] for the case of S = A2.
We consider the Z2-graded vector space

H0(S) = H∗(Coh0,Q), H0(S)[l, n] = Hn(Cohlδ,Q).

Let us briefly recall the definition of the COHA product. Fix α = aδ, β = bδ and γ = α + β. Let

C̃ohα;β be the derived stack parametrizing short exact sequences 0 → T ′ → T → T ′′ → 0 with
T , T ′, T ′′ respectively in Cohγ ,Cohβ and Cohα. There is a convolution diagram

(1.6) Cohα × Cohβ C̃ohα;β
qα,βoo pα,β // Cohγ

in which the maps pα,β and qα,β assign to the sequence 0→ T ′ → T → T ′′ → 0 the object T and
the pair of objects (T ′′, T ′) respectively. The classical truncation of that diagram reads

(1.7) Cohα × Cohβ C̃ohα;β
qclα,βoo

pclα,β // Cohγ .

The map pα,β is proper and representable. The map qα,β is neither representable nor smooth, but
it is quasi-smooth. More precisely, consider the complex

Cα,β = RHomS(Eα, Eβ)[1] = Rp12∗RHom(p∗13Eα, p∗23Eβ)[1]
of perfect amplitude [−1, 1]. Here pij stands for the projection from Cohα × Cohβ × S to the i-th
and j-th components. There is a canonical isomorphism of derived stacks over Cohα × Cohβ

V(Cα,β) ≃ C̃ohα,β
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(recall that V(C•) stands for the total space of a complex C•). We may thus define a virtual pullback
morphism

q!α,β : Hi(Cohα × Cohβ ,Q)→ Hi−2⟨α,β⟩(C̃ohα;β ,Q).

It is useful to rephrase this construction in classical terms. Let us fix an explicit representative of
the complex Cα,β

0→ V−1 → V0 → V1 → 0.

Let Cclα,β be the restriction of Cα,β to Cohα × Cohβ . Let τ⩽0 and (−)⩽0 be the standard and stupid

truncations. By [22], there is an isomorphism

V(τ⩽0(Cclα,β)) = C̃ohα,β .
This yields a factorization

V(Ccl,⩽0
α,β )

π

��

V(τ⩽0Cclα,β) ≃ C̃ohα;β

qα,β

vv

ιoo

Cohα × Cohβ
The map π is a linear stack, in particular it is smooth. Hence it yields an isomorphism

π∗ : Hi(Cohα × Cohβ ,Q)→ Hi+2d0(V(C
cl,⩽0
α,β ),Q).

Further, there is a refined Gysin pullback

ι! : Hi(V(Ccl,⩽0
α,β ),Q)→ Hi−2d1(C̃ohα,β ,Q).

Here d0 and d1 are the ranks of C⩽0
α,β and V1, so d0 − d1 = −⟨α, β⟩ is the virtual rank of Cclα,β . We

have q!α,β = ι! ◦ π∗, see [20]. In particular, the morphism ι! ◦ π∗ thus defined is independent of the

presentation of the complex C (see [22, § 3] for a direct proof). We set

⋆ = (pα,β)∗ ◦ q!α,β : H∗(Cohα,Q)⊗H∗(Cohβ ,Q) = H∗(Cohα × Cohβ ,Q)→ H∗−2⟨α,β⟩(Cohγ ,Q).

Theorem 1.2 ([22, thm. 4.4.2], [45]). The convolution product ⋆ defines on H0(S) a structure of
a graded associative algebra.

Remark 1.3. Note that ⟨δ, δ⟩ = 0, hence the product in H0(S) is degree-preserving.

In the presence of a torus T , we can likewise consider the T -equivariant COHA which is an
algebra with underlying vector space given by

HT
0 (S) = HT

∗ (Coh0,Q).

An open inclusion i : S → S′ of smooth surfaces gives an open inclusion of derived stacks
i : Coh0(S)→ Coh0(S′) and thus to a map i∗ : H0(S

′)→ H0(S).

Lemma 1.4. The map i∗ is an algebra homomorphism.

Proof. The stack Cohdδ(S) is an open substack of Cohdδ(S
′) for any d, and the convolution diagram

used to define the product is compatible with open base change. □

We will need the following result on the Hilbert series of H0(S). We define

hH0(S)(z, w) =
∑
l,n

dim(H0(S)[l, n])(−z)nwl.

Let hS(z) =
∑
n dim(Hn(S,Q))(−z)n be the Borel-Moore homology Poincaré polynomial of S.
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Theorem 1.5 ([22, thm. 7.1.6]). Let q, t be formal variables of respective degrees [0,−2] and [1, 0].
There is a canonical isomorphism of graded vector spaces

H0(S) = Sym (H∗(S ×BGm,Q)⊗ qtQ[t])) = Sym (H∗(S,Q)⊗ qtQ[q, t]) .

In particular, the Hilbert series of H0(S) is given by

hH0(S)(z, w) = Exp

(
hS(z)z

−2w

(1− z−2)(1− w)

)
where Exp is the plethystic exponential.

Theorem 1.5 is proved for an arbitrary smooth surface S using factorization homology techniques,
which do not extend to the T -equivariant setting. However, in [9] the question of equivariant
formality is treated in the much greater generality of relative COHAs, which includes our COHAs
by [8, §11.1]. In particular, as soon as S is T -equivariantly formal, H0(S) is a free RT -module
of (graded) rank given by hH0(S)(z, w) by [9, Theorems 11.5, 11.6]. By [15, Theorem 14.1] this
assumption is satisfied for S cohomologically pure.

1.4. The compactly supported COHA of zero dimensional sheaves. When S is not proper,
we will also consider a variant of H0(S) defined using hyperbolic Borel-Moore homology, see Ap-
pendix A.1 its definition and properties. More precisely, set Sym(S) =

⊔
n Sym

n(S) and let

supp : Coh0 → Sym(S) be the support map, π : Sym(S)→ pt projection to a point. We set

Hc
0(S) =

⊕
d

Hc
∗(Cohdδ,Q),

Hc
∗(Cohdδ,Q) = H∗(Cohdδ/ Sym

d(S),Q) := H−∗(π!supp∗DCohdδ
).

The map H∗
c (S,Q)[u]→ Hc

∗(Cohδ,Q) given by x 7→ x ∩ [Cohδ] is an isomorphism. Here we use the
natural map H∗

c (S,Q)⊗H∗(S,Q)→ Hc
∗(S,Q). We complete the induction diagram by introducing

the support maps

Cohmδ × Cohnδ

supp

��

C̃ohmδ;nδ
qm,noo pm,n // Coh(m+n)δ

supp

��
Symm(S)× Symn(S)

⊕ // Symm+n(S)

(1.8)

where ⊕ is the direct sum (a finite map), which allows us to view Cohmδ × Cohnδ and C̃ohmδ;nδ as

derived stacks over Symm+n(S). Note that

H∗(Cohmδ × Cohnδ/ Symm+n(S),Q) = H∗(Cohmδ/Symm(S),Q)⊗H∗(Cohnδ/Symn(S),Q).

We may now define the convolution product

⋆ = (pm,n)! ◦ q∗m,n : Hc
∗(Cohmδ,Q)⊗Hc

∗(Cohnδ,Q) = Hc
∗(Cohmδ × Cohnδ,Q)→ Hc

∗(Coh(m+n)δ,Q).

Proposition 1.6. The convolution product ⋆ endows Hc
0(S) with the structure of a graded asso-

ciative algebra.

Proof. The proof is in all points analogous to the case of the H0(S). Alternatively, one can observe
that Hc

0(S) is obtained by taking compactly supported cohomology of sheaf-theoretical COHA
supp∗DCoh0 on Sym(S), see [8]. □
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If the surface S is projective, then we have Hc
0(S) = H0(S). For each open embedding i : S → S′

we have an open embedding of derived stacks i : Cohnδ → Cohnδ(S
′). Hence, there are pushforward

maps i! : H
c
∗(Cohnδ,Q)→ Hc

∗(Cohnδ(S
′),Q), which combine to i! : H

c
0(S)→ Hc

0(S
′).

Lemma 1.7. The map i! : H
c
0(S)→ Hc

0(S
′) is an algebra morphism.

Proof. Quasi-smooth pullback and proper pushforward in hyperbolic homology are compatible with
open base change, see Proposition A.6. □

If ι : S → S is a smooth compactification of S, Lemmas 1.4, 1.7 yield algebra homomorphisms

(1.9) Hc
0(S)

ι! // Hc
0(S) = H0(S)

ι∗ // H0(S).

The composition ι∗ι! : H
c
0(S)→ H0(S) is independent of the choice of S. We will denote it by ϕS .

Let hcS(z) =
∑
n dim(Hc

n(S,Q))(−z)n be the homology Poincaré polynomial of S. We will need
the following variant of Theorem 1.5, which can be found in [9, Corollary 7.11].

Theorem 1.8. There is a canonical isomorphism of graded vector spaces

Hc
0(S) = Sym (Hc

∗(S ×BGm,Q)⊗ qtQ[t])) = Sym (Hc
∗(S,Q)⊗ qtQ[q, t]) .

In particular, the Hilbert series of Hc
0(S) is given by

hHc
0(S)

(z, w) = Exp

(
hcS(z)z

−2w

(1− z−2)(1− w)

)
.

As explained after Theorem 1.5, a T -equivariant version of Theorem 1.8 follows from [9, §11]
provided that S is pure.

1.5. The COHA of properly supported sheaves. Following [22, §4], one can extend the con-
struction of COHA product to the stack of properly supported sheaves on S. We set

H(S) =
⊕
α

H∗(Cohα,Q).

As in the case of zero-dimensional sheaves, for any α, β ∈ Kc
0(S)Q there is an induction diagram

(1.10) Cohα × Cohβ
qα,β←−−− C̃ohα;β

pα,β−−−→ Cohγ ,

with qα,β quasi-smooth and pα,β proper.

Theorem 1.9 ([22, thm. 4.4.2]). Convolution with respect to the correspondences (1.10) for all
α, β ∈ Kc

0(S)Q endows the space H(S) with the structure of a graded associative algebra. The
multiplication H∗(Cohα,Q)⊗H∗(Cohβ ,Q)→ H∗(Cohα+β ,Q) is of homological degree −2⟨α, β⟩.

Assume that i : S → S′ is an open immersion into another smooth surface S′. This gives rise to
an open immersion i : Coh(S)→ Coh(S′) and hence to a restriction morphism i∗ : H(S′)→ H(S).
The proof of Lemma 1.4 implies that the map i∗ is an algebra homomorphism.

Remark 1.10. There is no higher rank analog of Hc
0(S) because in general there is no useful map

from Coh to a coarse moduli space.
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1.6. Tautological classes. Let us now study a family of cohomology classes chi(λ) for i⩾1 and
λ ∈ H∗(S,Q) on each Cohα.

Fix a smooth compactification ι : S → S of S. Since S is pure, the restriction map ι∗ :
H∗(S,Q) → H∗(S,Q) is surjective. Let I(S) ⊂ H∗(S,Q) be the kernel of this map, which can be
identified with the relative cohomology H∗(S, S;Q). Dually, the map ι! : H

∗
c (S,Q)→ H∗

c (S,Q) =
H∗(S,Q) is injective. The perfect intersection pairing on H∗(S,Q) allows us to identify H∗

c (S,Q)
with the orthogonal complement I(S)⊥. This is a (typically non-unital) subalgebra under the cup
product. Dually, H∗(S,Q) andH∗(S,Q) are equipped with natural coproducts and ι∗ is a surjection
of coalgebras.

When S is not proper, it will be convenient to formally add a class [pt] of degree 4 to H∗(S,Q),
satisfying [pt] ∪ H>0(S,Q) = {0}. Likewise, it will be convenient to formally add a unit 1 to

H∗
c (S,Q); we denote the resulting rings by H

∗
(S,Q) and H

∗
c(S,Q) respectively. We will modify

the coproduct accordingly, i.e., if ∆′ is the coproduct on H∗(S,Q) we define

∆ : H
∗
(S,Q)→ H

∗
(S,Q)⊗H∗

(S,Q),

∆([pt]) = [pt]⊗[pt], ∆(λ) = [pt]⊗ λ+ λ⊗ [pt] + ∆′(λ) (λ ∈ H∗(S,Q)).

Let us now define a variant of Macdonald’s ring of symmetric function which is colored by
H∗(S,Q). Consider

U(S) = Sym(H∗(S,Q)⊗Q[t]).

For each i⩾1 and λ ∈ H∗(S,Q), we denote chi(λ) = λ⊗ ti, and set deg(chi(λ)) = 2i+ deg(λ)− 4.
In order to keep track of the rank of coherent sheaves, we add an extra element r of degree 0 and
set U ′(S) = U(S)⊗Q[r]. We view U ′(S) as the free graded-commutative algebra generated by the
elements chi(λ) and r subject to the relations

chi(λ+ µ) = chi(λ) + chi(µ) , chi(aλ) = a chi(λ) , chi(λ) · chj(µ) = (−1)|λ|·|µ|chj(µ) · chi(λ)

for any a ∈ Q and λ, µ ∈ H∗(S,Q).

Definition 1.11. Λ(S) is the quotient of U ′(S) by the ideal generated by the negative degree
elements ch1(λ) for deg(λ) = 0, 1. The universal Chern character ch(x) is defined as follows:

ch(x) = r⊗ 1 +
∑
i⩾1

chix
i ∈ Λ(S)⊗H∗

c(S,Q)[[x]], chi :=
∑
λ

chi(λ)⊗ λ∗,

where
∑
λ⊗ λ∗ ∈ H∗(S,Q)⊗H∗

c (S,Q) is the intersection pairing tensor.

Remark 1.12. The definitions above are compatible with restriction along ι : S → S. Namely,
we have a natural quotient Λ(S) ↠ Λ(S), such that the image of chS(x) in Λ(S) ⊗H∗(S)∗[[x]] is
precisely chS(x).

Remark 1.13. Note that ch(x) belongs to Q[r]⊗ 1 + xΛ(S)⊗H∗
c (S,Q)[[x]].

We define a coalgebra structure on Λ(S) by requiring the elements chi(λ) and r to be primitive.
In other words,

(∆⊗ Id)(ch(x)) = ch(x)13 + ch(x)23 ∈ Λ(S)⊗ Λ(S)⊗H∗
c(S,Q)[[u]].

Example 1.14. The primitive elements of degree 0 in Λ(S) are linearly spanned by r and ch2(1),
ch1(λ) for λ ∈ H2(S,Q).
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We also consider an involution

υ : Λ(S)→ Λ(S), υ(r) = −r, υ(chi(λ)) = −chi(λ), (i⩾1, λ ∈ H∗(S,Q)).(1.11)

The elements chi, being even, commute with each other. Hence we may define an algebra
morphism

p : Λ′ → Λ(S)⊗H∗
c(S) , p0 7→ r⊗ 1 , pi/i! 7→ chi , i⩾1.

We will use the following notation

f(λ) =

∫
S

p(f) ∪ λ , f ∈ Λ , λ ∈ H∗
(S,Q),(1.12)

and sometimes simply write
∫
S
fλ when there is no risk of confusion. For instance, we have

pi(λ) = i!chi(λ). Observe that

(1.13) (f · g)(λ) = (f ⊗ g)(∆(λ)) =
∑

f(λ(1))g(λ(2))

for f, g ∈ Λ′ and λ ∈ H∗
(S,Q), where ∆(λ) =

∑
λ(1) ⊗ λ(2) in Sweedler’s notation. In particular,

(pi1 · · · pil)(λ) = i1! · · · il!
∑

chi1(λ
(1)) · · · chil(λ

(l)).

We have deg(f(λ)) = 2deg(f) + deg(λ)− 4.

Remark 1.15. Note that with our conventions we have

h0([pt]) = 1([pt]) = 1 ∈ Λ(S), p0([pt]) = r⊗ 1([pt]) = r ∈ Λ(S)

while 1(λ) = p0(λ) = 0 if deg λ < 4, regardless of whether S is proper or not. In a similar vein, we
have f([pt]) = 0 for any f in the augmentation ideal of Q[p1, p2, . . .] when S is not proper.

Now fix α ∈ Kc
0(S)Q a class of rank r and consider a locally closed substack Uα ⊂ Cohα(S). Let

Eα ∈ Coh(Uα × S) denote the restriction of the tautological sheaf to Cohα(S) × S. Consider its
Chern character

ch(Eα, u) = r +
∑
i⩾1

pi(Eα)/i!

We have a unique graded ring homomorphism evα : Λ(S)→ H∗(Cohα,Q), defined by

(evα⊗Id)(ch(u)) = ch(Eα, u) ∈ H∗(Uα,Q)⊗H∗(S,Q)∗[[u]].

Observe that r = evα(r). The following lemma is a straightforward corollary of Remark 1.12.

Lemma 1.16. Assume that the Chern character of Eα takes values in Q ·1+H∗(Uα,Q)⊗H∗
c (S,Q).

Then evα factors through Λ(S). In particular, the classes evα(f(λ)) for f ∈ Λ and λ ∈ H∗(S,Q)
are independent of the choice of compactification S. □

The condition of Lemma 1.16 is verified for instance when Uα ⊂ Cohα. More generally, it holds
when the restriction of Eα to Uα × (S \ S) is a trivial vector bundle; such situations occur when
considering moduli stacks of sheaves on S which are trivialized along S \ S.
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1.7. Extended COHAs. Assume now that α ∈ Nδ. Composing evα with the cap product yields
an action • of Λ(S) on H0(S) such that

x • c = evα(x) ∩ c , c ∈ H∗(Cohα,Q) , x ∈ Λ(S).

This action preserves each H∗(Cohα,Q) and is compatible with the (co)homological gradings, i.e.
deg(x • c) = deg(c) − deg(x). The same holds for Hc

0(S), where the action of H∗(Cohα,Q) on
Hc

∗(Cohα,Q) is given by Lemma A.3.

Example 1.17. Assuming that S is proper, let us compute evnδ(p1([pt])). By definition, we have∑
λ

evnδ(p1(λ))⊗ λ∗ = c1(Enδ).

Hence evnδ(p1([pt])) = c1(i
∗
x(Enδ)) in H2(Cohnδ,Q) for any closed point ix : Spec(C) → S. The

support of i∗x(Enδ) being of codimension 2, its first Chern class vanishes, hence evnδ(p1([pt])) = 0
for any n > 0.

Proposition 1.18. The ring H0(S) is a Λ(S)-module algebra, i.e. we have

(1.14) x • (c1 · c2) =
∑

(−1)|c1|·|x
(2)
i |(x

(1)
i • c1) · (x

(2)
i • c2) , x ∈ Λ(S) , c1, c2 ∈ H0(S),

where ∆(x) =
∑
x
(1)
i ⊗ x

(2)
i . The same holds for Hc

0(S). The map ϕS : Hc
0(S) → H0(S) is a

morphism of Λ(S)-modules.

Proof. We will deal with the case of H0(S), the other one is similar. We can assume that ci ∈
H∗(Cohαi ,Q) for i = 1, 2. Set γ = α1 + α2. Recall the induction diagram (1.6). We abbreviate
p = pα1;α2

and q = qα1;α2
. By the projection formula

x • (c1 · c2) = evγ(x) ∩ p∗q!(c1 ⊗ c2) = p∗(p
∗(evγ(x)) ∩ q!(c1 ⊗ c2)).

There is a short exact sequence of tautological sheaves

0→ q∗(Eα2
)→ p∗(Eγ)→ q∗(Eα1

)→ 0

Hence p∗(ch(Eγ)) = q∗(ch(Eα1
) + ch(Eα2

)). We deduce that

p∗(p
∗(evγ(x)) ∩ q!(c1 ⊗ c2)) = p∗q

! ((evα1
⊗ evα2

)(∆(x)) ∩ (c1 ⊗ c2))

=
∑

(−1)|c1|·|x
(2)
i |(x

(1)
i • c1) · (x

(2)
i • c2).

The compatibility between ϕS and the action of Λ(S) results from the projection formula in hyper-
bolic or Borel-Moore homology. □

The semi-direct product H̃0(S) = H0(S) ⋊ Λ(S) is the algebra generated by H0(S) and Λ(S)
modulo the relations

(1.15) x · c =
∑

(−1)|c|·|x
(2)
i |(x

(1)
i • c) · x

(2)
i , x ∈ Λ(S), c ∈ H0(S).

The multiplication map Λ(S) ⊗H0(S) → H̃0(S) is an isomorphism of graded vector spaces. We

define the semi-direct product H̃c
0(S) = Hc

0(S)⋊ Λ(S) similarly.

We finish with the following observation. The degree one piece of H0(S) is

H0(S)[1,−] = H∗(Cohδ,Q) = H∗(S ×BGm,Q) = H∗(S,Q)[u].

We consider the linear map

ωδ : Λ(S)→ H∗(Cohδ,Q) , x 7→ x • [Cohδ]
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Lemma 1.19. The map ωδ is surjective.

Proof. Since the restriction map H∗(S,Q) → H∗(S,Q) is surjective, so is the restriction map
H∗(Cohδ(S),Q)→ H∗(Cohδ,Q). As the latter is a morphism of Λ(S)-module, it is enough to prove
the statement for S projective. By (1.4), we have

ch(Eδ) = Td−1
S eu∆S = Td−1

S eu
∑
λ

λ⊗ λ∗

where {λ}, {λ∗} are dual bases of H∗(S,Q). Since TdS is invertible, the result follows. □

When S is not pure, the map evδ may still be defined but it cannot be surjective since Eδ extends
to the compactification Cohδ(S)× S.

Remark 1.20. The definition of the action of Λ(S) on H0(S) as well as Proposition 1.18 and its
proof extend mutatis mutandis from H0(S) to H(S).

2. Derived Hecke correspondences

In this section we consider and describe the simplest type of Hecke correspondence.

2.1. Hecke correspondences. From (1.10), we can derive the following induction diagrams:

(2.1)
Cohnδ × Cohα

qnδ,α←−−− C̃ohnδ;α
pnδ,α−−−→ Cohα+nδ,

Cohα × Cohnδ
qα,nδ←−−− C̃ohnδ;α−nδ

pα,nδ−−−→ Cohα−nδ.

For the compactly supported COHA it is useful to factor the maps pnδ,α, pα,nδ as follows:

C̃ohnδ;α
p′nδ,α−−−→ Cohα+nδ × Symn(S)

p′′nδ,α−−−→ Cohα+nδ,

C̃ohnδ;α−nδ
p′α,nδ−−−→ Cohα−nδ × Symn(S)

p′′α,nδ−−−→ Cohα−nδ.

We call the first/second diagram in (2.1) the positive/negative length n Hecke correspondences.

Since Coh⩾d is stable under taking subobjects, the Hecke correspondences restrict to Coh⩾d, yielding
the following restricted induction diagrams

(2.2)
Cohnδ × Coh⩾dα C̃oh

⩾d

nδ;α

qnδ,αoo pnδ,α // Coh⩾dα+nδ,

Coh⩾dα × Cohnδ C̃oh
⩾d

nδ;α−nδ
qα,nδoo

pα,nδ // Coh⩾dα−nδ,

where we have defined

C̃oh
⩾d

α;β := C̃ohα;β ×
Cohα+β

Coh⩾dα+β .

2.2. Locally free resolutions. The Hecke correspondences enjoy much better properties when
the tautological sheaf E has perfect amplitude in [−1, 0] and admits locally a two-step locally free

resolution. This is true in our situation after we restrict to the open substack Coh⩾1.

Lemma 2.1. Let γ ∈ Kc
0(S)Q and let U ⊂ Coh⩾1

γ be any finite type open substack. The tautological
sheaf Eγ |U×S admits a 2-step resolution by locally free sheaves 0→ E−1 → E0 → Eγ → 0.
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Proof. Having a 2-step resolution by locally free sheaves is a local condition on any stack of finite
type. Indeed, let F ∈ Coh(X), where X is a stack of finite type, and assume that F|Ui admits
2-step resolutions by locally free sheaves for some open cover

⋃
i Ui = X. Since X is of finite type,

there exists a short exact sequence 0 → E−1 → E0 → F → 0 with E0 being a locally free sheaf. It
is enough to check that E−1 is locally free, which may be done locally. Next, as Eγ |U×S is U-flat,
it is enough to check that for any C-point x ∈ U(C) the sheaf Eγ |{x}×S admits a 2-step resolution

by locally free sheaves over S. This in turn follows from the fact that Eγ |{x}×S is of dimension ⩾1

and that S is smooth, so that Eγ |{x}×S has perfect amplitude in [−1, 0]. □

In the remainder of this section, we describe the length one Hecke correspondences and compute
their action on tautological classes. Until §2.4, we let S be an arbitrary smooth connected surface.
A general framework for derived Hecke correspondences has recently been worked out by Q. Jiang
in [19, §8], in the language of derived algebraic geometry, following the work of Negut [32].

2.3. Length one Hecke correspondences and operators. Fix α and set γ = α + δ. In this
section we consider length one Hecke correspondences given by the diagrams in (2.1) with n = 1

restricted to Coh⩾1. To unburden the notation, we will drop the indices of the maps p, q, etc. Let
KS be the canonical bundle of S and set Fα = E∨α ⊗KS [1], a complex over Cohα×S. By (1.3), the
Serre duality gives an isomorphism of complexes over Cohα × Cohδ

(RHomS(Eδ, Eα)[1])∨ = RHomS(Eα,KS ⊗ Eδ)[1]
= Rp12∗(E∨α ⊗KS ⊗O∆S

⊗ ρ)[1]
= E∨α ⊗KS ⊗ ρ[1]

where p12 : Cohα×Cohδ ×S → Cohα×Cohδ is the projection. In particular, the complex Fα is the
restriction to Cohα × S of (RHomS(Eδ, Eα)[1])∨. Let

τ : P(Eγ)→ P(Eγ)× S , τ : P(Fα)→ P(Fα)× S

be the diagonal morphisms, i.e., the morphisms making the following diagrams commutative:

P(Eγ)
τ //

π

��

P(Eγ)× S

prS

��

P(Fα)
τ //

π

��

P(Fα)× S

prS

��
Cohγ × S

prS // S Cohα × S
prS // S

(2.3)

Here, prS is the projection to S.

Let Cohδ be the classical truncation of Cohδ, and let us put

C̃ohδ;α := C̃ohδ;α ×
Cohδ

Cohδ, C̃oh
⩾1

δ;α := C̃oh
⩾1

δ;α ×
Cohδ

Cohδ.

The motivation to consider this partial classical truncation will become clear in § 2.4. We have the
following important result:

Proposition 2.2 ([19, §8 , prop. 4.33],[32, §2]).

(a) There is a canonical isomorphism of derived stacks C̃oh
⩾1

δ;α = P(Eγ) which identifies the tauto-
logical sheaf (q × Id)∗(Eδ) with τ∗(OP(Eγ)(1));

(b) There is a canonical isomorphism of derived stacks C̃oh
⩾1

δ;α = P(Fα) which identifies the tau-
tological sheaf (q × Id)∗(Eδ) with τ∗(OP(Fα)(−1)). □
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Recall that the classical truncation map Cohδ → Cohδ induces an isomorphism in Borel-Moore
homology (and likewise in relative Borel-Moore homology). To carry out the computation of length
one Hecke operators, we may and will therefore use the partially truncated induction diagrams

Cohδ × Coh⩾1
α

qδ,α←−− C̃oh
⩾1

δ;α

pδ,α−−→ Coh⩾1
α+nδ,

Coh⩾1
α × Cohδ

qα,δ←−− C̃oh
⩾1

δ;α−δ
pα,δ−−−→ Coh⩾1

α−nδ,

obtained by base change from (2.2).

Corollary 2.3. The restrictions of the maps p, p′, p and p′ to C̃oh
⩾1

are proper and representable.

The restrictions of the maps q, q to C̃oh
⩾1

are quasi-smooth.

Proof. We already know that p is proper. Since both Eγ and Fα have perfect amplitude in [−1, 0]
over Coh⩾1 × S, by [19, Lem. 5.4] the maps p′ and p′ are proper and quasi-smooth. Hence p is
proper as well when S is proper. Since Cohα is an open substack of Cohα(S), we may deduce the
case of an arbitrary S by base change. Indeed, note that there is a cartesian diagram

C̃oh
⩾1

δ;α(S) //

p

��

C̃oh
⩾1

δ;α(S)

p

��
Coh⩾1

α (S) // Coh⩾1
α (S)

since for any extension 0 → F → E → Ox → 0 with F , E of dimension ⩾1, we have supp(E) =
supp(F). Next, we claim that the maps q and q are the restrictions to suitable open substacks of
the projections

V(RHomS(Eδ, Eα)[1])→ Cohδ × Cohα , V(RHomS(Eγ , Eδ))→ Cohγ × Cohδ.

Indeed, the condition for a sheaf to be supported on S ⊂ S is open, as is the condition for a
morphism Eγ → Eδ to be surjective. As a consequence, q, q are both quasi-smooth. □

We will prove a more general version of Corollary 2.3 in §6.1. Thanks to Corollary 2.3, the
truncated induction diagrams yield two types of Hecke operators

T+ = p! ◦ q∗ : H∗(Cohδ,Q)⊗H∗(Coh⩾1
α ,Q)→ H∗(Coh⩾1

γ ,Q),

T− = p! ◦ q∗ : H∗(Cohδ,Q)⊗H∗(Coh⩾1
γ ,Q)→ H∗(Coh⩾1

α ,Q).

Considering S-hyperbolic homology, we also define

T c+ = r ◦ p′! ◦ q∗ : Hc
∗(Cohδ,Q)⊗H∗(Coh⩾1

α ,Q)→ H∗(Coh⩾1
γ ,Q),

T c− = r ◦ p′! ◦ q∗ : Hc
∗(Cohδ,Q)⊗H∗(Coh⩾1

γ ,Q)→ H∗(Coh⩾1
α ,Q),

(2.4)

where r : Hc
∗(S,Q)→ Q is the canonical degree 0 map. We will next use Proposition 2.2 to compute

their action on tautological classes over suitable open substacks of Coh⩾1.

2.4. Atlases for length one correspondences. We assume until §2.7 that S = S is a projective
surface. Let us fix a finite type open derived substack U ⊂ Coh⩾1

γ and a locally free resolution

0→ E−1 → E0 → Eγ |U×S → 0.(2.5)

We keep the notations from the previous section. Let us explicitly describe the projectivization
P(Eγ) in terms of the complex E−1 → E0. Let P(E0) be the total space of the projective bundle

associated to E0 and π : P(E0)→ U× S be the projection. The points of P(E0) parametrize triples



18 A. MELLIT, A. MINETS, O. SCHIFFMANN, E. VASSEROT

(W, y, λ) where W ∈ U is a coherent sheaf on S of dimension ⩾1, y ∈ S and λ : E0|(W,y) → C is a
nontrivial linear form, defined up to multiplication by a scalar. The morphism π∗(E∨0 ) → π∗(E∨−1)
yields a map OP(E0)(−1)→ π∗(E∨−1). This map can be viewed as a section

s ∈ H0(P(E0), π∗(E∨−1)(1)).

The zero locus Z(s) of s parametrizes the triples (W, y, λ) ∈ P(E0) for which the map λ descends
to W|y. By Proposition 2.2, we have

C̃ohδ;α ×
Cohγ

U = P(Eγ |U×S) ≃ P(E0) ×
V(π∗(E∨

−1)(1))
P(E0).

The derived fiber product is taken with respect to the sections s and 0 of π∗(E∨−1)(1). Let P(Ecl0 )

be the classical projective bundle of Ecl0 over Ucl × S. By [19, prop. 4.21], the classical truncation
of the derived stack P(Eγ |U×S) is isomorphic to the zero locus in P(Ecl0 ) of the section scl, i.e., we
have

P(Eγ |U×S)
cl = Z(scl).

On the other hand, over the partial truncation Cohδ × Coh⩾1
α , the complex RHom(Eδ, Eα)[1]

has perfect amplitude in [0, 1]. We fix a finite type open derived substack U′ of Coh⩾1
α with a

presentation of the complex RHom(Eδ, Eα)[1]
∣∣
Cohδ×U′

0→ V0 → V1 → 0(2.6)

Let ρ : V(V0)→ Cohδ × U′ be the projection. The map V0 → V1 yields a section

s′ ∈ H0(V(V0), ρ∗(V1)).
By §1.3 there is an isomorphism

C̃ohδ;α ×
Cohα

U′ = V(V0) ×
V(ρ∗(V1))

V(V0)

where the derived fiber product is taken with respect to the sections s′ and 0. By [19, prop. 4.10],
the classical truncation is isomorphic to the zero locus Z((s′)cl) ⊂ V(Vcl0 ). We thus get the following
isomorphisms of derived and classical stacks over any open set on which both presentations (2.5)
and (2.6) exist:

V(V0) ×
V(ρ∗(V1))

V(V0) ≃ C̃ohδ;α ≃ P(E0) ×
V(π∗(E∨

−1)(1))
P(E0),

V(Vcl0 ) ⊃ Z((s′)cl) = Z(scl) ⊂ P(Ecl0 ).

(2.7)

The case of P(Fα) is similar, let us briefly sketch it. Observe that

RHomS(Eγ , Eδ) = Rp12∗(E∨γ ⊗ Eδ) = Rp12∗(E∨γ ⊗O∆S
⊗ ρ) = E∨γ ⊗ ρ.

Hence there is a factorization

V(E∨γ ⊗ ρ)

��

C̃oh
⩾1

δ;α

joo

qyy
Coh⩾γ × Cohδ

where j is an open embedding. Let us restrict everything to an open substack of finite type
U ⊂ Coh⩾1

γ . Consider locally free resolution (2.5), and let π : V(E∨γ ⊗ ρ) → U × Cohδ be the
projection. We have an obvious section

s ∈ H0(V(E∨0 ⊗ ρ), π∗(E∨−1 ⊗ ρ)).
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The zero locus of scl in V(E∨0 ⊗ ρcl) is

V(E∨γ ⊗ ρ|U×Cohδ
)cl = Z(scl)

Likewise, fix an open substack of finite type U′ ⊂ Coh⩾1
α as in (2.6), so that Fα|U′×S has a presen-

tation

0→ V∨
1 → V∨

0 → 0.

We have an obvious section s′ ∈ H0(P(V∨
0 ), p

∗(V1(1))), and the zero locus of (s′)cl in P(V∨,cl
0 ) is

P(Fα|U×S)
cl = Z((s′)cl). Therefore, over any open set over which both presentations (2.5) and

(2.6) exist, we have the following isomorphisms of derived and classical stacks

P(V∨
0 ) ×

V(p∗(V1⊗ρ))
P(V∨

0 ) ≃ C̃ohδ;α ≃ V(E∨0 ⊗ ρ) ×
V(π∗(E∨

−1⊗ρ))
V(E∨0 ⊗ ρ),

P(V∨,cl
0 ) ⊃ Z((s′)cl) ≃ Z(scl) ⊂ V(E∨,cl0 ⊗ ρ).

(2.8)

For the future use, note that the image of the map jcl is the complement of the zero section in

V(E∨,cl0 ⊗ ρ). Therefore, the section scl is regular over this complement if and only if the section scl

is regular. Similarly, the section (s′)cl is regular if and only if the section (s′)cl is regular.

2.5. Computation of Hecke operators on fundamental classes. We are now in position to
compute the action of Hecke operators on the fundamental classes [Coh⩾1

α ], [Coh⩾1
γ ] and on the

virtual fundamental classes [Coh⩾1
α ], [Coh⩾1

γ ]. We keep the notation of the previous sections. Fix

finite type open substacks U ⊂ Coh⩾1
γ and U′ ⊂ Coh⩾1

α such that

q−1(Cohδ(S)× U′) ⊇ p−1(U).(2.9)

Recall that γ = α + δ. We will carry out the computation of the action on the non-virtual funda-
mental classes first, under the following assumption:

(2.10) the sections scl and (s′)cl are regular.

This condition implies that the sections scl and (s′)cl are regular as well. This means that qclδ,α and

pclδ,α are of the expected dimension over each irreducible component of Ucl and (U′)cl respectively.
Recall from §1.2 the isomorphisms

Cohδ = S ×BGm, H∗(Cohδ,Q) = H∗(S,Q)⊗Q[u],

where u = c1(ρ) is the Chern class of the linear character ρ ∈ Coh(BGm). Let

[∆S ] ∈ H
∗(Cohδ,Q)⊗H∗(S,Q)

be the fundamental class of the diagonal. Let hn be the complete symmetric function of degree n.
Recall the notation hn(Eγ) in (0.4).

Proposition 2.4. Assume that (2.10) holds. Let r = rk(α).

(a) For any l⩾0 the following equality holds in H∗(U,Q)⊗H∗(S,Q):

(2.11) T+

((
ul[∆S ] ∩ [Cohδ]

)
⊗ [Coh⩾1

α ]
)∣∣∣

U
= hl+1−r(Eγ) ∩ [U]

(b) For any µ ∈ H∗(S,Q) we have

(2.12) T+

((
µul ∩ [Cohδ]

)
⊗ [Coh⩾1

α ]
)∣∣∣

U
= hl+1−r(µ) • [U].
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Proof. Let j be the open immersion p−1(U) ⊂ q−1(Cohδ × U′). We will work with classical stacks,
but we will omit the superscript cl in the notation. Under the assumption (2.10), we have

j∗q!([Cohδ]⊗ [Cohα]) = j∗([Z(s′)]) = [Z(s)].

We abbreviate O(1) = OP(E0)(1). By Proposition 2.2, we have the following isomorphism of coherent

sheaves over p−1(U)× S:
(j × Id)∗(q × Id)∗Eδ = τ∗O(1)

We deduce that

(j × Id)∗(q × Id)!((ch(Eδ) ∩ [Cohδ × S])⊗ [Cohα]) = ch(τ∗O(1)) ∩ ([Z(s)× S])(2.13)

Now, we consider the commutative diagram

Z(s)

τ

��

ι // P(E0)
π

%%
τ ′

��
Z(s)× S ι×Id // P(E0)× S

p′×Id // U× S

The maps ι, ι′ are the obvious closed immersions, the map π is the projection to U×S, the map p′

is the projection to U, and the maps τ, τ ′ are defined as in (2.3). The bottom row of the diagram
clearly composes to p× Id.

Let i : U → Coh⩾1
γ be the open immersion. Applying (p × Id)∗ to (2.13) and restricting to the

open subset U× S, we get

(i× Id)∗T+
(
(ch(Eδ) ∩ [Cohδ × S])⊗ [Cohα]

)
= (p′ × Id)∗(ι× Id)∗

(
ch(τ∗O(1)) ∩ ([Z(s)× S])

)
We claim that

(2.14) τ∗ι
∗O(1) = (ι× Id)∗τ ′∗O(1).

Indeed, since s is regular, the maps ι×Id and τ ′ are Tor-independent, and so we may use the proper
base change theorem. Applying Chern character to (2.14), we get

(i× Id)∗T+
(
(ch(Eδ) ∩ [Cohδ × S])⊗ [Cohα])

)
= (p′ × Id)∗

(
ch(τ ′∗O(1)) ∩ (ι× Id)∗([Z(s)× S])

)
= (p′ × Id)∗

(
ch(τ ′∗O(1)) ∩ eu

(
π∗E∨−1(1)

)
∩ [P(E0)]

)
= (p′ × Id)∗

(
eu
(
π∗E∨−1(1)

)
∩ τ ′∗ch(O(1)) ∩ Td−1

S
∩ [P(E0)]

)
= Td−1

S
∩ (p′ × Id)∗τ

′
∗
(
eu
(
π∗E∨−1(1)

)
∩ ch(O(1)) ∩ [P(E0)]

)
= Td−1

S
∩ π∗

(
eu
(
π∗E∨−1(1)

)
∩ ch(O(1)) ∩ [P(E0)]

)
where we have successively used the fact that s is regular and the Grothendieck-Riemann-Roch
formula for the proper morphism τ . The following formula is well-known.

Lemma 2.5. Let X be a stack. Let E−1, E0 be vector bundles over X. Set r = rk(E0) − rk(E−1).
Let π : P(E0)→ X be the projection. The following formula holds in H∗(X,Q):

π∗
(
ch(O(1)) ∪ eu(π∗E∨−1(1))

)
=
∑
n∈N

1

n!
hn−r+1(E0 − E−1). □
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Using the above lemma, we deduce that

(2.15) i∗T+

((
ch(Eδ) ∩ [Cohδ]

)
⊗ [Cohα]

)
= Td−1

S
∩
∑
n

1

n!
hn+1−r(Eγ) ∩ [U].

The proof of (2.11) now follows by multiplying throughout by the Todd class TdS and equating the
terms of fixed homological degrees. Finally, the formula (2.12) is obtained by taking the intersection
pairing with µ. □

A similar analysis can be made for negative Hecke correspondences. Once again, we fix finite
type open substacks U ⊂ Coh⩾1

γ and U′ ⊂ Coh⩾1
α satisfying

q−1(Cohδ(S)× U) ⊇ p−1(U′) ⇔ q−1(Cohδ(S)× U′) ⊆ p−1(U).(2.16)

Recall the shift operation τc : Λ
′ → Λ′[c], defined by (0.3). For any symmetric function f ∈ Λ and

λ ∈ H∗(S,Q), we write

f̃(λ) :=

∫
S

p(τc1f) ∪ λ ∈ Λ(S)

and extend this to an algebra automorphism x 7→ x̃ of Λ(S). Note that we have, for any γ ∈ Kc
0(S)Q,

evγ(f̃(λ)) =

∫
S

f(Eγ ⊗K∨) ∪ λ.

Proposition 2.6. Assume that (2.10) holds. Let r = rk(α).

(a) For any l⩾0 we have the following equality in H∗(U
′,Q)⊗H∗(S,Q)

(2.17) T−

((
ul[∆S ] ∩ [Cohδ]

)
⊗ [Cohγ ]

)∣∣∣
U′

= (−1)lel+1+r(Eα ⊗K∨
S
) ∩ [U′]

(b) For any µ ∈ H∗(S,Q) we have

□(2.18) T−

((
µul ∩ [Cohδ]

)
⊗ [Cohγ ]

)∣∣∣
U′

= (−1)lẽl+1+r(µ) • [U′].

Remark 2.7. We can express ẽi’s in terms of ei’s:

ẽn(µ) =

n∑
i=0

(
r− n+ i

i

)
en−i(µ ∪ ci1).

In the absence of an equivariant parameter we have c31 = 0, and so only the first three terms of the
sum above do not vanish. In particular, when S has trivial canonical bundle we have ẽn(µ) = en(µ)
for all n⩾0, µ. Of course, in the situation of Proposition 2.6 we have r = r.

In this paper, we will check the assumption (2.10) in two situations of interest: the Hilbert
schemes of points Hilbn(S) in §7.3, and the stacks of Higgs bundles Higgsr,d over a smooth projective
curve in §8.2.

Let us now turn our attention to the action of Hecke operators on virtual fundamental classes.

Proposition 2.8. For any α, we have

T+

((
µul ∩ [Cohδ]

)
⊗ [Cohα]

)∣∣∣
Coh

⩾1
γ

= hl+1−r(µ) • [Coh⩾1
γ ],

T−

((
µul ∩ [Cohδ]

)
⊗ [Cohγ ]

)∣∣∣
Coh

⩾1
α

= (−1)lẽl+1+r(µ) • [Coh⩾1
α ].

Proof. The proof follows along exactly the same lines as the proof of Propositions 2.4 and 2.6. We
use the fact that the Gysin pullback by a quasi-smooth morphism preserves virtual fundamental
classes, see §A.1 for more details, and we use the projection formula of Proposition A.1(d). □
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Remark 2.9. Given that Proposition 2.8 holds without any regularity assumption, one might wonder
why one should bother considering non-virtual fundamental classes at all. The answer we give is
that the virtual fundamental classes [Coh⩾1

α ] and [Coh⩾1
γ ] typically lie in a homological degree less

than that of their non-virtual cousins, and hence generate a different (and in many cases strictly
smaller) space of tautological classes.

2.6. Length one Hecke operators on tautological classes. Recall that S = S is proper. In
particular, the map ωδ : Λ(S) → H∗(Cohδ,Q) is surjective by Lemma 1.19. Hence Proposition 2.4
allows us to describe the action of the full subspace H0(S)[1,−] on the fundamental class [Cohα]
after restriction to suitable open substacks Uα. Using the Λ(S)-module algebra structure of H(S),
we will now deduce a formula for the action of H0(S)[1,−] on the subspace Λ(S)• [Uα] of H∗(Uα,Q)
spanned by the tautological classes. To do so, we consider the linear map

L+
r : H∗(Cohδ,Q)⊗ Λ(S)→ Λ(S) , r ⩾ 0

satisfying the following conditions:

(a) L+
r (λu

l ⊗ 1) = hl+1−r(λ) for any λ ∈ H∗(S,Q) and l ∈ N,

(b) x · L+
r (ξ ⊗ y) =

∑
L+
r (evδ(x

(1)) ∪ ξ ⊗ x(2) · y) for any x, y ∈ Λ(S) and ξ ∈ H∗(Cohδ,Q).

Here we have used Sweedler’s notation ∆(x) =
∑
x(1) ⊗ x(2). By (2.12) and Proposition 1.18, we

deduce that for any stacks U and U′ as above and for r = rk(α) we have

(2.19) i∗
(
(ξ ∩ [Cohδ]) ⋆ (x • [Cohα])

)
= i∗

(
L+
r (ξ ⊗ x) • [Cohγ ]

)
Hoping that this will not create any confusion, we will write

L+
r (ξ) : Λ(S)→ Λ(S) , x 7→ L+

r (ξ ⊗ x).
Then (b) translates into the following relation:

[pn(λ),L+
r (ξ)] = L+

r (evδ(pn(λ)) ∪ ξ).(2.20)

A direct computation using (1.1) and (1.4) gives, for any n⩾0,

evδ(pn(λ)) = fn(u) ∪ λ, fn(u) :=
un − (u− t1)n − (u− t2)n + (u− t1 − t2)n

t1t2
.(2.21)

We define an algebra homomorphism R+ and a Λ(S)-linear map Q+ such that

R+ : Λ(S)→ Λ(S)⊗H∗(Cohδ,Q) , pn(λ) 7→ pn(λ)⊗ 1− 1⊗ fn(u) ∪ λ,

Q+ : Λ(S)⊗H∗(Cohδ,Q)→ Λ(S) , x⊗ λul 7→ x · hl(λ).

It will be convenient to extend Q+ to a map

Q+ : Λ(S)⊗H∗(S,Q)[u, u−1]→ Λ(S)

by setting Q+(x⊗ ul) = 0 for l < 0. Using these notations, the following formula holds:

(2.22) L+
r (λu

l ⊗ x) = Q+(λul+1−rR+(x)).

Again, it will be convenient to formally extend this definition to any r ∈ Z.
Using Proposition 2.6, we can write down similar formulas for negative correspondences. The

analog of the relation (b) is

x · L−
r (ξ ⊗ y) =

∑
L−
r (evδ(υ(x

′)) ∪ ξ ⊗ x′′ · y) , x, y ∈ Λ(S),

where υ is the involution (1.11). This translates to the relation

[p̃n(λ),L−
r (ξ)] = −L−

r (evδ(p̃n(λ)) ∪ ξ).
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Note that

evδ(p̃n(λ)) =

∫
S

pn(Eδ ⊗K∨) ∪ λ = fn(u+ c1) ∪ λ = (−1)nfn(−u) ∪ λ.

Thus we obtain the following formula:

L−
r (λu

l ⊗ x) = (−1)r+1Q−(λul+1+rR−(x))

where R− and Q− are the algebra homomorphism and the Λ(S)-linear map such that

R− : Λ(S)→ Λ(S)⊗H∗(Cohδ,Q) , p̃n(λ) 7→ p̃n(λ)⊗ 1 + (−1)n ⊗ fn(−u) ∪ λ,

Q− : Λ(S)⊗H∗(Cohδ)→ Λ(S) , x⊗ λul 7→ x · (−1)lẽl(λ).

One can thus recast Propositions 2.4, 2.6 by saying that for any ξ ∈ H∗(Cohδ) the operators
T±((ξ ∩ [Cohδ])⊗−) act on Λ(S) • [Uα] via the action of L±

r on Λ(S).

For future use, we record here the following easily deduced formulas, valid for any n and λ:

R+(p̃n(λ)) = p̃n(λ)⊗ 1− (−1)n ⊗ fn(−u) ∪ λ
R−(pn(λ)) = pn(λ)⊗ 1 + 1⊗ fn(u) ∪ λ.

(2.23)

Remark 2.10. Operators defined by conditions like (a) and (b) above are typically given by vertex
operators. In our situation, these take the following form:∑
l⩾0
γ

L+
r (u

lγ)⊗ γ∗s−l+r−1 =

{
exp

( ∑
γ;k⩾1

pk
k
(γ)⊗ γ∗s−k

)
[s<r]

exp
(
−
∑
γ;n⩾0

∂

∂κn(γ)
⊗ γsn

)}
[s<r]

∑
l⩾0
γ

L−
r (u

lγ)⊗ γ∗s−l−r−1 = (−1)r+1

{
exp

(
−
∑
γ;k⩾1

τc1pk
k

(γ)⊗ γ∗s−k
)
[s<−r]

exp
( ∑
γ;n⩾0

∂

∂κn(γ)
⊗ γsn

)}
[s<−r]

where {γ}, {γ∗} are dual bases of H∗(S,Q) and the elements {κn(λ)} are related to the {pk(λ)}
through the relation

(2.24)
∑
γ;n⩾0

xn+2

n!
κn(γ)⊗ γ∗ =

(
TdS(x) ·

∑
γ;n⩾1

xn

n!
pn(γ)⊗ γ∗

)
[s>1]

.

2.7. Hecke operators on open surfaces. Let us now return to the situation when the surface
S is cohomologically pure, but not necessarily proper. Pick a smooth compactification ι : S → S,
and fix open substacks U ⊂ Coh⩾1

γ and U′ ⊂ Coh⩾1
α satisfying2

q−1(Cohδ(S)× U′) ⊇ p−1(U), q−1(Cohδ(S)× U) ⊇ p−1(U′).(2.25)

These conditions imply that the correspondences (2.1) restrict to Hecke operators

T+ : H∗(Cohδ(S),Q)⊗H∗(U
′,Q)→ H∗(U,Q),

T− : H∗(Cohδ(S),Q)⊗H∗(U,Q)→ H∗(U
′,Q)

The following simple lemma, which follows from open base change, relates these operators to the
analogous operators for S. Let us denote by j both inclusions U→ Coh⩾1

γ and U′ → Coh⩾1
α .

Lemma 2.11. For x ∈ H∗(Cohδ(S),Q) and c ∈ H∗(U,Q), c′ ∈ H∗(U
′,Q) we have

j∗T+(x⊗ c′) = T+(ι
∗x⊗ j∗c′) ∈ H∗(U,Q),

j∗T−(x⊗ c) = T−(ι
∗x⊗ j∗c) ∈ H∗(U

′,Q).

2note the difference between these conditions and (2.9, 2.16)
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Next, let us consider the compactly supported Hecke correspondences. Assume that the open
substacks U ⊂ Coh⩾1

γ , U′ ⊂ Coh⩾1
α satisfy

q−1(Cohδ(S)× U′) ⊇ (p′)−1(U× S), q−1(Cohδ(S)× U) ⊇ (p′)−1(U′ × S).(2.26)

In this case we can define restrictions of Hecke operators (2.4):

T c+ : Hc
∗(Cohδ(S),Q)⊗H∗(U

′,Q)→ H∗(U,Q),

T c− : Hc
∗(Cohδ(S),Q)⊗H∗(U,Q)→ H∗(U

′,Q).

Proposition 2.12. For x ∈ Hc
∗(Cohδ(S),Q) and c ∈ H∗(U,Q), c′ ∈ H∗(U

′,Q) we have

j∗T+(ι(x)⊗ c′) = T c+(x⊗ j∗c′), j∗T−(ι(x)⊗ c) = T c−(x⊗ j∗c).

Proof. The two cases being identical, we will prove the statement for T c+. Consider the following
diagram (in which we omit the obvious indices):

Cohδ(S)× Cohα(S) C̃ohδ,α(S)
p′ //qoo Cohγ(S)× S

p′′ // Cohγ(S)

Cohδ × Cohα(S)

ι×Id

OO

C̃ohδ,α(S)×S S

ι̃

OO

s′ //too Cohγ(S)× S

Id×ι

OO

s′′ // Cohγ(S)

Cohδ × U′

Id×j

OO

C̃ohδ,α(S)×Cohγ(S)×S
(U× S)

j̃

OO

(p′)◦ //q◦oo U× S

j×Id

OO

(p′′)◦ // Cohγ

j

OO

Observe that apart from the rightmost column, the second row is obtained from the top row by
base change − ×S S. In addition, all of the vertical arrows are open embeddings and the middle

square in the bottom is cartesian. By Proposition A.6 (a), we have q!(ι! ⊗ Id) = ι̃!t
!. Hence, using

Proposition A.6 (b), we get

p′′∗p
′
∗q

!(ι!(x)⊗ c′) = p′′∗p
′
∗ι̃!t

!(x⊗ c′) = p′′∗(Id⊗ ι!)s′∗t!(x⊗ c′).

Note further that p′′∗(Id⊗ ι!) = r : Hc
∗(S,Q)→ Q, see Example A.5. It follows that T+(ι!(x)⊗ c′) =

rs′∗t
!(x⊗ c′). On the other hand, by base change and functoriality of Gysin pullbacks, we have

j∗s′∗t
! = (p′)◦∗j̃

∗t! = (p′)◦∗(q
◦)!(Id⊗ j∗).

Thus, we have

rs′∗t
!(x⊗ c′) = r(p′)◦∗(q

◦)!(x⊗ j∗(c′)) = T c+(x⊗ j∗(c′)). □

One particular instance when both restrictions of Hecke operators are well defined is when
U = Coh⩾1

γ , U′ = Coh⩾1
α . If we further restrict to an appropriate open substack of Coh⩾1 where

the regularity conditions (2.10) hold, Proposition 2.12 and Lemma 2.11 imply that the formulas
of § 2.6 apply verbatim to the restricted operators T±, T

c
± over U′, U. Note that proper support

implies r = 0. Since the evaluation map ev factors through Λ(S) by Lemma 1.16, in this case we
can interpret the operators L±

0 as acting on Λ(S).

Remark 2.13. Proposition 2.12 and Lemma 2.11 continue to hold if we replace the embedding S ⊂ S
by any open immersion.
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3. Deformed W -algebras (projective surfaces)

In this section we introduce and study a class of associative algebras which are associated to our
surface S (more precisely, to its cohomology ring). As these bear a resemblance to the deformed
W1+∞-algebra studied, e.g., in [39] –which corresponds to the case S = A2 with an action of the
torus (C×)2– we will refer to these as deformed W -algebras. In this section, we assume that S is
proper, in which case there is only one such type of W -algebra. The case of open surfaces will be
addressed in § 5.

We fix a smooth projective surface S. Recall that c1, c2 are the Chern classes of S and that
s2 = c21 − c2. We let PS(z) =

∑
n dim(Hn(S,Q))(−z)n = hS(z

−1)z4 be the Poincaré polynomial of
S.

3.1. Positive halves of deformed W -algebras.

Definition 3.1. Let W⩾(S) be the N× Z-graded associative algebra generated by

ψn(λ) , Tn(λ) , n⩾0 , λ ∈ H∗(S,Q)

together with a central element c modulo the following set of relations for a, b ∈ C, n,m⩾0 and
λ, µ ∈ H∗(S,Q):

ψm(aλ+ bµ) = aψm(λ) + bψm(µ),(a)

Tn(aλ+ bµ) = aTn(λ) + bTn(µ),(b)

[ψm(λ), ψn(µ)] = 0,(c)

[ψm(λ), Tn(µ)] = mTm+n−1(λµ), (m⩾0)(d)

[Tm(λµ), Tn(ν)] = [Tm(λ), Tn(µν)],(e)

[Tm(λ), Tn+3(µ)]− 3[Tm+1(λ), Tn+2(µ)] + 3[Tm+2(λ), Tn+1(µ)]− [Tm+3(λ), Tn(µ)]

− [Tm(λ), Tn+1(s2µ)] + [Tm+1(λ), Tn(s2µ)] + {Tm, Tn}(c1∆Sλµ) = 0,
(f)

∑
w∈S3

w · [Tm3(λ3),[Tm2(λ2), Tm1+1(λ1)]] = 0,(g)

ψn(λ) = 0 if 2n− 2 + deg(λ) < 0.(h)

The expression {Tm, Tn}(c1∆Sλµ) above is the super-commutator of Tm and Tn, whose arguments
are taken from the symmetric 2-tensor c1∆Sλµ ∈ H∗(S,Q) ⊗H∗(S,Q). The generators have the
following degrees:

(3.1) deg(Tn(λ)) = (1, 2n−2+deg(λ)) , deg(ψn(λ)) = (0, 2n−2+deg(λ)), , deg(c) = (0, 0).

Let W⩾(S)[m,n] be the subspace spanned by all bidegree (m,n) elements, and define W+(S),
resp. W 0(S) to be the graded subalgebra generated by {Tn(λ) ; n⩾0 , λ ∈ H∗(S,Q)}, resp. by
{c, ψn(λ) ; n⩾0 , λ ∈ H∗(S,Q)}.

Like Λ(S), W 0(S) is just a supercommutative algebra generated by elements indexed by pairs
(n, λ). It will be convenient to identify3 them as follows. Set

ψλ(x) =
∑
n⩾0

ψn(λ)
xn

n!
,

ψ(x) = x−1c⊗ 1 +
∑
λ

ψλ(x)⊗ λ∗ ∈W 0(S)⊗H∗(S,Q)[[x]].

3This identification is why we included the central element c in W⩾(S) rather than just in W (S).
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There is a unique graded algebra isomorphism i :W 0(S) ≃ Λ(S)

i : ψ(x) 7→ x−1r⊗ 1 + x−1(ch(x)− r⊗ 1)TdS(x).

Through this identification, we may consider elements p(λ) ∈ W 0(S) for a symmetric function p
and λ ∈ H∗(S,Q).

Theorem 3.2. The following hold:

(a) The graded character of W+(S) is given by

(3.2) PW+(S)(z, w) =
∑
l,n

dim(W+(S)[l, n])(−z)nwl = Exp

(
PS(z)z

−2w

(1− z2)(1− w)

)
.

(b) The elements Dm,0(λ) for m⩾1, λ ∈ H∗(S,Q) generate a free graded commutative polynomial
algebra h+S .

Definition 3.3. Assume that c1 = 0 and that there exists q ∈ H2(S,Q) such that q2 = s2. We
define the Lie algebra w⩾(S) to be spanned by zmDnλ with m,n ∈ N and λ ∈ H∗(S,Q), and a
central element c, with the Lie bracket given by

(3.3) [zmDnλ , zm
′
Dn′

µ] = zm+m′ (D +m′q)nDn′ −Dn(D +mq)n
′

q
λµ.

We let w+(S) be the subalgebra spanned by zmDnλ for all m⩾1, n⩾0 and λ ∈ H∗(S,Q).

Remark 3.4. More explicitly, the right hand side of (3.3) is given by

a∑
i=1

(
a

i

)
nizm+nDa+b−iqi−1λµ−

b∑
j=1

(
b

j

)
mjzm+nDa+b−jqj−1λµ.

Note that the q1-term of this sum only depends on (m + n) and (mn′ − nm′) in accordance with
the last claim of Proposition 3.8 below.

When s2 = q = 0, we write Dm,n(λ) = zmDnλ. The Lie bracket the degenerates as follows:

[Dm,n(λ), Dm′,n′(µ)] = (nm′ −mn′)Dm+m′,n+n′−1(λµ).(3.4)

We will denote this degenerate Lie algebra by w⩾
0 (S). This Lie algebra is well-defined for any S.

Theorem 3.5. Assume that c1 = 0 and q2 = s2. Then the assignment Tl(λ) 7→ zDlλ extends to
an isomorphism W⩾(S) ≃ U(w⩾(S)), which restricts to an isomorphism W+(S) ≃ U(w+(S)).

We will prove Theorem 3.2 in §§ 3.7, 3.5, and Theorem 3.5 in § 3.8.

3.2. Structure of W⩾(S) in the non-deformed case. In this section we assume that s2 = 0
and c1 = 0, so that the relation (f) simplifies to

[Tm(λ), Tn+3(µ)]− 3[Tm+1(λ), Tn+2(µ)] + 3[Tm+2(λ), Tn+1(µ)]− [Tm+3(λ), Tn(µ)] = 0.(3.5)

Theorem 3.6. Assume that s2 = 0 and c1 = 0. Then the assignment

ψn(λ) 7→ D0,n(λ) , Tn(λ) 7→ D1,n(λ) , c 7→ c(3.6)

extends to an algebra isomorphism Φ :W⩾(S)→ U(w⩾
0 (S)).
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Proof. For simplicity, we will denote the elements Tn(1), ψn(1) simply by Tn, ψn. The elements
D0,n(λ), D1,n(λ) satisfy the relations (a)-(g). Hence the assignment above yields an algebra homo-
morphism. We claim that the following defines an inverse homomorphism Ψ to the map Φ

Ψ : Dm,n(λ) 7→ D̃m,n(λ) :=
n!

(m+ n)!
(−AdT0)

mψm+n(λ).(3.7)

To prove the Theorem, we need to check that the elements D̃m,n(λ) satisfy the defining rela-
tions (3.4). Note that they are trivially satisfied for m = n = 0. We begin by explicitly computing
a few commutators of low rank.

Let us first observe that by relation (e), for any k and any λ, we have

[T1, T1(λ)] = [T1(λ), T1] = 0

since T1 is even. In particular, unraveling the definition of D̃m,n(µ) we obtain

[T0(λ), D̃m,n(µ)] = −nD̃m+1,n−1(λµ), n⩾1.(3.8)

In the same way, the relations (d), (c) imply that [ψ1(λ), T0(µ)] = T0(λµ) and [ψ1(λ), ψn(µ)] = 0.
So we get

[ψ1(λ), D̃m,n(µ)] = mD̃m,n(λµ).(3.9)

Let us now consider the commutators [Tk(λ), Tl(µ)]. By (e), it’s enough to assume that λ = 1.
As above,

[Tk, Tk(µ)] = [Tk(µ), Tk] = −[Tk, Tk(µ)] = 0

for any k, µ. Likewise,

[Tk, Tk+1(µ)] = −[Tk+1(µ), Tk] = −[Tk+1, Tk(µ)].

Using (3.5) first for m ∈ {n, n± 1} and then successively for m > n and m < n we deduce that for
any n, the commutators [Tk, Tn−k(µ)] for k = 0, 1, . . . , n are all proportional to one another, hence,

say to [Tn, T0(µ)] = nD̃2,n−1(µ). But since Φ(D̃2,l(µ)) = D2,l(µ), we deduce that

[Tk(λ), Tn−k(µ)] = [Tk, Tn−k(λµ)] = (2k − n)D̃2,n−1(λµ)

as expected. Further taking commutators with ψk(µ) = D̃0,k(µ), we get

[D̃2,j(λ), D̃0,k(µ)] = −2kD̃2,j+k−1(λµ).(3.10)

Next, we consider commutators with D̃2,0. Relation (g) implies that [D̃2,0, T0] = [[T1, T0], T0] = 0,

and more generally one has [D̃2,0(λ), T0(µ)] = 0. Using (3.8), we deduce from (3.10) by induction
on m that

[D̃2,0(λ), D̃m,n(µ)] = −
1

n+ 1
[T0, [D̃2,0(λ), D̃m−1,n+1(µ)]](3.11)

= 2[T0, D̃m+1,n(λµ)]

= −2nD̃m+2,n−1(λµ)

for any n⩾1.

Finally, from relations (3.11), (3.8), (3.9) and the definition of D̃m,n we deduce in turn the
following equalities

[T1(λ), D̃m,n(µ)] = (m− n)D̃m+1,n(λµ),(3.12)

[ψ2(λ), D̃m,n(µ)] = 2mD̃m,n+1(λµ)(3.13)
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for allm,n⩾0. Assume now that the relations (3.4) hold for a given pair (m,n) and all pairs (m′, n′)
with n′⩾1. Then, by applying AdT1 or AdT0 , resp. Adψ2 and using (3.12) or (3.8), resp. (3.13), we
deduce that the same is true for the pairs (m+1, n), resp. (m,n+1). Starting fromm = 1, n = 0, we
deduce that (3.4) holds for any pair (m,n) with m⩾1 and n′⩾1, and thus, by symmetry, whenever
m′⩾1 and n⩾1. The only remaining cases occur when m = m′ = 0 (for which (3.4) trivially holds)
and when n = n′ = 0, which we now deal with. We’ll prove by induction on m+m′ that

(3.14) [D̃m,0(λ), D̃m′,0(µ)] = 0.

Fix s and assume that (3.14) holds whenever m +m′⩽s. Note that the above calculations show
that this is indeed the case for s = 3. If m,m′ > 0 satisfy m +m′ = s + 1 then by the induction
hypothesis and what we’ve already established we have

[T0, D̃m−1,1(λ)] = −D̃m,0(λ), [T0, D̃m′−1,1(µ)] = −D̃m′,0(µ),

[T0, D̃m,0(λ)] = 0, [T0, D̃m′,0(µ)] = 0,

1

m′ [D̃m−1,1(λ), D̃m′,0(µ)] = D̃m+m′,0(λµ) = −
1

m
[D̃m,0(λ), D̃m′−1,1(µ)].

Applying AdT0
to this last equation we deduce [D̃m,0(λ), D̃m′,0(µ)] = 0. We are done. □

3.3. Order filtration. Let us return to the case of an arbitrary projective S. We will introduce
a filtration and provide a set of linear generators of W⩾(S). Let F• be the smallest filtration of
W⩾(S) such that c ∈ F0 and

- ψn(λ), Tn(λ) ∈ Fn for all n ∈ N, λ ∈ H∗(S,Q),
- FnFn′ ⊂ Fn+n′ ,
- [Fn, Fn′ ] ⊂ Fn+n′−1.

We call F• the order filtration. The algebra W⩾(S) is bigraded by (3.1). Set

Fm,n = Fn ∩W⩾(S)[m,−].
The filtration F• can be given more explicitly as follows. By a Lie word we mean a combination of
Lie brackets applied to the generators of W⩾(S). By a monomial we mean a product of Lie words.
We assign a weight to any Lie word by summing up the indices of the generators and subtracting
the number of brackets. We assign a weight to any monomial by adding up the weights of the Lie
words. Then Fn is the span of expressions of weight ⩽n. Note that the relations of W⩾(S) are not
homogeneous for the weight.

Lemma 3.7. We have F0,−1 = 0, and Fm,−m = 0 for any m > 0.

Proof. We must show that the weight n of any non-zero monomial of degree m is n > −m if m > 0
and n > −1 if m = 0. Since degrees and weights are additive for products, it is enough to prove the
statement for generators and Lie words. The generators have weights ⩾ 0, so they satisfy the claim.
Next, take a non zero Lie word of the form [f, g] for two Lie words f , g of degrees m, m′ and weights
n, n′ respectively. We prove the claim by induction. The weight of [f, g] is n+ n′ − 1, its degree is
m +m′. If m,m′ > 0, then n > −m and n′ > −m′, hence n + n′ − 1 > −m −m′. Now suppose
m = 0. We have W⩾(S)[0,−] = Λ(S). Hence, the algebra W⩾(S)[0,−] is super-commutative.
Thus f cannot be a Lie bracket. So we have f = ψn(λ) for some λ ∈ H∗(S,Q). Since ψ0(λ) is
central, we have n > 0. Hence n+ n′ − 1⩾n′ > −m′ = −m−m′. □

Proposition 3.8. There are elements Dm,n(λ) ∈ W⩾(S) for each m,n ∈ N and λ ∈ H∗(S,Q),
such that

(a) D0,n(λ) = ψn(λ), D1,n(λ) = Tn(λ),
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(b) F−1 = 0, and Fn is spanned by all products Dm1,n1(λ1) · · ·Dmk,nk
(λk) with

∑
i ni⩽n,

(c) the relation (3.4) holds modulo Fn+n′−3.

Proof. The graded vector space Gr•W
⩾(S) =

∑
n∈Z Fn/Fn−1 has two operations: a graded (com-

mutative) multiplication and a Lie bracket of degree −1. Consider the Lie algebra g generated
by the elements ψn(λ), Tn(λ) for n⩾0, λ ∈ H∗(S,Q). The relations (a)-(e), (g) hold in g, as well
as the simplified version (3.5) of the relation (f). By Theorem 3.6 the Lie algebra g is spanned
by the elements Dm,n(λ), and therefore Gr•W

⩾(S) is generated by these elements as an algebra.
In particular, we have Fn/Fn−1 = 0 for n < 0, hence Lemma 3.7 implies that F−1 = 0. Further
Fn/Fn−1 is spanned by all products Dm1,n1(λ1) · · ·Dmk,nk

(λk) with
∑
i ni = n. Therefore the first

two claims of the theorem are satisfied with any lift of the elements Dm,n(λ) in g to W⩾(S). We
also get a weak version of last claim, i.e., the identity (3.4) holds modulo Fn+n′−2. In order to get
this identity modulo Fn+n′−3, we repeat the argument above with the (possibly non commutative)
algebra

∑
n∈Z Fn/Fn−2. □

Definition 3.9. The algebra W⩾
0 (S) is generated by ψn(λ), Tn(λ) for all n, λ subject to the

relations (a)-(e), (3.5) and (g).

By the proof of Theorem 3.6 we have W⩾
0 (S) = U(w⩾

0 (S)), where w⩾
0 (S) is the degenerate

Lie algebra (3.4). Proposition 3.8 thus implies the existence of a canonical surjective algebra
homomorphism

(3.15) ρ : Sym(w⩾
0 (S)) ↠ Gr•W

⩾(S)

as well as a morphism of Lie algebras (with the Lie bracket on Gr•W
⩾(S) being of degree −1)

(3.16) ρ′ : w⩾
0 (S) ↠ Gr•W

⩾(S).

3.4. Deformed W -algebras. We now proceed to define a ’doubled’ version W (c)(S) of W⩾(S).

Let us set δ(z) =
∑
n∈Z z

n and put θ(z) =
∑
n⩾0 hnz

n. Recall that θ̃(x) = τc1(θ(x)).

Definition 3.10. The algebra W (c)(S), called the deformed W -algebra of S, is generated by ele-
ments ψn(λ), T

±
n (λ) for n⩾0, λ ∈ H∗(S,Q) and a central element c subject to the following relations:

• Relations (a), (b), (c) and (e) of §3.1 with T±
n (λ) in place of Tn(λ);

• [ψm(λ), T±
n (µ)] = ±mT±

n+m−1(λµ);

• The assignment Tn(λ) 7→ T+
n (λ), resp. Tn(λ) 7→ T−

n (λ), extends to a homomorphism, resp. to
an anti -homomorphism W+(S)→W (c)(S);

• The double relation, which is best expressed in terms of generating series:

(3.17)
[
T+
λ (x), T−

µ (y)
]
= − exp(iπc)

[
1

c1x

(
1− θ(x)

θ̃(x)

)
δ
(y
x

)
(λµ)

]
++

where T±
λ (z) =

∑
n⩾0 T

±
n (λ)zn and where A(x, y)++ stands for the truncation of a power

series to its terms xayb with a, b⩾0. Explicitly, one may rewrite this relation as follows:

(3.18) [T+
m(λ), T−

n (µ)] = − exp(iπc)
∑

0⩽i⩽j⩽m+n

(−1)j
(
c− j + i

i+ 1

)
hm+n−jej−i(c

i
1λµ).
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We will denote by W+(S),W−(S) and W 0(S) the subalgebras generated by T+
n (λ), resp. by

T−
n (λ), resp. by ψn(λ), c for n⩾0 and λ ∈ H∗(S,Q). We likewise define W⩾(S),W⩽(S). The

algebra W (c)(S) is naturally Z2-graded, with

deg(T±
n (λ)) = (±1, 2n− 2 + deg(λ)), deg(ψ(n)) = (0, 2n− 2 + deg(λ)), deg(c) = (0, 0).

We will write W (e)(S) for the central specialization of W (c)(S) to c = e.

Remark 3.11.

(i) The elements T−
n (λ) satisfy the following sign-corrected version of (f):

[Tm(λ), Tn+3(µ)]− 3[Tm+1(λ), Tn+2(ν)] + 3[Tm+2(λ), Tn+1(µ)]− [Tm+3(λ), Tn(µ)]

− [Tm(λ), Tn+1(s2µ)] + [Tm+1(λ), Tn(s2µ)]−{Tm, Tn}(c1∆Sλµ) = 0,
(f’)

(ii) When c1 = 0, the r.h.s of (3.18) reduces to (up to the factor − exp(iπc))∑
0⩽k⩽n+m

(c−k)(−1)khn+m−kek(λµ) = cδn+m,0(λµ)−
∑

0⩽k⩽n+m

k(−1)khn+m−kek(λµ) = pn+m(λµ).

If, in addition s2 = 0 (equivalently, c2 = 0) then we also have TdS(x) = 1 and pl(λ) = lψl−1(λ).

(iii) Note that the relation (3.18) has a formal term exp(iπc). For any central specialization c = e
it becomes just a complex number. Moreover, in all cases of interest for us, c will be a
non-negative integer, so that exp(iπc) = (−1)e, and W (e)(S) is defined over Q.

Proposition 3.12. The natural maps W⩾(S)op → W (c)(S), W⩾(S) → W (c)(S) are embeddings
of algebras, and the multiplication map W−(S)⊗W 0(S)⊗W+(S) → W (c)(S) is an isomorphism
of vector spaces.

Proof. Analogous to [42, Appendix A]. □

Remark 3.13. The same proof as in [42, Appendix A] also shows that W+(S) is isomorphic to the
algebra generated by the Tl(λ) subject to the relations (b), (e), (f) and (g).

In the undeformed case, we have a presentation of W (c)(S) as the enveloping algebra of a Lie
algebra again. More precisely, consider the Lie algebra w(S) generated by elementsDm,n(λ),m ∈ Z,
n ∈ N, λ ∈ H∗(S,Q), whose Lie bracket is given by (3.4), where we set Di,−1 := δi,0c.

Theorem 3.14. Assume that s2 = 0 and c1 = 0. There is an algebra isomorphism Φ :W (c)(S)→
U(w(S)), which sends ψn(λ) to D0,n(λ), T

+
n (λ) to D1,n(λ) and T

−
n (λ) to exp(iπc)D−1,n(λ).

Proof. Denote by w+(S), w−(S) the Lie subalgebras of w(S) spanned by Dm,n(λ) withm > 0, m <
0 respectively. The restriction of Φ to W± defines isomorphisms of algebras W±(S) ≃ U(w±(S))
by Theorem 3.6. An inductive argument analogous to the proof of Proposition 3.15 below shows
that the commutation relations between w+(S) and w−(S) hold in W (c)(S) as well. We conclude
by Proposition 3.12 and the PBW theorem for universal enveloping algebras. □

3.5. Heisenberg subalgebra. The Heisenberg algebra hS of S is the Lie algebra generated by
elements

{qn(λ), C | n ̸= 0, λ ∈ H∗(S,Q)} ,
(with, as usual, the relation qn(λ+ µ) = qn(λ) + qn(µ) for any n and λ, µ) with Lie bracket given
by

[qm(λ), ql(µ)] = mδ−m,lC

∫
S

λ ∪ µ, C is central.(3.19)
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Recall the elements Dm,n(λ) ∈ W⩾(S) from Proposition 3.8. Let us consider the homomorphism
Θ :W+(S)→W−(S) defined by Θ(T+

n (λ)) = (−1)nT−
n (λ). We set D−m,n(λ) = Θ(Dm,n(λ)). The

same theorem implies that elements Dm,0(λ) with m⩾1 and λ ∈ H∗(S,Q) super-commute with
each other, and are uniquely determined by the following formula:

(3.20) Dm+1,0(λ) =
1

m
[D1,1(1), Dm,0(λ)].

Proposition 3.15. The assignment C 7→ c and

qn(λ) 7→ Dn,0(λ), q−n(λ) 7→ −e−iπcD−n,0(λ) (n > 0)

defines a morphism of algebras U(hS)→W (c)(S). In particular, Theorem 3.2(b) holds.

Proof. Denote L± = D±1,1(1), L0 = ψ1(1). By definition, we have [L±, q±m(λ)] = mq±(m+1)(λ).
Moreover, the following equalities are easy consequences of relation (3.18):

(3.21) [q1(λ), q−1(µ)] = c

∫
S

λ ∪ µ, [L±, q∓1(λ)] = ±ψ0(λ)∓
(
c

2

)∫
S

λ ∪ c1,

[L0, L±] = ±L±, [L+, L−] = 2L0 − cψ0(c1) +

(
c

3

)∫
S

c21.

In view of Theorem 3.8, it suffices to check the relations [q−m(λ), qn(µ)] = ncδm,n(λ, µ) for
m,n > 0. We proceed by induction. First, note that [L0, q±n] = ±nq±n:

[L0, qn+1] =
1

n
[L0, [L+, qn]] = −

1

n
([qn, [L0, L+]] + [L+, [qn, L0]]) = qn+1 + [L+, qn]

= (n+ 1)qn+1.

Next, [L±, q∓n(λ)] = ∓nq∓(n−1) for n > 1:

[L+, q−(n+1)(λ)] =
1

n
[L+, [L−, q−n(λ)]] = −

1

n
([q−n, [L+, L−]] + [L−, [q−n, L+]])

= −2q−n − [L−, q−(n−1)] = −(n+ 1)q−n.

It is easy to see that [q±1(λ), q∓n(µ)] = 0 for n > 1:

[q−1(λ), qn+1(µ)] =
1

n
[q−1(λ), [L+, qn(µ)]]

= − 1

n
([L+, [qn(µ), q−1(λ)]] + [qn(µ), [q−1(λ), L+]]) = 0.

Finally, for any positive m, n we have by induction

[q−(m+1)(λ), qn+1(µ)] =
1

n
[q−(m+1)(λ), [L+, qn(µ)]]

=
1

n
[L+, [q−(m+1)(λ), qn(µ)]] +

m+ 1

n
[q−m(λ), qn(µ)]

= c(m+ 1)δm,n

∫
S

λ ∪ µ,

which proves the desired statement. □

Remark 3.16. Note that (3.21) contains central terms which do not appear in [23, Theorem 3.3].
The reason is these terms vanish for the Hilbert schemes (see § 7), since in this case c = 1 and
ψ0(λ) = 0 for all λ ∈ H⩾2(S).
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The relations (c-d) imply that D0,0(λ) = ψ0(λ) is central inW
(c)(S) for any λ ∈ H⩾2(S). Denote

by Z(S) the super-commutative subalgebra generated by D0,0(λ)’s, and by W
(c)
red(S) the quotient

of W (c)(S) by the (two-sided) ideal generated by Z(S).

Lemma 3.17. If I ⊂ W
(c)
red(S) is a two-sided ideal such that I ∩ U(hS) = {0}, then I = {0}.

Similarly, if I+ ⊂W+(S) is a two-sided ideal with I+ ∩ U(h+S ) = {0}, then I+ = {0}.

Proof. The proofs of the two claims being completely analogous, we will only prove the first one.
We follow the proof of [39, Lemma F.7].

The algebra W
(c)
red(S) admits the order filtration as in § 3.3. Recall that Gr•W

(c)
red(S) is a graded

super-commutative algebra, equipped with a Lie bracket of degree −1. Let Gr• I ⊂ Gr•W
(c)
red(S)

be the associated graded of I with respect to the induced filtration. Using Theorem 3.14 instead of
Theorem 3.6, we can repeat the proof of Theorem 3.8 to get an algebra surjection ν : Q[Dm,n(λ)]→
Gr•W

(c)
red(S). Set J = ν−1(Gr• I). It is enough to show that J = {0}.

The ideal J is graded by the weight. Let x ∈ J be a non-zero element of minimal weight n. Since

U(hS) ⊂ Gr0W
(r)
red(S), we have J ∩ U(hS) = {0}. Hence n > 0. We write

x =
∑
i

ci
∏
j

Dmij ,nij
(λij) ,

∑
j

nij = n.

Assume that for each i, j we have either nij > ni,j+1, or nij = ni,j+1 and mij⩾mi,j+1. Let
ni = {ni1⩾ni2⩾ . . .}. Let ι be the index of the maximal tuple among all ni’s, with respect to the
lexicographic order. We write nι = {n1⩾ . . .⩾ns} and mι = {m1⩾ . . .⩾ms}.

The space Q[Dm,n(λ)] is equipped with the Lie bracket given by (3.5) and Leibniz rule. Consider
the operators σl = Ad(Dl,0(1)) of degree −1. We have

(3.22) σl(Dm1,n1
(λ1) · · ·Dmk,nk

(λk)) = −l
k∑
i=1

niDm1,n1
(λ1) · · ·Dmi+l,ni−1(λi) · · ·Dmk,nk

(λk).

The ideal J is preserved by the action of the operators σl. Fix l > max{mij}. Let us compute the
coefficient in σl(x) of the monomial

Dm1+l,n1−1(λ1)Dm2,n2
(λ2) · · ·Dms,ns

(λs)

The condition on l implies that the only monomial in x which can contribute to this coefficient
is the monomial corresponding to ι. Using the formula (3.22), we obtain that this coefficient is
−l cι n1 t, where t is the maximal number with nt = n1 and mt = m1. This coefficient is non-zero.
Hence, we have σl(x) ̸= 0. However, we have σl(x) ∈ J and deg σl(x) < deg x. This contradicts the
minimality of the weight n. □

3.6. Virasoro subalgebra. Let us introduce another Lie subalgebra of W (c)(S). The results of
this section will not be used anywhere, but seem to be of independent interest.

Definition 3.18. Let η : H∗(S,Q)⊗2 → Z(S)[c] be a bilinear map. The Virasoro algebra VirS(η)
of S of central charge η is the Lie algebra generated by

{Ln(λ), γ, c | n ∈ Z, λ ∈ H∗(S,Q), γ ∈ Z(S)},
where γ ∈ Z(S) and c are central, and the Lie bracket is given by

(3.23) [Lm(λ),Ln(µ)] = (n−m)Lm+n(λµ)−
n3 − n
12

δ−m,nη(λ, µ).

Remark 3.19. Our definition differs from the standard conventions by a sign; in other words, we
are considering the opposite Lie algebra of the usual definition.
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Let us fix a specific choice of elements D±n,1, n⩾2 in W (c)(S):

D±2,1 := ±1

2
[D±1,2, D±1,0], D±(n+1),1 :=

±1
n− 1

[D±1,1, D±n,1].

Let us also define the following elements:

Ln(λ) = Dn,1(λ) +
(n− 1)c

2
Dn,0(c1λ) +

1

2
δn,0

(
c

3

)∫
S

c21λ, n⩾0,

Ln(λ) = exp(iπc)

(
Dn,1(λ)−

(n+ 1)c

2
Dn,0(c1λ)

)
, n < 0.

Proposition 3.20. The assignment Ln(λ) 7→ Ln(λ), γ 7→ γ, c 7→ c defines a morphism of algebras
U(VirS(η))→W (c)(S), where the central charge η is given by

η(λ, µ) = c

(∫
S

c2λµ− (1− c2)

∫
S

c21λµ+ 2ψ0(c1λµ)

)
.

Proof. Note that the relation (3.23) for m, n of the same sign follows from Proposition 3.8. For
other commutators, note that VirS(η) is generated over Z(S)[c] by the elements Ln, |n|⩽2. Once
we check the commutation relations between these elements, the rest of the relations can be deduced
by an inductive argument as in Proposition 3.15. The computation for the five elements above is
straightforward, albeit laborious; we leave it to the interested reader. It is performed using the
definitions of elements Ln(λ) and the defining relations of W (c)(S). Let us briefly comment on the
appearance of c2 in the formula η. While (3.18) does not manifestly depend on c2, after writing
out its r.h.s. in terms of ψi’s for m+ n = 4 we obtain

− exp(iπc)
(
4ψ3(λµ)− 3cψ2(c1λµ)− 2(ψ0ψ1)(c1λµ) + (c2 − c+ 2)ψ1(c

2
1λµ)− 2ψ1(c2λµ) + · · ·

)
where the omitted summands belong to the center of W (c)(S). The underlined term is precisely
the one which gives rise to

∫
S
c2λµ. □

3.7. Proof of Theorem 3.2(a). Recall that we have obtained an upper bound on the graded
dimension of W⩾(S) in § 3.3. In order to obtain a lower bound, we consider the descending algebra
filtration G• of W (1)(S) obtained by putting the generators T±

n (λ), ψl(λ) in degree deg(λ). From
the defining relations and Proposition 3.12 it follows that GN be spanned by all monomials

T−
i1
(µ−

1 ) · · ·T
−
il−

(µ−
l−
)ψj1(λ1) · · ·ψjl0 (λl0)T

+
k1
(µ+

1 ) · · ·T
+
kl+

(µ+
l+
)

with
∑

deg(λi) +
∑

deg(µ±
j )⩾N . In particular, the restriction of this filtration to W⩾(S) is given

by the same definition without T−’s. It is clear that each GN is a two-sided ideal in W (1)(S).

One defines a double W
(1)
0 (S) = U(w

(1)
0 (S)) of W⩾

0 (S) in an obvious way, using relations as in
Theorem 3.14. The images of ψn(λ)’s and T

±
n (λ)’s in Gr•W⩾(S) satisfy the relations (a)-(e), (g).

As the last three summands in (f) have higher G-degree than the first four, the relation (3.4) holds
in Gr•W⩾(S) as well. For the same reason, relation (3.18) with c1 = s2 = 0 holds too. We deduce

that there is an algebra homomorphism ζ :W
(1)
0 (S)→ Gr•W (1)(S) which maps ψn(λ) to Grψn(λ)

and T±
n (λ) to GrT±

n (λ).

Lemma 3.21. The morphism ζ :W
(1)
0 (S)→ Gr•W (1)(S) is an isomorphism.

Proof. The morphism is surjective by definition of G•. Its restriction to U(h(S)) is non-zero (and
of central charge c = 1); the kernel of this map is a two-sided ideal of U(h(S)), which has to be
zero by a standard argument. We conclude by Lemma 3.17. □
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Proof of Theorem 3.2(a). The map ζ restricts to an isomorphismW⩾
0 (S) ≃ Gr•W⩾(S), compatible

with the grading. It suffices to observe that the Hilbert series of W⩾
0 (S) = U(w⩾

0 (S)) is given
by (3.2). □

3.8. Structure of W⩾(S) in the semi-deformed case. Suppose that c1 = 0, and q ∈ H2(S,Q)
is such that q2 = s2. Recall the Lie algebra w⩾(S) from Definition 3.3. The following proposition
is a slightly more precise version of Theorem 3.5.

Proposition 3.22. Assume that c1 = 0 and s2 = q2 for q ∈ H2(S,Q). There exists an algebra
isomorphism Φ :W⩾(S) ≃ U(w⩾(S)) such that

Φ(T+
n (λ)) = zDnλ, Φ(ψn(λ)) = Dnλ+

∑
i>0

aniD
n−iqiλ

for some explicit rational numbers (aij).

Proof. It is straightforward to check that the relations (b), (e)-(g) hold between Φ(T+
n (λ)). Note

that we have

[Dmλ, zDnµ] = mzDm+n−1λµ+

m∑
i=2

(
m

i

)
zDm+n−iqi−1λµ

Let A = (aij) be the inverse of the matrix B = (bij), where bij =
1
i

(
i

j−1

)
for i⩾j and 0 otherwise,

and define Φ(ψn(λ)) =
∑
i⩾0 an,n−iD

n−iqiλ. Since B is upper-triangular with 1’s on the diagonal,

Φ(ψn(λ)) has the required form, and the relation (d) holds by definition, as well as the tautological
relations (a), (c). We have thus obtained a well-defined homomorphism Φ :W⩾(S)→ U(w⩾(S)).

Observe that the Lie algebra w⩾(S) is generated by the elements Dnλ, zDnλ. In particular, Φ
is surjective. Finally, the graded dimension W⩾(S) is equal to the graded dimension of U(w⩾(S))
by Theorem 3.5(a), so we may conclude. □

Remark 3.23. In [25], an action of a certain Lie algebra WS on the cohomology of Hilbert schemes
of points on S was constructed via vertex algebra methods. Its basis is given by elements Jpm(λ),
m ∈ Z, p ∈ Z⩾0, λ ∈ H∗(S,Q) and the Lie bracket is, up to central charge,

[Jpm(λ), Jqn(µ)] = (qm− pn)Jp+q−1
m+n (λµ)−

Ωp,qm,n
12

Jp+q−3
m+n (c2λµ),

where Ωp,qm,n is given by formula (5.2) in loc. cit. This Lie algebra by definition lives in a certain

completion of W (1)(S), but in the case when c1 = 0 it is an actual subalgebra of W (1)(S) by
Lemma 5.2 in loc. cit. Let us set

T±
n (λ) = Jn±1(λ), ψn(λ) = Jn0 (λ).

One can check by a direct computation that the relations ofW (1)(S) with c1 = 0 hold. Therefore we
obtain a homomorphism of algebrasW (1)(S)→ U(WS), which may be shown to be an isomorphism
by a simple dimension check. We want to emphasize that the existence of this homomorphism
crucially relies on the fact that c22 = 0, which is true in H∗(S,Q) for degree reasons. In the presence
of a torus action this vanishing typically fails (hence the results of [25] do not apply) and one
obtains instead the semi-deformed algebra U(w⩾(S)). Note that our presentation does not involve
the factor Ωp,qm,n.
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4. Fock space representations of W (r)(S)

In this section, we construct a Fock space representation of W (r)(S) for any r⩾0 by considering
the action of Hecke correspondences on tautological cohomology rings. We still assume that S is
projective.

4.1. The algebra of universal Hecke operators. Recall from (2.22) the algebra homomor-
phisms R± and the Λ(S)-linear maps Q±. We define the elements ϕn(λ), n ∈ N and c(λ) in Λ(S)
by the following generating series:

ϕλ(x) = x−1c(λ) +
∑
n⩾0

xn

n!
ϕn(λ) :=

∑
n⩾0

xn−1

n!
pn
(
TdS(x) ∪ λ

)
∈ Λ(S)((x)).

Note that c(λ) = 0 if λ ̸∈ C[pt] while c([pt]) = p0([pt]) = r. Let us denote by the same symbols
ϕn(λ), c(λ) the operators of left multiplication in Λ(S). For n ∈ Z, we put, following § 2.6

(4.1) L±
n (λ) : Λ(S)→ Λ(S), f 7→ Q±(λunR±(f)).

We recall θ(x) =
∑
m⩾0 hmx

m from § 3.4 and we set

L±
λ (x) =

∑
n∈Z

L±
n (λ)x

n.

Proposition 4.1. The assignment ψn(λ) 7→ ϕn(λ), c 7→ r, T±
n (λ) 7→ L±

n (λ) for n⩾0 and λ ∈
H∗(S,Q) extends to respective actions of W⩾(S) and W⩽(S) on Λ(S).

Proof. We will deal with the positive operators only, the second case being identical. To unburden
the notation, we suppress + from the notation. We have to show that the operators ϕn(λ), Ln(λ)
satisfy the defining relations (a)-(g) of W⩾(S). The relations (a), (b), (c) being immediate, we
concentrate on the remaining ones. We deduce from (2.21) that∑

m⩾0

xm

m!
evδ(pm(λ)) = x2euxTd−1

S (x)λ.

In particular, we get

[ϕλ(x), Ln(µ)] =
∑
m⩾0

xm−1

m!
[pm(TdS(x)λ), Ln(µ)]

=
∑
m⩾0

xm−1

m!
Q
(
µun(pm −R(pm))(TdS(x)λ)R(−)

)
= xQ

(
µun

∑
m⩾0

xm−2

m!
evδ(pm)(TdS(x)λ)R(−)

)
= xQ

(
uneuxλµR(−)

)
=
∑
m⩾0

xm+1

m!
Q
(
λµum+nR(−)

)
=
∑
m⩾1

xm

(m− 1)!
Lm+n−1(λµ)

which proves the relation (d). Note that thanks to this, it suffices to check relations (e), (f) and (g)
when evaluated at 1.

Let us write

Ω(x, y) =
y2

(1− y(x−1 − t1))(1− y(x−1 − t2))
∈ H∗(S,Q)[x, x−1][[y]].
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Lemma 4.2. We have the following identity:

Lλ(x)Lµ(y)(1) = m(θ(x)⊗ θ(y))(1−∆Ω(x, y))(λ⊗ µ)

where we denote by m : Λ(S)⊗ Λ(S)→ Λ(S) the multiplication map.

Proof. Let us first note that

Lµ(y)(1) =
∑
n⩾0

ynhn(µ) = exp
(∑
k⩾1

yk

k
pk

)
(µ).

Using formula (2.21), we get after applying R:

R(Lµ(y)(1)) = R

(∫
S

exp
(∑

k

yk

k
chk

)
µ2

)
=

∫
S

exp
(∑
k⩾1

yk

k
((chk)12 − (∆fk(u))23)

)
µ2

=

∫
S

exp
(∑
k⩾1

yk

k
((chk)

)
12

exp
(
−
∑
k

yk

k
∆fk(u)

)
23
µ2

=

∫
S

p(θ(y))12 exp
(
−∆

∑
k⩾1

yk

k
fk(u)

)
23
µ2.

In the above, we use indices to specify the position in the tensor product, i.e. µ2 = 1⊗ µ⊗ 1, etc.
Since ∆2 = t1t2∆, we can compute the exponential term:

exp
(
−∆

∑
k⩾1

yk
uk − (u− t1)k − (u− t2)k + (u− t1 − t2)k

kt1t2

)
= 1 +

∆

t1t2

(
exp

(
−
∑
k⩾1

yk
uk − (u− t1)k − (u− t2)k + (u− t1 − t2)k

k

)
− 1

)

= 1− ∆

t1t2

(
(1− yu)(1− yu+ yt1 + yt2)

(1− yu+ yt1)(1− yu+ yt2)
− 1

)
= 1− y2∆

(1− yu+ yt1)(1− yu+ yt2)
.

By the definition of the operator Q, we have the following equality∑
m∈Z

Q(xmum+iλ) = x−i
∑
m⩾0

xmhm(λ).

Putting everything together, we conclude that

Lλ(x)Lµ(y)(1) = Q
(
λ
∑
n∈Z

(xu)nRLµ(y)(1)
)

=

∫
S

Q
(
λ2
∑
n∈Z

(xu)np(θ(y))13
(
1− y2∆23

(1− yu+ yt1)(1− yu+ yt2)

)
µ3

)
=

∫
S

Q
(
λ2
∑
n∈Z

(xu)np(θ(y))13
(
1− y2∆23

(1− yx−1 + yt1)(1− yx−1 + yt2)

)
µ3

)
=

∫
S×S

p(θ(x))12 p(θ(y))13

(
1− y2∆

(1− yx−1 + yt1)(1− yx−1 + yt2)

)
λ2 µ3

= m(θ(x)⊗ θ(y))(1−∆Ω(x, y))(λ⊗ µ)).
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In the above, we have made use of the relation
∑
n∈Z(ux)

nA(u) =
∑
n∈Z(ux)

nA(x−1) which is valid
for a Laurent series A(u). □

Now, by Lemma 4.2, we have

[Lλ(x), Lµ(y)](1) = −
∫
S×S

p(θ(x))12 p(θ(y)))13 (∆Ω(x, y)−∆Ω(y, x))23 λ2 µ3

= −θ(x)θ(y)(Ω(x, y)− Ω(y, x))(λ ∪ µ)
which implies relation (e).

Next, let us put z = y−1 − x−1. The following relation results from a direct computation:

(z3 − z(s2 ⊗ 1 + 1⊗ s2)/2− s1∆)(1−∆Ω(x, y))

=(z3 − z(s2 ⊗ 1 + 1⊗ s2)/2 + s1∆)(1−∆Ω(y, x)).

Unpacking the generating series and using Lemma 4.2, we see that the relation (f) holds when
evaluated at 1 (hence it holds in general).

Let’s finally turn to (g). Similarly to Lemma 4.2, we have

Lλ1(x1)Lλ2(x2)Lλ3(x3)(1) = m(θ(x1)⊗ θ(x2)⊗ θ(x3))
∏
i<j

(1−∆Ω(xi, xj))ij(λ1 ⊗ λ2 ⊗ λ3).

Note that the product of Ω functions is well-defined as a Laurent series. Using this formula and
expanding the products, one can show that

[Lλ1
(x1), [Lλ2

(x2), Lλ3
(x3)]](1) = m(θ(x1)⊗ θ(x2)⊗ θ(x3))∆123K(x1, x2, x3)(λ1 ⊗ λ2 ⊗ λ3),

where ∆123 = ∆12∆23 = ∆12∆13 = ∆13∆23, and

K(x1, x2, x3) = (1− σ23)(1 + σ13)Γ(x1, x2, x3)

where we have set

Γ(x1, x2, x3) =
(
Ω(x1, x2)Ω(x2, x3) + Ω(x1, x2)Ω(x1, x3) + Ω(x1, x3)Ω(x2, x3)

− t1t2Ω(x1, x2)Ω(x2, x3)Ω(x1, x3)
)

and where σij stands for the transposition of the indices (i, j). In order to prove the relation (g),
we need to show that the following expression vanishes, as a (Laurent) series:∑
w∈S3

w[Lλ1
(x1), [Lλ2

(x2), x
−1
3 Lλ3

(x3)]](1) = (θ(x1)⊗θ(x2)⊗θ(x3))∆123K
′(x1, x2, x3)(λ1⊗λ2⊗λ3),

where K ′(x1, x2, x3) =
∑
w∈S3

w(x−1
3 K(x1, x2, x3)). We will show that K ′ vanishes. Using the

observation that∑
w∈S3

wx−1
3 (1− σ23)(1 + σ13) =

∑
w

w(x−1
3 − σ23x

−1
2 + σ13x

−1
1 − σ23σ13x

−1
2 )

=
∑
w

w(x−1
1 − 2x−1

2 + x−1
3 )

we obtain

K ′(x1, x2, x3) =
∑
w∈S3

w
(
(x−1

1 − 2x−1
2 + x−1

3 )Γ(x1, x2, x3)
)
.

We verify by a direct computation that

(x−1
1 − 2x−1

2 + x−1
3 )(Ω(x1, x2)Ω(x2, x3)− t1t2Ω(x1, x2)Ω(x2, x3)Ω(x1, x3))

= (x−1
3 − x

−1
1 )(Ω(x1, x2)Ω(x1, x3)− Ω(x1, x3)Ω(x2, x3)).
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Therefore, we can express K ′ as follows:

K ′(x1, x2, x3) = 2
∑
w∈S3

w
(
(x−1

3 − x
−1
2 )Ω(x1, x2)Ω(x1, x3) + (x−1

1 − x
−1
2 )Ω(x1, x3)Ω(x2, x3)

)
.

Note that the first term in parentheses is antisymmetric is x2 and x3, and the second one is
antisymmetric in x1 and x2. Therefore their respective symmetrizations vanish, and we obtain
K ′ = 0. Thus the relation (g) holds, and the proof is complete. Note that we considered in the
above calculations elements Ln(λ) with n < 0, but the only relations which we are interested in
are those involving only the generators Ln(λ) for non negative values of n. Proposition 4.1 is
proved. □

4.2. Level r Fock space representation of W (c). Let us fix an integer r⩾0, set

Λ(S)r = Λ(S)|r=r, rL
±
n (σ) = Ln+1∓r(σ), (n ∈ Z, σ ∈ H∗(S,Q))

and consider the normalized currents

rL
±
σ (z) = z−1±rLσ(z) ∈ End(Λ(S)|r)[z, z

−1].

We recover the currents L±(σ) of the previous section for r = 1.

Proposition 4.3. The following relation holds in

(4.2)
[
rL

+
λ (x), rL

−
µ (y)

]
++

=

[
1

c1x

(
1− θ(x)

θ̃(x)

)
δ
(y
x

)
(λµ)

]
++

∈ End(Λ(S)|r)[[x, y]].

Proof. We begin by evaluating the l.h.s. of (4.2) on the element 1.

Lemma 4.4. We have[
rL

+
λ (x), rL

−
µ (y)

]
++
· 1 =

[
1

c1x

(
1− θ(x)

θ̃(x)

)
δ
(y
x

)
(λµ)

]
++

.

Proof. The proof bears some resemblance to that of Lemma 4.2. We have

L−
µ (y) · 1 =

∑
l

ylQ−(µul) =
∑
l

(−y)lẽl(µ) = θ̃(y)−1(µ) = exp
(
−
∑
k⩾1

yk

k
p̃k

)
(µ).

A computation using (2.23) yields

L+
λ (x)L

−
µ (y) · 1 =

∫
S×S

Q+

(∑
n∈Z

xnunθ̃(y)−1
13 exp

(∑
k

(−y)k

k
fk(−u)∆

)
23
λ2µ3

)

=

∫
S×S

Q+

(∑
n∈Z

xnunθ̃(y)−1
13 exp

(∑
k

(−y)k

k
fk(−x−1)∆

)
23
λ2µ3

)
.

Here we have used the classical result that for any Laurent series F (v) ∈ A((v)) with coefficients in
a ring A we have δ(vw)A(v) = δ(vw)A(w−1), where δ(u) =

∑
n∈Z u

n.
One computes

exp
(∑
k⩾1

ak

k
∆fk(b)

)
= 1 +

∆a2

(1− ab)(1− a(b− c1))
=: Ω(a, b).

Using this, one obtains

(4.3) L+
λ (x)L

−
µ (y) · 1 = m(θ(x)⊗ θ̃(y)−1)Ω(−y,−x−1)(λ⊗ µ)
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and likewise

(4.4) L−
µ (y)L

+
λ (x) · 1 = m(θ(x)⊗ θ̃(y)−1)Ω(x, y−1)(λ⊗ µ).

Observe that Ω(−y,−x−1) = Ω(x, y−1) as rational functions but (4.3) and (4.4) should be expanded
out in Λ(S)((x))[[y]] and Λ(S)((y))[[x]] respectively since by construction L±

n (σ) · 1 = 0 for n < 0.
In other words, we have[

rL
+
λ (x), rL

−
µ (y)

]
· 1 = xr−1y−1−rm(θ(x)⊗ θ̃(y)−1)

(
Ω(x, y−1)+ − Ω(x, y−1)−

)
(λ⊗ µ)

where + and − subscript indicate expansion in Λ(S)((x))[[y]] and Λ(S)((y))[[x]] respectively. From
the formal equality

Ω(x, y−1) = 1 +
∆

c1

(
1

x−1 − y−1
− 1

x−1 − (y−1 − c1)

)
we deduce

(xy)−1
(
Ω(x, y−1)+ − Ω(x, y−1)−

)
=

∆

c1x

(
δ

(
x(1− c1y)

y

)
− δ

(y
x

))
.

Thus we get

(4.5)
[
rL

+
λ (x), rL

−
µ (y)

]
· 1 =

∫
S×S

∆23

c1x

(
A(x, y) +B(x, y)

)
λ2µ3

where

A(x, y) =
(x
y

)r
m(θ(x)⊗ θ̃(y)−1) δ

(x(1− c1y)
y

)
=
(x(1− c1y)

y

)r
m
(
θ(x)⊗ θ

( y

1− c1y

)−1)
δ
(x(1− c1y)

y

)
,

= m(θ(x)⊗ θ(x)−1) δ
(x(1− c1y)

y

)
B(x, y) = −

(x
y

)r
m(θ(x)⊗ θ̃(y)−1) δ

(y
x

)
= −m

(
θ(x)⊗ θ̃(x)−1

)
δ
(y
x

)
.

In simplifying A(x, y) we used the following calculation

θ̃(y)(λ) =

∫
S

τc1 exp

∑
k⩾1

yk

k
pk

λ =

∫
S

exp

∑
k⩾1

yk

k

k∑
i=0

(
k

i

)
pic

k−i
1

λ

=

∫
S

exp

r∑
k⩾1

(c1y)
k

k

 exp

 ∑
k⩾i⩾1

(
k − 1

i− 1

)
yk

i
pic

k−i
1

λ

= (1− c1y)−r
∫
S

exp

∑
i⩾1

yi

i(1− c1y)i
pi

λ

= (1− c1y)−rθ
(

y

1− c1y

)
(λ).

Substituting in (4.5) and observing that[∫
S×S

∆

c1x
A(x, y)λ2µ3

]
++

=

[∫
S×S

∆

c1x
δ
(x(1− c1y)

y

)
λ2µ3

]
++

= 0
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and [∫
S×S

∆

c1x
δ
(y
x

)
λ2µ3

]
++

= 0

we easily deduce Lemma 4.4. □

In order to extend Lemma 4.4 to the whole of Λ(S)r, we next consider the commutation relation
between Cij(λ, µ) := [rL

+
i (λ), rL

−
j (µ)] and ψk(ν). Below, we drop the index r for simplicity.

ψk(ν)Cij(λ, µ) = ψk(ν)L
+
i (λ)L

−
j (µ)− ψk(ν)L

−
j (µ)L

+
i (λ)

=
(
L+
i (λ)L

−
j (µ)ψk(ν)− kL

+
i (λ)L

−
j+k−1(νµ) + kL+

i+k−1(λν)L
−
j (µ)

)
−
(
L−
j (µ)L

+
i (λ)ψk(ν) + kL−

j (µ)L
+
i+k−1(λν)− kL

−
j+k−1(νµ)L

+
i (λ)

)
= Cij(λ, µ)ψk(ν) + k (Ci+k−1,j(λν, µ)− Ci,j+k−1(λ, νµ))

We have therefore obtained

(4.6) [ψk(ν)/k, Cij(λ, µ)] = Ci+k−1,j(λν, µ)− Ci,j+k−1(λ, νµ).

Applying (4.6) to 1 and using the fact that, thanks to Lemma 4.4, Cij(λ, µ) · 1 only depends on
i+ j and λµ we see that

(4.7) [ψk(ν)/k, Cij(λ, µ)] · 1 = 0.

Using (4.6) and (4.7) recursively, one gets that

[Cij(λ, µ), ψk1(ν1) · · ·ψkl(νl)] · 1 = 0

for any (k1, ν1), . . . , (kl, νl). This proves Proposition 4.3. □

Unraveling formula (4.2), we obtain

[
rL

+
i (λ), rL

−
n−i(µ)

]
=

∑
0⩽j⩽k⩽n

(−1)k
(
r − k + j

j + 1

)
hn−kek−j(c

j
1λµ)(4.8)

which highlights the dependence on r.

Remark 4.5. Note that the “same sign” commutators [L+
i (λ), L

+
j (µ)] are independent of i− j only

in the non-deformed case, see Remark 3.4.

4.3. Fock space representations of W (r)(S).

Definition 4.6. The level r Fock space associated to S is the graded vector space

F(r)(S) := Λ(S)|r=r ⊗ C[s, s−1].

We may restate Propositions 4.1 and 4.3 as follows:

Corollary 4.7. The assignment

ψn(λ) 7→ mult. by ψn(λ), T+
n (λ) = rL

+
n (λ)s, T−

n (λ) = (−1)r+1
rLn(λ)s

−1

defines a graded W (r)(S)-module structure on F(r)(S). □

Proposition 4.8. Assume r > 0. Then the action of W (r)(S) on F(r)(S) is faithful.
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Proof. Recall that Z(S) denotes the subalgebra of W (r)(S) generated by ψ0(λ) for λ ∈ H∗(S,Q).
Consider the subspace Z(S) ·F(r)(S) ⊂ F(r)(S). Since Z(S) lies in the center of W (r)(S), this is a

W (r)(S)-submodule. Moreover, the action of W (r)(S) on F
(r)
red(S) := F(r)(S)/Z(S)F(r)(S) factors

through W
(r)
red(S) by definition, and we have isomorphisms of vector spaces

F
(r)
red(S) ≃ Sym(H∗(S,Q)⊗ t2Q[t]), F(r)(S) ≃ Λ1(S)⊗ F

(r)
red(S),

where Λ1(S) = Sym(H⩾2(S,Q) ⊗ t). Since Λ1(S) is the regular Z(S)-module, it suffices to prove

that the action of W
(r)
red(S) on F

(r)
red(S) is faithful. Using Lemma 3.17, we only need to prove the

faithfulness of its restriction to U(hS). The central charge being non-zero, this last statement follows
from a standard argument. □

5. Deformed W -algebras (open surfaces)

In this section we do not assume that S is proper anymore, and define several versions of W -
algebras, modeled on the cohomology resp. cohomology with compact support of S. Throughout,
we fix a smooth compactification ι : S → S. The W -algebras which we consider will end up being
independent of this choice of compactification.

5.1. Positive halves. We begin with a general construction. Consider a graded ideal I ⊂ H∗(S,Q).
Note that ∆(I) ⊂ I ⊗ I hence I⊥ is also an ideal. We denote by J the quotient of H∗(S,Q) by I.

Definition 5.1. Let W+
↓ (I) be the smallest graded subalgebra of W+(S) containing Dn,0(λ) for

all n⩾0, λ ∈ I, and stable under operators Ad(ψl(µ)), for all l > 0 and µ ∈ H∗(S,Q). Likewise,
let W+

↑ (J) be the quotient of W+(S) by the two-sided ideal I+ generated by W+
↓ (I). We define

W−
↓ (I),W−

↑ (J) in the same way. Finally, we let W 0(J) be the quotient of W 0(S) by the ideal

generated by elements ψl(λ) for l > 0 and λ ∈ I (thus c descends to a non zero element of W 0(J)).

Remark 5.2.

(i) W+
↓ (I) is in general different from the subalgebra of W+(S) generated by T+

n (λ) with n⩾0

and λ ∈ I. For instance, let S = P2 and I = Q[pt]; then W+
↓ (I) is a commutative algebra

with basis given by monomials in Dm,n([pt]), which is not generated by {D1,n([pt])}n.
(ii) However, it is easy to see that I+ is generated as an ideal by T+

n (λ) with n⩾0 and λ ∈ I.

Recall the elements Dm,n(λ) ∈ W+(S) considered in Proposition 3.8 in connection to the order
filtration F•. They are not canonically defined unless m⩽1 or n⩽1; in this subsection, we fix them
to be

Dm,n(λ) :=
1

m(n+ 1)
[ψn+1(1), Dm,0(λ)], λ ∈ H∗(S,Q), m⩾1, n⩾1.

By construction, the elements Dm,n(λ) belong to W+
↓ (I) if λ ∈ I.

Our first result concerns the size of the algebras W+
↓ (I),W+

↑ (J).

Proposition 5.3. The Hilbert series of W+
↓ (I) and W+

↑ (J) are respectively equal to

PW+
↓ (I)(z, w) = Exp

(
PI(z)z

−2w

(1− z2)(1− w)

)
, PW+

↑ (J)(z, w) = Exp

(
PJ(z)z

−2w

(1− z2)(1− w)

)
,

where PI(z) =
∑
d dim(I ∩Hd(S,Q))zd and PJ(z) = PS(z)− PI(z).
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Proof. We begin with the first statement. Let A ⊂ W+(S) be the subalgebra generated by all
Lie words in Tn1(λ1), . . . , Tns(λs) for which

∏
i λi ∈ I. From the inductive definition of Dm,0(λ)

we see that W+
↓ (I) ⊂ A. We will later show that this is in fact an equality. Let W̃+(S) be

the free algebra generated by elements {T̃n(λ) ; λ ∈ H∗(S,Q), n⩾0}, modulo the sole relations

T̃n(aλ+ bµ) = aT̃n(λ)+ bT̃n(µ). There is a canonical morphism π : W̃+(S)→W+(S) whose kernel
R is generated by the collection of relations (a)-(g) of § 3. The order filtration F• on W+(S) lifts

to a filtration F̃• on W̃+(S), in which a Lie word L = L(T̃n1
(λ1), . . . , T̃ns

(λs)) belongs to F̃o(L)

with o(L) = 1− s+
∑
i ni. Let Ã ⊂ W̃+(S) be the subalgebra generated by Lie words as above for

which
∏
i λi ∈ I. Thus π(Ã) = A. We claim that

(5.1) π(F̃n ∩ Ã) = Fn ∩A

which is equivalent to the equality

(5.2) (F̃n ∩ Ã) +R = (Ã+R) ∩ F̃n +R

The only relations which do not preserve the order are those of type (f). Observe that if the symbol

(with respect to F̃•) of such a relation belongs to Ã then so does in fact the relation itself (indeed,
if λµ ∈ I then s2λµ ∈ I and c1∆λµ ∈ I ⊗ I). Equations (5.2) and (5.1) follow.

From Lemma 3.21 we have Gr•W
+(S) ≃ Sym(w+

0 (S)) and there is a Lie algebra morphism

w+
0 (S)→ Gr•W

+(S). Since the symbol of a Lie word L = L(Tn1(λ1), . . . , Tns(λs)) is a multiple of
Ds,o(L)(

∏
i λi), we deduce from (5.1) that

(5.3) Grn(A) = Span
{
Dm1,n1

(λ1) · · ·Dms,ns
(λs) ;

∑
i

ni⩽n, λ1, . . . , λs ∈ I
}
⊂ Fn/Fn−1.

Because Dm,n(λ) belongs to W+
↓ (I) if λ ∈ I we deduce that Gr•A ⊂ Gr•W

+
↓ (I), from which we

deduce that Gr•A = Gr•W
+
↓ (I), hence in fact A = W+

↓ (I). The formula for the Hilbert series of

W+
↓ (I) now follows from (5.3).

Let us now turn to the second equality. Let W+(J) denote the graded algebra defined by
generators and relations as in § 3, but with J in place of H∗(S,Q). The results of § 3 may be
repeated mutatis mutandis for W+(J). In particular, we have

PW+(J)(z, w) = Exp

(
PJ(z)z

−2w

(1− z2)(1− w)

)
.

There is a canonical surjective morphismW+(S)→W+(J), which factors to a surjectionW+
↑ (J)→

W+(J). In particular, PW+(J)(z, w)⩽PW+
↑
(z, w) (coefficientwise). We will show that this map

is an isomorphism by proving the reverse inequality. Let I ⊂ W+(S) be the two-sided ideal
generated by W+

↓ (I). Recall that Dm,n(µ) ∈ Gr•W
+
↓ (I) for µ ∈ I and any m⩾1, n⩾0, hence

Sym(w+
0 (I)) ⊂ Gr• I, where

w+
0 (I) = Span{Dm,n(µ) ; m⩾1, n⩾0, µ ∈ I}.

We deduce that

PW+
↑ (J)(z, w)⩽PU(w+

0 (S))(z, w)/PU(w+
0 (I))(z, w) = PU(w+

0 (J))(z, w) = PW+(J)(z, w)

which gives the desired reverse inequality. □

In the course of the proof, we obtained the following useful characterization of W±
↓ (I):
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Corollary 5.4. For any ideal I ⊂ H∗(S,Q), the subalgebra W±
↓ (I) is generated by all Lie words

L(Tn1
(λ1), . . . , Tns

(λs)) for which
∏
i λi ∈ I. □

By definition, the action of Adψl(µ) preserves W±
↓ (I) for any l and any µ ∈ H∗(S,Q). This

induces an action of W 0(S) on both W±
↓ (I) and on W±

↑ (J).

Lemma 5.5. The action of W 0(S) on W±
↑ (J) factors through W 0(J). The action of W 0(S) on

W±
↓ (I) factors through W 0(H∗(S,Q)/I⊥).

Proof. The first statement is a simple consequence of the fact that [ψl(µ)),W
±(S)] ⊂ W±

↓ (I) if

µ ∈ I, which may be checked on the generators Tn(λ). The second statement is a consequence of
the following claim: for any l⩾0 and µ ∈ I⊥ we have

(5.4) [ψl(µ)),W
±
↓ (I)] = {0}.

We sketch the proof of this claim, leaving the details to the reader. Let W̃+(S), F̃• and π :

W̃+(S) → W+(S) be as in the proof of Proposition 5.3, and let R ⊂ W̃+(S) be the ideal of

relations, Rn = R ∩ F̃n. For a Lie word L(T̃n1
(λ1), . . . , T̃ns

(λs)) we put c(L) =
∏
i λi ∈ H∗(S,Q).

From relations (e), (f) and (g) one checks the following: for any r ∈ Rn/Rn−1 which is a linear
combination of products of Lie words L1, . . . , Lt such that c(L1) = · · · = c(Lt) = α there exists
a lift r′ ∈ Rn of r which is a linear combination of products of Lie words L′

1, . . . , L
′
s satisfying

c(L′
i) ∈ αH∗(S,Q) for all i. In particular, for any two Lie words L1, L2 for which c(L1) = c(L2) = 0

and L1 − L2 ∈ Rn/Rn−1 ⊂ F̃n/F̃n−1 we have

(5.5) π(L1 − L2) ∈ Span
{
π(L′

1 · · ·L′
s) | ∀ i, c(L′

i) = 0,
∑
i

o(Li) < n
}
.

For any Lie word L ∈ W̃+(S), the symbol of π(L) with respect to F• is equal to a multiple of
Dm,n(λ) for some m,n and λ. As Dm,n(0) = 0, we deduce from (5.5) by induction on the order
that for any Lie word L with c(L) = 0 we have π(L) = 0. This yields (5.4) as a particular case. □

We will be mostly interested in the ideals IS := H∗
c (S,Q), I⊥S ≃ H∗(S, S) and the quotient

JS = H∗(S,Q) ≃ H∗(S,Q)/I⊥S . Recall that S being pure, the maps ι! : H
∗
c (S,Q)→ H∗(S,Q) and

ι∗ : H∗(S,Q)→ H∗(S,Q) are respectively injective and surjective.

Definition 5.6. We put

W±
↓ (S) =W±

↓ (IS), W±
↑ (S) =W±

↑ (JS), W 0(S) =W 0(JS) ≃ Λ(S),

W⩾0
↑ (S) =W 0(S)⋉W+

↑ (S), W⩾0
↓ (S) =W 0(S)⋉W+

↓ (S),

and define W⩽0
↑ (S),W⩽0

↓ (S) in the same way.

Composing the inclusion W±
↓ (S) ⊂ W±(S) with the projection W±(S) → W±

↑ (S) yields an
algebra homomorphism

φS :W±
↓ (S)→W±

↑ (S).

Corollary 5.7. The Hilbert series of W+
↓ (S),W+

↑ (S) are given by

PW+
↓ (S)(z, w) = Exp

(
P cS(z)z

−2w

(1− z2)(1− w)

)
,(5.6)

PW+
↑ (S)(z, w) = Exp

(
PS(z)z

−2w

(1− z2)(1− w)

)
(5.7)
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where P cS(z) =
∑
n dim(Hn

c (S,Q))(−u)n and PS(z) =
∑
n dim(Hn(S,Q))(−u)n.

5.2. Full W -algebras. There are four different types of W -algebras which one can associate to S,
namely

W
(c)
↑↑ (S), W

(c)
↑↓ (S), W

(c)
↓↑ (S), W

(c)
↓↓ (S).

These depend on the choice of compactly supported vs. ordinary homology for each half, and are

all naturally defined as subquotients of W (c)(S). For instance, W
(c)
↑↑ (S) is the quotient of W (c)(S)

by the two-sided ideal generated by W±
↓ (I⊥S ) and W 0(I⊥S ) while W

(c)
↑↓ (S) is the quotient of the

subalgebra of W (c)(S) generated by W⩽(S),W+
↓ (IS) by its two-sided ideal generated by W 0(I⊥S )

and W−
↓ (I⊥S ). It is easy to see that W

(c)
↑↑ (S) may be presented just as W (c)(S), where we replace

H∗(S,Q) by H∗(S,Q) everywhere.

For any r ∈ Q, we let W
(r)
↑↑ (S), . . . be the specialization of W

(c)
↑↑ (S), . . . to c = r.

Proposition 5.8. For a pair (a, b) ∈ {↑, ↓}2, the multiplication map induces an isomorphism

W
(c)
ab (S) ≃

{
W−
a (S)⊗W 0(S)⊗W+

b (S) (a, b) ̸= (↑, ↑),
W−

↑ (S)⊗W 0(S)|c=0 ⊗W+
↑ (S) (a, b) = (↑, ↑)

.

Proof. Let I⩾, I⩽ be the two-sided ideals ofW⩾(S) andW⩽(S) respectively generated byW±
↓ (I⊥S )

and {ψl(λ) | l > 0, λ ∈ I⊥S }. Arguing as in the proof of Lemma 5.5 and using Proposition 3.12, it
is enough to check the following inclusions (and their dual versions):

I⩾ ·W−(S) ⊆W−(S) · I⩾ + cW (c)(S),

W+(S) · I⩽ ⊆ I⩽ ·W+(S) + cW (c)(S),

W+
↓ (S) ·W−

↓ (S) ⊆W−
↓ (S) ·W 0(S) ·W+

↓ (S),

W+
↓ (S) · I⩽ ⊆ I⩽ ·W+

↓ (S)

These are in turn easily verified using (3.18), Corollary 5.4 together with the fact that I± is
generated by T±

n (λ) for λ ∈ I⊥S . Note that [T−
0 (λ), T+

0 (µ)] = c when λµ = [pt] so that c is indeed

in the two-sided ideal of W (c)(S) generated by W±
↓ (S). □

To finish, we mention the following analogue of Theorem 3.14. For a pair (a, b) ∈ {↑, ↓}2, we
define a Lie algebra w

(c)
ab (S) as follows. It has a basis given by a central element c and elements

Dm,n(λ) where m ∈ Z, n⩾0, and λ belongs to H∗(S,Q) or H∗
c (S,Q) according to the following

rule: for m = 0, λ ∈ H∗(S,Q); for m < 0, resp. m > 0, λ ∈ H∗(S,Q) if a, resp. b is equal to ↑ and
λ ∈ H∗

c (S,Q) otherwise. The Lie bracket is given by

[Dm,n(λ), Dm′,n′(µ)] = (nm′ −m′n)Dm+m′,n+n′−1(λµ),

where we have set Dm,−1 = δm,0c, and where the product λµ is either induced by the cup product
on H∗

(c)(S,Q) or by the product H∗(S,Q) ⊗ H∗
c (S,Q) → H∗

c (S,Q) (or its composition with the

natural map H∗
c (S,Q)→ H∗(S,Q)).

Corollary 5.9. Assume that s2 = 0 and c1∆ = 0. There is an algebra isomorphism

Φ :W
(c)
ab (S) ≃

{
U(w

(c)
ab (S)) (a, b) ̸= (↑, ↑)

U(w
(c)
↑↑ (S))|c=0 (a, b) = (↑, ↑)

which sends ψn(λ) to D0,n(λ) and T
±
n (λ) to D±1,n(λ).
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Proof. This follows from the explicit identification I±S = Span{Dm,n(λ) | ± m > 0, n⩾0, λ ∈ IS}
(and similarly for I⊥S ). Note that the condition c1(S) = 0 may be relaxed to c1(S)∆S = 0 in this
context: indeed, the condition really is c1λµ = 0 for any λ, µ in H∗

c (S,Q) or H∗(S,Q) (according
to the situation). □

Example 5.10. Let S = A2 together with the natural action of a two-dimensional torus T . In
this case the Chern roots t1, t2 are precisely the linear characters of T , and we have ∆ = t1t2.
Identifying H∗

T (A2) with Q[t1, t2], we have H∗
c,T (A2) = t1t2Q[t1, t2]. In particular, the difference

between W+,T
↑ (A2) and W+,T

↓ (A2) is just multiplication of generators T+
i by t1t2, so we will abuse

the notation and omit the subscripts.
It is instructive to compare the output of our constructions with the affine Yangian Ÿt1,t2(gl1)

as considered in [42] (see also [2]). Recall that it is generated by elements ei, fi, ψ̃i with i⩾0,
modulo certain relations (Y0-Y6), see loc. cit. for details. We can define a morphism of algebras

Ÿt1,t2(gl1)→W
(c)
T (A2) by sending

ei 7→ T+
i , fi 7→ T−

i ,

and ψ̃i maps to the expression on the right hand side of (4.8); in particular ψ̃i is quite different

from ψi ∈W (c)
T (A2). The only relations that are not immediately obvious are (Y4-Y5). Since they

are almost identical, let us concentrate on (Y4):

[ψ̃i+3, ej ]− 3[ψ̃i+2, ej+1] + 3[ψ̃i+1, ej+2]− [ψ̃i, ej+3] + (t21 + t1t2 + t22)([ψ̃i+1, ej ]− [ψ̃i, ej+1])

+ t1t2(t1 + t2){ψ̃i, ej} = 0

The relation (Y1) is precisely the relation (f) in our Definition 3.1. Using the relation [ei, fj ] = ψ̃i+j
and applying Adfi to (Y1), we can see that proving (Y4) for (i, j) is equivalent to proving it for
(i− 1, j + 1). Thus it suffices to check (Y4) for i = 0. Using (Y4’), the formula we need to check is

[[T+
3 , T

−
0 ], T+

i ] = 6T+
i+1 + 2ct1t2(t1 + t2)T

+
i .

Unpacking the right hand side of formula (4.8) for n = 3, we can get an explicit formula for [T+
3 , T

−
0 ]

and check the relation above applying (2.20).
Using the triangular decomposition of both sides, it is easy to see that the map above is actually

an isomorphism Ÿt1,t2(gl1) ≃W
(c)
T (A2).

5.3. Fock space representations. In § 4.3, we defined a representation F(r)(S) of W (c)(S). We
now consider variants of F(r)(S) in the case of open surfaces.

First observe that we have a canonical projection ι∗ : F(r)(S) → F(r)(S), induced by the sur-
jection H∗(S,Q)→ H∗(S,Q). The kernel of ι∗ is generated by the tautological classes ψn(λ) with
λ ∈ I⊥S . The formulas (4.1) and the definition of the operators R±, Q± imply that ker(ι∗) is a

W (r)(S)-submodule of F(r)(S) and that dually T±
n (λ)F(r)(S) ⊂ ker(ι∗) for any λ ∈ I⊥S . From these

observations, one deduces the following:

Proposition 5.11. The action ofW (r)(S) on the Fock space F(r)(S) descends/restricts to an action

of W
(r)
↑↓ (S), W

(r)
↓↑ (S), W

(r)
↓↓ (S) on F(r)(S) for any r, and to an action of W

(0)
↑↑ (S) on F(0)(S). These

representations are faithful when r ̸= 0.

Proof. Let us only address the faithfulness. We only need to consider W
(r)
↑↓ (S), W

(r)
↓↑ (S), since

W
(r)
↓↓ (S) is a subalgebra of W (r)(S). Similarly to Proposition 3.15, these algebras contain a copy of
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the Heisenberg algebra hS of central charge r, where half of the generators are labeled by H∗
c (S,Q).

Since r > 0, we conclude by Lemma 3.17. □

6. Hecke patterns

In this section we introduce a general framework to construct modules over the algebras H0(S)
and Hc

0(S) by using a compactification S of S and by restricting the multiplication in H(S) to
suitable substacks. For this we fix a smooth compactification S of S.

6.1. Hecke patterns and Hecke correspondences. The following is a variation on the notion
of a Hecke pattern which appears in [22, §5].

Definition 6.1. A (two-sided) Hecke pattern on S is a locally closed derived substack X =
⊔
αXα

of Coh⩾1(S) satisfying the following properties:

(a) for any short exact sequence 0 → E → F → G → 0 with G ∈ Coh0(S) and F ∈ X we have
E ∈ X,

(b) for any short exact sequence 0 → E → F → G → 0 with G ∈ Coh0(S), E ∈ X and F ∈
Coh⩾1(S) we have F ∈ X.

We call X an S-weak Hecke pattern if the conditions (a-b) only hold for G ∈ Coh0(S). We say that
a Hecke pattern is S-strong if both conditions (a-b) imply that G ∈ Coh0(S).

We say that X is of rank r if Xα is nonempty only if rk(α) = r; every Hecke pattern is clearly
a disjoint union of Hecke patterns of a well defined rank. Note that the conditions of being a
usual/S-strong/S-weak Hecke pattern imply the conditions (2.9,2.16), (2.25), (2.26) respectively.

Remark 6.2. A substack X ⊂ Coh⩾1(S) satisfying (a) alone may be called a left Hecke pattern,

while a substack X ⊂ Coh⩾1(S) satisfying (b) may be called a right Hecke pattern. We can consider
the S-weak/strong versions of these notions separately.

Example 6.3. The property of being of dimension ⩾ d, d = 1, 2 is stable by passing to a subsheaf,
and for any extension 0 → E → F → G → 0 with dimG = 0, E ∈ Coh⩾d and F ∈ Coh⩾1 we have
F ∈ Coh⩾d. Therefore Coh⩾d(S), d = 1, 2 is a Hecke pattern. One can similarly see that Coh⩾1(S)

is an S-strong Hecke pattern. More generally, any S-weak Hecke pattern contained in Coh⩾1(S) is
automatically S-strong. The collection of Hilbert schemes of points on S (see § 7) is a left S-weak
and right S-strong Hecke pattern.

Lemma 6.4. A left Hecke pattern is S-strong if and only if X ⊂ Coh⩾1(S). A right Hecke pattern
is S-strong if and only if every sheaf in X is locally free at any point in S \ S.

Proof. The first claim follows from the fact that for any x ∈ S, any sheaf E with Ex ̸= 0 admits a
surjection to Ox. For the second claim, let E1 ⊂ E be the maximal 1-dimensional subsheaf. Since
Ext1(Ox, E1) → Ext1(Ox, E) is injective, E1 has to be supported away from S \ S. We conclude
by observing that the cokernel of the double dual map E|S\supp(E1)

↪→ (E|S\supp(E1)
)∨∨ cannot have

support in S \ S either. □

An S-weak two-sided Hecke pattern X yields two families of induction diagrams. We define

C̃oh
◦
nδ;α = C̃ohnδ;α(S) ×

Cohnδ(S)

Cohnδ , X̃nδ;α = C̃oh
◦
nδ;α ×

Cohnδ+α(S)

Xnδ+α.
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Conditions (a) and (b) yield the following diagrams with Cartesian squares

(6.1)

Cohnδ × Cohα(S) C̃oh
◦
nδ;α

p◦nδ,α //
q◦nδ,αoo Cohα+nδ(S)

Cohnδ ×Xα

OO

X̃nδ;α

πnδ,α //κnδ,αoo

OO

Xα+nδ

OO

Coh⩾1
α (S)× Cohnδ C̃oh

◦,⩾1

nδ;α−nδ
p◦α,nδ //

q◦α,nδoo Coh⩾1
α−nδ(S)

Xα × Cohnδ

OO

X̃nδ;α−nδ
πα,nδ //κα,nδoo

OO

Xα−nδ

OO

The maps πnδ,α and πα,nδ may not be proper. Luckily, they factorise as

X̃nδ;α

π′
nδ,α−−−→ Xα+nδ × Symn(S)

π′′
nδ,α−−−→ Xα+nδ,

X̃nδ;α−nδ
π′
α,nδ−−−→ Xα−nδ × Symn(S)

π′′
α,nδ−−−→ Xα−nδ.

Lemma 6.5. The following hold:

(a) the morphism κnδ,α and κα,nδ are quasi-smooth,
(b) the morphisms π′

nδ,α and π′
α,nδ are proper and representable.

Proof. Quasi-smoothness is preserved by derived base change. Hence κnδ,α is a quasi-smooth mor-

phism. Next, by construction C̃oh
⩾1

nδ;α−nδ is open in V(RHom(Eα, Enδ)) and as the sheaves over S

parametrized by Coh⩾1 have no zero-dimensional subsheaves,

Ext2S(Eα, Enδ)|Xα×Cohnδ
= HomS(Enδ, Eα ⊗KS)|Xα×Cohnδ

= {0}.

Statement (a) follows. In order to prove (b), we introduce for all β a full flag version of X̃nδ;β as
follows:

X̃δn;β = {Fn ⊂ Fn−1 ⊂ · · · ⊂ F0 | F0 ∈ Xβ+nδ, ∀ i,Fi/Fi+1 ∈ Cohδ}.
Note that because X is a Hecke pattern, each Fi belongs to X. There are commutative diagrams

X̃δn;α
γ //

φ

��

X̃nδ;α

π′
nδ;α

��

X̃δn;α−nδ
γ //

φ

��

X̃nδ;α−nδ

π′
nδ;α

��
Xα+nδ × Sn

Id×t // Xα+nδ × Symn(S) Xα−nδ × Sn
Id×t // Xα−nδ × Symn(S)

where γ, γ, φ, φ are obvious forgetful maps and t is the projection. The map t being finite, it is
proper and representable. Moreover, as any length n sheaf on S admits a full flag of subsheaves,
the morphisms γ, γ are proper, representable and surjective. Thus to prove that π′

nδ,α and π′
α,nδ

are proper and representable, it suffices to show that the same holds for the maps φ,φ. In order to
show this we consider the chains of forgetful morphisms

X̃δn;β

φ1 // X̃δn−1;β × S
φ2 // · · ·

φn−1 // X̃δ;β × Sn−1
φn // Xβ × Sn

and

X̃δn;β
φ0 // X̃δn−1;β+δ × S

φ1 // · · ·
φn−2 // X̃δ;β+(n−1)δ × Sn−1

φn−1 // Xβ+nδ × Sn .
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Observe that the composition of these chains for β = α − nδ respectively yield φ and φ. Thus
we are reduced to checking that each φi and φi is proper and representable. By definition of a
two-sided Hecke pattern, φi and φi are respectively obtained by base change from the maps

ρ′ : C̃oh
⩾1

δ;β+iδ → Coh⩾1
β+(i+1)δ × S, ρ′ : C̃oh

⩾1

δ;β+(n−i)δ → Coh⩾1
β+(n−i)δ × S.

The maps ρ′, ρ′ above are respectively the projections from the projectivization P(Eβ+(i+1)δ) and
P(E∨β+(n−i)δ ⊗KS [1]). Since E and E∨ ⊗KS [1] are both of perfect amplitude [0, 1] over X × S it

follows that ρ′, ρ′ are proper and representable (see [19, Lemma 5.4]). The same therefore holds for
φi, φi, and we are done. □

Let X = {Xα} be an S-weak two-sided Hecke pattern. By base change from the diagrams (6.1),
we may analyze length one Hecke correspondences for X in the same fashion as for Coh. We will say

that the two-sided Hecke pattern X is regular if there exist, for each α, an open cover Xα =
⋃
i U

(i)
α

and locally free resolutions E(i)α of length two for which the condition (2.10) holds when restricted
to X. Equivalently, X is regular if and only if the morphisms κclδ,α and κclα,δ are lci and of the same
dimension as their derived enhancements.

6.2. Hecke patterns and Hecke operators. Let X be an S-weak two-sided Hecke pattern. We
define

V(X)α+Zδ =
⊕
n∈Z

H∗(Xα+nδ,Q).

Let r be the projection

r : Hc
∗(Sym

n(S),Q)→ Hc
0(Sym

n(S),Q) = Q.

We define the maps

mα,−nδ = r ◦ (π′
α,nδ)∗ ◦ (κα,nδ)! : H∗(Xα,Q)⊗Hc

∗(Cohnδ,Q)→ H∗(Xα−nδ,Q),

mnδ,α = r ◦ (π′
nδ,α)∗ ◦ (κnδ,α)! : Hc

∗(Cohnδ,Q)⊗H∗(Xα,Q)→ H∗(Xα+nδ,Q).
(6.2)

These maps have cohomological degree 2⟨α, nδ⟩ and −2⟨nδ, α⟩ respectively. The proof of the fol-
lowing proposition, which is analogous to Theorem 1.9, is left to the reader.

Proposition 6.6. The map mnδ,α+mδ defines a left action Ψ+
X , and the map mα+mδ,−nδ a right

action Ψ−
X of Hc

0(S) on the space V(X)α+Zδ. If X is just a left/right S-weak Hecke pattern, we
have only the left/right action. □

Remark 6.7.

(i) Suppose that X is a usual Hecke pattern. We can write diagrams (6.1) with Cohnδ replaced
by Cohnδ(S). In this case the maps πnδ,α, πα,nδ are automatically proper for all n and α, and

the actions Ψ±
X can be lifted to H0(S).

(ii) Similarly, if X is an S-strong Hecke pattern, the maps πnδ,α, πα,nδ become proper, and so the
actions Ψ±

X can be further lifted to H0(S).

(iii) For X = Coh⩾1 and n = 1, the maps mα,−nδ, mnδ,α are the negative and positive Hecke
operators defined in §2.3.

By Example 6.3, we have both a left and a right H0(S)-module structure on the space

H(S)⩾dα+Zδ =
⊕
n∈Z

H∗(Coh⩾dα+nδ,Q).
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Similarly, we have left and right H0(S)-actions on H(S)⩾dα+Zδ.

6.3. Hecke patterns and tautological classes. Let X be an S-weak two-sided Hecke pattern.
Let

evα : Λ(S)→ H∗(Xα,Q)

denote the restriction of tautological classes on Cohα(S) to Xα. This defines a representation

• : Λ(S)×V(X)α+Zδ → V(X)α+Zδ

This representation of Λ(S) is compatible with the left and right Hc
0(S)-actions: for any c ∈ Λ(S),

u ∈ Hc
0(S) and z ∈ VX we have

c •mnδ,α(u⊗ z) =
∑

(−1)|c
(2)
i |·|u|mnδ,α(c

(1)
i • u)⊗ (c

(2)
i · z),

c •mα,−nδ(u⊗ z) =
∑

(−1)|c
(2)
i |·|u|mα,−nδ(υ(c

(1)
i ) • u)⊗ (c

(2)
i · z).

In particular, the left and right Hc
0(S)-actions on V(X)α+Zδ extend to actions of H̃c

0(S). The proof
is identical to that of Proposition 1.18. Analogous statements hold for usual and S-strong Hecke
patterns, and the actions defined in Remark 6.7.

6.4. The case of regular Hecke correspondences. Let X be a two-sided Hecke pattern. Set

Htaut
∗ (Xα,Q) = Λ(S) • [Xcl

α ] , Vtaut(X)α+Zδ =
⊕
n∈Z

Htaut
∗ (Xα+nδ,Q).

We consider the linear map

ev′ : F(S)→ Vtaut(X)α+Zδ , xun 7→ x • [Xcl
α+nδ] , x ∈ Λ(S).

Let EndX(F(S)) be the subspace of all endomorphisms of F(S) preserving the kernels of the maps
ev′. Propositions 2.4, 2.6 and 4.1 yield the following.

Proposition 6.8. Let X be a regular two-sided Hecke pattern of rank r. Then there is a commu-
tative diagram of homomorphisms

W±(S) //

Φ±

,,

Φ±
X ((

EndX(F(S)) //

ev′

��

End(F(S))

End(Vtaut(X)α+Zδ)

in which Φ±,Φ±
X are algebra homomorphisms. Moreover, for any ξ ∈ H∗(S) and n⩾0, we have

Φ+
X(Tn(ξ)) = T+(ξu

n−r+1) = Ψ+
X(ξun−r+1 ∩ [Cohδ]),

Φ−
X(Tn(ξ)) = T−(ξu

n+r+1) = Ψ−
X(ξun+r+1 ∩ [Cohδ]),

and the maps Φ±
X glue into an algebra homomorphism ΦX :W (r)(S)→ End(Vtaut(X)β+Zδ). When

X is S-strong, all the assumptions above hold with S replaced by S, and we get an algebra homo-

morphism ΦX :W
(r)
↑↑ (S)→ End(Vtaut(X)β+Zδ).
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When X is only an S-weak Hecke pattern, regularity is not sufficient to ensure the actions of
W±

↓ (S) in our setup. The reason is that W±
↓ (S) is defined as a subalgebra of W±(S); furthermore,

it is typically not generated by degree 1 elements. Because of this, we will have to postpone the
proof of an analogous statement until the end of § 7, see Corollary 7.13.

Thanks to Proposition 2.8, a result in all points analogous to Proposition 6.8 holds without any
regularity assumptions if we replace Vtaut

X by its virtual cousin

Vvtaut(Xα) := Λ(S) • [Xα].

6.5. Base change for Hecke patterns. Let S be a smooth surface and let X be an S-weak
two-sided Hecke pattern on S.

Proposition 6.9.

(a) Let ι : S◦ → S be an open embedding. Then X is an S◦-weak two-sided Hecke pattern on S◦

and we have Ψ±
X ◦ ι! = Ψ±

X : Hc
0(S

◦)→ End(V(X)α+Zδ),
(b) Let j : X◦ → X be an open immersion and assume that X◦ is also an S-weak two-sided Hecke

pattern on S. Then we have a commutative diagram

Hc
0(S) //

Ψ±
X

--

Ψ±
X◦ ((

EndX◦(V(X)α+Zδ) //

res

��

End(V(X)α+Zδ)

End(V(X◦)α+Zδ)

where EndX◦(V(X)α+Zδ) is the subset of endomorphisms preserving the kernel of the map
j∗ : V(X)α+Zδ → V(X◦)α+Zδ.

Proof. We treat the case of Ψ+, the other being similar. Consider the diagram

Cohlδ(S)×Xα X̃
π′
lδ,α //κlδ,αoo Xα+lδ × Syml(S)

Cohlδ(S
◦)×Xα

OO

Z̃

OO

π#
lδ,α //

κ#
lδ,αoo Xα+lδ × Syml(S◦)

OO

where Z̃ = X̃ ×Xα+lδ×Syml(S) (Xα+lδ × Syml(S◦)) and the vertical maps are all open embeddings.

Both squares are cartesian by definition of Hecke patterns. Statement (a) follows from base change
properties of the morphism ι1!, see Proposition A.6. Now consider the diagram

Cohlδ(S)×Xα Z̃
π#
lδ, //

κ#
lδ,αoo Xα+lδ × Syml(S)

Cohlδ(S)×X◦
α

OO

X̃◦

OO

π
′◦
nδ,α //

κ◦
lδ,αoo X◦

α+lδ × Syml(S)

OO
.

Again, both squares are cartesian, and the vertical arrows are all open embeddings induced by j.
Statement (b) follows from proper base change in hyperbolic homology, see Lemma A.4. □
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7. Action on Hilbert schemes

In this section we construct actions of H0(S) and Hc
0(S) on the homology of the Hilbert scheme

of points on S, and we explicitly describe the action on tautological classes using the results of §2.3.
We assume everywhere that the surface S is pure.

7.1. The Hilbert scheme and stack. Let Pic be the derived stack of invertible coherent sheaves
on S, BGm → Pic the closed immersion of the substack parametrizing trivial invertible sheaves,

and Perf the derived stack of perfect complexes. There is a morphism of derived stacks Coh⩾2
1,−nδ →

Perf1,−nδ, which, composed with the perfect determinant map Perf1,−nδ → Pic defined in [40],

yields a morphism of derived stacks Coh⩾2
1,−nδ → Pic. We define the Hilbert stack of S to be the

derived fiber product

Hilbn = Coh⩾2
1,−nδ ×

Pic
BGm

We write Hilb =
⊔
n Hilbn. Let Hilbn be the Hilbert scheme of n points on S, whose points

parametrize ideal sheaves I ⊂ OS and of colength n. It is the coarse moduli space of Hilbn.

Lemma 7.1. The following hold:

(a) Hilbn is isomorphic to its classical truncation and Hilbn is the coarse moduli space of Hilbn,

(b) there is a canonical isomorphism of stacks Hilbn ≃ Hilbn ×BGm.

Proof. Since the morphism Coh⩾2
1,−nδ → Pic is Piccl-equivariant, we have

vdim(Hilbn) = vdim(Hilbn)− vdim(Pic)− 1

= ⟨[OS ]− nδ , [OS ]− nδ⟩ − ⟨[OS ], [OS ]⟩ − 1

= 2n− 1.

The classical truncation of Hilbn parametrizes inclusions of colength n ideal sheaves I → OS . It is
smooth and of dimension 2n− 1. The stack Hilbn is quasi-smooth. Part (a) follows using the fact
that a quasi-smooth derived stack with smooth classical truncation and whose virtual dimension
coincides with that of its classical truncation is underived.

We now turn to (b). The stack Hilbn parametrizes simple rank 1 sheaves. Hence it is a Gm-gerbe
over its coarse moduli space Hilbn. Fixing a splitting of this gerbe is the same as choosing a universal
sheaf Un on Hilbn × S. But such a canonical sheaf is given by a subsheaf of OHilbn

⊠OS . □

Fix a smooth compactification ι : S → S. We define Hilbn(S), Hilbn(S) and Pic(S) as above,
with the surface S replaced by S. Let ρ be the degree one line bundle on Hilbn(S) pulled back
from BGm. Let Un and In ≃ Un ⊠ ρ be the universal ideal sheaves in Coh(Hilbn(S) × S) and
Coh(Hilbn(S)× S) respectively. Let us also simply denote evHilb by ev.

Lemma 7.2. We have c1(ρ) = ev(p1([pt])) =
∫
S
c1(In) · [pt].

Proof. Since In is of generic rank one, we have c1(In) = c1(Un) + c1(ρ). We may write

c1(In) = ev(p1([pt]))⊗ 1 + y , y ∈ H∗(Hilbn(S),Q)⊗H>0(S,Q).

Thus, given any point s in S, we have

ev(p1([pt])) = c1(ρ) + c1(Un|Hilbn(S)×{s}),

It remains to prove that c1(Un|Hilbn(S)×{s}) = 0. There is a short exact sequence of sheaves

0→ Un → OHilbn(S)
⊠OS → Tn → 0
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over Hilbn(S) × S, where Tn is a coherent sheaf whose restriction to {ξ} × S is zero-dimensional
for any ξ ∈ Hilbn(S)(C). Let Hilb◦n(S) be the open subscheme of Hilbn(S) parametrizing zero-
dimensional sheaves whose support does not contain s. Its complement is of codimension 2, hence
the restriction map Hi(Hilbn(S),Q)→ Hi(Hilb◦n(S),Q) is an isomorphism for i < 4, in particular
for i = 2. The restriction of Tn to Hilb◦n(S)× {s} is zero. We deduce that

c1(Un|Hilbn(S)×{s}) = −c1(Tn|Hilbn(S)×{s}) = 0. □

As a consequence, we have an isomorphism

(7.1) H∗(Hilbn(S),Q) = H∗(Hilbn(S),Q) / p1([pt]) •H∗(Hilbn(S),Q).

We define

V (S) =
⊕
n

H∗(Hilbn(S),Q) , V(S) =
⊕
n

H∗(Hilbn(S),Q).

We define V (S) and V(S) similarly. Unless S = S, the cohomology group H4(S,Q) vanishes, hence
the class p1([pt]) vanishes in Λ(S). Nevertheless, Lemma 7.2 and (7.1) hold if we use instead of
p1([pt]) the restriction to H∗(Hilbn,Q) of the class p1([pt]) in H∗(Hilbn(S),Q). Note that this is
not in conflict with Lemma 1.16, since its conditions are satisfied for Hilbn, but not Hilbn.

7.2. Purity and generation of the cohomology by tautological classes. In this section we
collect some facts on purity and tautological classes on Hilbert schemes and Hilbert stacks.

Lemma 7.3. The stack Hilbn is pure for all n.

Proof. It is enough to prove that Hilbn is pure. For any partition λ = (1m12m2 . . .) we set

Symλ(S) = Symm1(S)× Symm2(S)× · · · .

By [16, Thm. 2] there is an isomorphism of mixed Hodge structures

Hi+2n(Hilbn,Q)⊗Q(n) =
⊕
λ

Hi+2l(λ)(Symλ(S),Q)⊗Q(l(λ)),

where λ runs among all partitions of size n. Hence, it is enough to prove that each symmetric power
Symm(S) is cohomologically pure. We have an isomorphism of Hodge stuctures

π∗ : H∗(Symm(S),Q)
∼→ H∗(Sm,Q)Sm .

The lemma follows. □

Corollary 7.4. For any n, the cohomology of Hilbn is generated by tautological classes, i.e., the
evaluation map Λ(S) → H∗(Hilbn,Q) is onto. The same holds for the evaluation map Λ(S) →
H∗(Hilbn,Q).

Proof. The evaluation map factors through H∗(Hilbn(S),Q). The map Λ(S)→ H∗(Hilbn(S),Q) is
surjective by [36, Thm. 7.5] and Lemma 7.1. The restriction map H∗(Hilbn(S),Q)→ H∗(Hilbn,Q)
is surjective since the cohomology of Hilbn is pure, and Hilbn(S) is its smooth compactification.
This proves the first claim. For the second claim, note that the evaluation map factors through
Λ(S) by Lemma 1.16. □
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By Corollary 7.4, the collection of evaluation morphisms Λ(S)→ H∗(Hilbn,Q) yields a surjective
linear map ev′ : F(S)→ V (S). The same holds for the surface S. There is a commuting diagram

F(S)
ι∗ //

ev′

��

F(S)

ev′

��
V (S)

ι∗ // V (S).

7.3. COHA actions on Hilb. We now endow the spaces V(S), V(S) with actions of the CO-
HAs H0(S), H0(S) and their compact versions. This is a reformulation of Nakajima’s classical
construction and of Lehn’s results, see [31], [23]. Let us denote by Hilbk−n,k(S) the flag Hilbert
stack:

Hilbk−n,k(S) = {J ⊂ I ⊂ OS : lg(I) = k − n, lg(J ) = k}
In terms of Hecke patterns of § 6, these are precisely X̃nδ;[OS ]−kδ for X[OS ]−kδ = Hilbk(S).

Proposition 7.5. The stack Hilb(S) is a regular two-sided Hecke pattern. The stack Hilb is a
regular right S-strong and left S-weak Hecke pattern.

Proof. The proof of the fact that Hilb is a two-sided Hecke pattern is the same for S and S and
relies upon the following simple observation.

Lemma 7.6. Let 0→ F a→ G → T → 0 be a short exact sequence of coherent sheaves on a smooth
surface, with F ,G torsion-free and T zero-dimensional. Then a∨∨ : F∨∨ ≃ G∨∨.

Proof. It suffices to consider the case when T is of length one. Applying the derived duality functor
D yields the long exact sequence

→ H0(DT )→ H0(DG) Da→ H0(DF)→ H1(DT )→ .

Since DT ≃ T [−2], we obtain an isomorphism G∨ = H0(DG) ≃ H0(DF) = F∨. Note that because
F ,G are torsion-free, F∨,G∨ are vector bundles. □

Let I ⊂ OS be an ideal sheaf of finite colength and let T be a finite length sheaf. For any short
exact sequence 0 → J → I → T → 0, J is obviously a finite colength ideal sheaf. For any short
exact sequence 0→ I → J → T → 0 with I ∈ Coh⩾1, the sheaf J is torsion-free (otherwise it would
contain a one-dimensional subsheaf E , whose support would intersect S\supp(T ), contradicting the
fact that I is torsion free). Finally, by Lemma 7.6, there is a canonical isomorphism J ∨∨ ≃ I∨∨

hence J ∈ Hilb as wanted. The S-strongness on the right follows from Lemma 6.4.
Let us now prove the regularity of these Hecke patterns. Again, the argument is the same for

S and S, we will only treat the latter case. Note that Hilbk(S) is of finite type and included

in Coh⩾1
1,−kδ(S) for any k. It follows that we may find global resolutions for both E1,−kδ and

RHom(Eδ, E1,−(k+1)δ)[1]. We will follow the notations of § 2.3. It is well-known that Hilbk(S) and

Hilbk,k+1(S) are both smooth and connected, of respective dimensions 2k and 2(k + 1). Since

Hilbk(S) and Hilbk,k+1(S) are Gm-gerbes over Hilbk(S) and Hilbk,k+1(S) respectively, it follows
that the former are smooth, irreducible and

(7.2) dim(Hilbk(S)) = 2k − 1, dim(Hilbk+1(S)) = dim(Hilbk,k+1(S)) = 2k + 1.

The tautological sheaf E1,−kδ on Hilbk(S) × S is of rank one. The section s is thus regular if and

only if dim(Hilbk,k+1(S)) = dim(Hilbk(S) × S) + rk(E1,−kδ) − 1 = dim(Hilbk(S) × S). Likewise,

s′ is regular if and only if dim(Hilbk,k+1(S)) = dim(Cohδ(S) × Hilbk+1(S)) − ⟨δ, (1 − (k + 1)δ)⟩ =
dim(Cohδ(S)× Hilbk+1(S))− 1. Both of these equalities follow from (7.2). □



54 A. MELLIT, A. MINETS, O. SCHIFFMANN, E. VASSEROT

Remark 7.7. Let S be projective, and H an ample divisor. Suppose that the Assumptions A and S
of [32] hold, and fix r > 0, c ∈ H2(S,Z). A proof similar to Proposition 7.5 yields the regularity of
Hecke patternMr,c, which is the moduli of H-stable torsion-free sheaves on S of rank r and first
Chern class c.

For simplicity, we will denote the Hecke patterns Hilb and Hilb(S) by H and H respectively.
Proposition 6.6 yields two representations

Ψ+
H : H̃c

0(S)→ End(V(S)), Ψ−
H : H̃0(S)→ End(V(S))

such that the subspace Hc
∗(Coh0,k,Q) maps into∏

n

Hom(H∗(Hilbn,Q), H∗(Hilbn∓k,Q)) .

We get similar representations for S. Since both Hilb and Hilb(S) are right Hecke patterns, by

Remark 6.7(i) we can lift Ψ−
H to an action of H̃0(S). By Proposition 6.8, regularity of the Hecke

patterns above yields representations

Φ±
H
:W±(S)→ End(Vtaut(S)) = End(V(S)), Φ−

H :W−
↑ (S)→ End(V(S)),

which for S glue to a representation W (1)(S)→ End(V(S)).

Lemma 7.1 yields an isomorphism

V (S) = V(S) / p1([pt]) •V(S)

Since the class p1([pt]) = ψ0([pt]) belongs to the center ofW (S), the representations Φ±
H
descend to

representations of W±(S) on V (S) which we will simply denote by Φ±
S
. Since evnδ(p1([pt])) = 0 for

any n > 0, see Example 1.17, the representations Ψ±
H
descend to representations of H0(S) on V (S)

which we will simply denote by Ψ±
S
. Similar claims hold for the representations Ψ±

H , Φ
−
H associated

to S.

7.4. Nakajima operators and COHA actions. In this section, we briefly recall the construction
of the Nakajima operators, see [31] and [23] for details, and we relate them to the action of H0(S),
Hc

0(S). We begin with the case of a proper surface S. For each k ⩾ 0 and l ⩾ 1, we consider the
reduced subscheme

Zk+l,k(S) ⊂ Hilbk+l(S)×Hilbk(S)

parametrizing pairs of ideal sheaves (I,J ) with J ⊃ I for which the support supp(J /I) consists
of a single point. There is a support map

s : Zk+l,l(S)→ S , s(J , I) = supp(J /I).

This allows us to view Zk+l,k(S) as a subscheme of Hilbk+l(S) × S × Hilbk(S). For any subset

I ⊂ {1, 2, 3} let pI be the projection to the factors in I. For each λ ∈ H∗(S,Q) and l⩾1, the
Nakajima operator ql(λ) ∈ End(V (S)) is

ql(λ) : H∗(Hilbk(S),Q)→ H∗(Hilbk+l(S),Q) , c 7→ p1∗(p
∗
23((λ ∩ [S])⊗ c) ∩ [Zk+l,k(S)])

Note that the restriction of p1 to the support of Zk+l,k is proper. Exchanging the roles of Hilbk(S)

and Hilbk+l(S) and using the isomorphic subscheme Zk,k+l ⊂ Hilbk(S) × S × Hilbk+l(S) in place

of Zk+l,k, we get the operator q−l(λ) ∈ End(V (S)) given by

q−l(λ) : H∗(Hilbk+l(S),Q)→ H∗(Hilbk(S),Q) , c 7→ (−1)lp1∗(p∗23((λ ∩ [S])⊗ c) ∩ [Zk,k+l(S)])
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As proved by Nakajima in [31, §8], the operators qn(λ) with λ ∈ H∗(S,Q), n ∈ Z\{0} generate
an action of the Heisenberg algebra hS modeled on H∗(S,Q), see (3.19) for relations, with central

charge C = 1. The space V (S) is isomorphic to the Fock space representation of hS ; in particular,

the action of U(hS) on V (S) is faithful.
Now, assume that S is any quasi-projective smooth surface. We may apply the exact same

construction, with the following modifications: the operators q−l(λ) decreasing the number of
points are labeled by classes λ ∈ H∗

c (S,Q), and the commutator relations are defined using the
intersection pairing H∗(S,Q)⊗H∗

c (S,Q)→ Q, see [31, §8].

Proposition 7.8. Let S be any quasi-projective smooth surface. For any l > 0 and any λ ∈
H∗(S,Q), µ ∈ H∗

c (S,Q) there exist elements El(λ) ∈ H0(S) and E−l(µ) ∈ Hc
0(S) such that

Ψ−
S (El(λ)) = ql(λ) and Ψ+

S (E−l(µ)) = q−l(µ).

Proof. We begin with the case of operators q−l(µ). Let h : S → Syml(S) be the diagonal embedding.
Set

Cohptlδ = Cohlδ ×Syml(S) S.

Let s : Cohptlδ → S the projection and t : Cohptlδ → Cohlδ the closed immersion. Given k⩾l, let Z̃k,k−l
be the derived stack parametrizing inclusions I ⊂ J of ideal sheaves of colength k and k − l. We
have the following commutative diagram with Cartesian squares

Cohlδ × Hilbk H̃ilbk,k−l
κoo π′

// Hilbk−l × Syml(S)

Cohptlδ × Hilbk

t×Id

OO

Z̃k,k−l

i′

OO

κpt
oo (π′)pt // Hilbk−l × S

i′′

OO

The map κpt is quasi-smooth, because κ is quasi-smooth. The class µ ∈ Hc
∗(S,Q) yields a class

s∗(µ) ∈ H∗(Cohptlδ/S,Q)

We define

E−l(µ) = (−1)lt!(s∗(µ) ∩ [Cohptlδ ]) ∈ H∗(Cohlδ/ Syml(S),Q).

The proper base change in Proposition A.6 implies that

(π′)!κ
!(t× Id)! = (π′)!i

′
!(κ

pt)! = i′′! (π
′)pt! (κpt)!.

Composing with the projection r, we get the relation

Ψ+
H(E−l(µ))(c) = (−1)lr ◦ (π′)pt! (κpt)!((s∗(µ) ∩ [Cohptlδ ])⊗ c) , c ∈ H∗(Hilbk,Q).

After pulling everything back from Hilb to Hilb, we have

(κpt)! ((s∗(µ) ∩ [Cohlδ])⊗ c) = ((µ ∩ [S])⊗ c⊗ [Hilbk−l]) ∩ [Zk,k−l].

Applying the proper pushforward to the projection to the factor Hilbk−l, we get the equality

Ψ+
H(E−l(µ))(c) = q−l(µ)(c).

We now turn to the case of operators ql(λ). Using the cartesian diagram

Hilbk(S)× Cohlδ(S) H̃ilbk,k+l(S)
π //κoo Hilbk+l(S)

Hilbk × Cohlδ

OO

H̃ilbk,k+l

OO

π◦
//κ◦

oo Hilbk+l

OO
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in which all the vertical arrows are open embeddings, we are reduced to the case of a proper surface
S = S. For this we may repeat the arguments used in the case q−l(µ) above. □

7.5. The Heisenberg subalgebra and Nakajima operators. In this paragraph, we will identify
the action of the Heisenberg subalgebra hS on V (S) with the action of Nakajima operators. We
begin with the case of a proper surface S, in which case we may consider both actions Φ±

S
.

Proposition 7.9. For any λ ∈ H∗(S,Q) and l⩾1 we have the following formulas in End(V (S))

(7.3) Φ+

S
(Dl,0(λ)) = (−1)lq−l(λ) , Φ−

S
(Dl,0(λ)) = ql(λ).

In particular, both representations Φ±
S

of U(hS) are faithful.

Proof. Assume first that l = 1 and consider the diagram

Cohδ(S)× Hilbk+1(S) H̃ilbk+1,k(S)
p //qoo Hilbk(S)

S ×Hilbk+1(S)

j1

OO

Zk+1,k(S)

j2

OO

p′ //q′oo Hilbk(S)

j3

OO

in which the vertical arrows are induced by the maps S → S × BGm = Cohδ(S) and Hilbn(S) →
Hilbn(S)× BGm = Hilbn(S). Note that the right square is cartesian. Moreover, H̃ilbk+1,k(S) and

Zk+1,k(S), are smooth and the maps q, q′ are lci. In this situation, for c ∈ H∗(Hilbk+1(S),Q) and

λ ∈ H∗(S,Q), we have

q−1(λ)(c) = −p′∗((q′)!((λ ∩ [S])⊗ c)).
Note that by construction, the projection H∗(Hilbn(S),Q) → H∗(Hilbn(S),Q) coincides with the
pullback by the morphism Hilbn(S)→ Hilbn(S). By base change, we have

Φ+

S
(D1,0(λ))(c) = j∗3 (p∗q

!(λ ∩ [S]⊗ c)) = p′∗j
∗
2q

!(λ ∩ [S]⊗ c))

= p′∗(q
′)!j∗1 (λ ∩ [S]⊗ c)) = −q−1(λ)(j

∗
1 (c))

(7.4)

as wanted. Note that as the map H̃ilbk+1,k(S) → Cohδ(S) × Hilbk(S) is lci, the refined Gysin
pullback is well-defined without any need to consider derived enhancements.

In order to extend the above relation to arbitrary l > 1, recall Lehn’s formulas [23, (2)]. Put
U = π∗(T ) where T is the universal subscheme on Hilb(S) × S and π is the projection along S.
Setting d = c1(U) we have

[d, q±1(1)] = q′±1(1)

[q′±1(1), q±m(λ)] = −mq±(m+1)(λ), λ ∈ H∗(S,Q), m⩾1.
(7.5)

Observing that d = − 1
2ψ2(1) and comparing (3.20) with (7.5) we deduce the statement by induction

on m. Note that the difference in signs is due to the fact that Φ−
S

is a right representation. □

We now turn to the case of an arbitrary cohomologically pure4 surface S, where (à priori) only
Φ−
S is defined. Fixing ι : S → S, the operators ql(λ) for l > 0 and λ ∈ H∗(S,Q) are easily seen to

4When S is not pure, the same construction yields an identification of the action of the element Dm,0(α) for

α ∈ H∗
pure(S,Q) with the corresponding Nakajima operators qm(α).
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be compatible with the restriction maps from ι∗ : H∗(Hilbk(S),Q)→ H∗(Hilbk(S),Q) in the sense
that there is a commutative diagram

H∗(Hilbk(S),Q)

ql(λ)

��

ι∗ // H∗(Hilbk,Q)

ql(λ|S)

��
H∗(Hilbk+l(S),Q)

ι∗ // H∗(Hilbk+l,Q)

.

We claim that the same base change formulas hold for the operators Φ−(Dm,0(λ)) for m⩾1. Indeed,
it follows from the cartesian diagram

Hilbk(S)× Cohδ H̃ilbk,k+1(S)
κoo π′

// Hilbk+1(S)× S

Hilbk × Cohδ

OO

H̃ilbk,k+1

OO

κ◦
oo π◦′

// Hilbk+1 × S

OO

and open base change that there is a commutative diagram

H∗(Hilbk(S),Q)

D1,n(λ)

��

ι∗ // H∗(Hilbk,Q)

D1,n(λ|S)

��
H∗(Hilbk+1(S),Q)

ι∗ // H∗(Hilbk+1,Q)

for any n. Since the collection of elements D1,k(λ) generates W−
↑ (S), and in particular h−

S
, we

deduce the following:

Corollary 7.10. For any pure S and any pair (m,λ) we have

Φ−
S (Dm,0(λ)) = qm(λ) ∈ End(V (S)).

In particular, the representation Φ−
S of U(h−S ) is faithful.

We are now in position to prove the following:

Proposition 7.11. For any pure S, (Φ−
H ,V(S)) is a faithful representation of W−

↑ (S). If S is

proper then the same holds for (Φ+
H,V(S)).

Proof. Let I = Ker((Φ−
S )|W−

↑ (S)). By definition, it is a two-sided ideal ofW−
↑ (S). If non-zero, I must

have a non-zero intersection with U(hS) by Lemma 3.17. But this would contradict Corollary 7.10.
The second statement is proved in the same fashion. □

7.6. Comparison between COHAs and W -algebras. In this section we prove Theorem B.
We will begin with the case of H0(S), then deduce the case of Hc

0(S) by using the morphism
ι! : H

c
0(S)→ H0(S).

Proof of Theorem B for H0(S). Let H′
0(S) be the subalgebra of H(S) generated by the subspace

H0(S)[1,−] and set H̃′
0(S) = Λ(S)⋉H′

0(S). Results of § 7.3 yield homomorphisms of algebras (we
drop the index Hilb for simplicity)

(7.6) W⩽(S)
Φ−
// End(V(S)) H̃0(S)

opΨ−
oo
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Moreover, Φ−
|W−(S) is injective by Proposition 7.11 and for any n⩾0, m > 0 and λ ∈ H∗(S,Q) we

have

(7.7) Ψ−(λun ∩ [Cohδ(S)]) = Φ−(Tn(λ)), Ψ−(ψm(λ)) = Φ−(ϕm(λ))

(recall that Hilb is a Hecke pattern of rank r = 1). By (7.7), we have Φ−(W−(S)) = Ψ−(H′
0(S)

op).
Hence, for any n, l, we have the chain of inequalities of graded dimensions

dim(W+(S)[n, l]) ⩽ dim(Ψ(H′
0(S)[n, l])) ⩽ dim(H′

0(S)[n, l]) ⩽ dim(H0(S)[n, l]).

But by Theorems 1.5 and 3.5, we have dim(W+(S)[n, l]) = dim(H0(S)[n, l]). This forces all the
inequalities above to be equalities. As a consequence, H0(S) = H′

0(S), i.e. H0(S) is generated
in degree one, the map Ψ−

|H0(S)
is injective, and in fact the morphism Tn(λ) 7→ (λun) ∩ [Cohδ(S)]

extends to the desired isomorphism of algebras ΘS : W+(S)
∼→ H0(S). This isomorphism extends

to W⩾(S)
∼→ H̃0(S). □

Proof of Theorem B for Hc
0(S). Recall that S is assumed to be pure. Let us fix a smooth com-

pactification ι : S → S and consider the algebra homomorphism ι! : H
c
0(S) → H0(S) ≃ W+(S).

By Proposition 7.5, Hilb(S) is a two-sided S-weak Hecke pattern, so in particular we have a (left)
action Ψ+

H
: Hc

0(S)→ End(V(S)). Moreover, by Proposition 6.9, there is a commutative diagram

Hc
0(S)

ι! //

Ψ+

H %%

Hc
0(S)

Ψ+

H

��

W+(S)
ΘSoo

Φ+

Hxx
End(V(S))

Let us put A = Ψ+

H
(Hc

0(S)). By Proposition 7.8, A contains the subalgebra generated by all

operators q−l(λ) for λ ∈ H∗
c (S,Q) as well as the collection of operators Φ+

H
(D1,m(λ)) for m⩾0 and

λ ∈ H∗
c (S,Q) which arise as length one (compactly supported) Hecke operators. We know that ΘS

is an isomorphism and by Proposition 7.11, the map Φ+

H
is injective. It follows from the definition

of W+
↓ (S) that A contains Φ+

H
(W+

↓ (S)). In particular, the graded dimension of A is bounded below

by that of W+
↓ (S). Since by Theorem 1.8 there is an equality between these graded dimensions, we

deduce that we have a chain of isomorphisms

Hc
0(S)

Ψ+

H // A Φ+

H
(W+

↓ (S)) W+
↓ (S)

Φ+

Hoo

as desired. This also shows that the map ι! is injective and concludes the proof of Theorem B for
an arbitrary pure surface S. □

Remark 7.12. The proof of Theorem B above goes through almost verbatim in the case when S
is equipped with an action of an algebraic torus T . The only thing that we need in addition is
equivariants counterparts of Theorems 1.5, 1.8, which are provided by remarks after said theorems.

The results above now yield:
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Corollary 7.13. Let S be a pure surface, X a two-sided Hecke pattern of rank r, and X◦ ⊂ X an
open two-sided S-weak Hecke subpattern. Then there is a commutative diagram

W±
↓ (S) //

Φ±

,,

Φ±
X &&

EndX(F(r)(S)) //

ev

��

End(F(r)(S))

End(Vtaut
X )

which glues into an action of W
(r)
↓↓ (S) on Vtaut(X) provided that the conditions of Lemma 1.16 are

satisfied.

Proof. We have an analogous diagram for W±(S) by Proposition 6.8. For the first claim, it suffices
to show that W±

↓ (S) lands in EndX◦(F(r)(S)) under Φ±. This follows from Proposition 6.6 and

the fact that W+
↓ (S) ≃ Hc

0(S) as subalgebras of W+(S). Adding tautological classes in, à priori

we get actions of W 0(S)⋉W±
↓ (S). However, the map F(r)(S)→ Vtaut

X factors through F(r)(S) by

Lemma 1.16, and so the two actions above glue to W
(r)
↓↓ (S). □

In particular, we have an action of W
(1)
↑↓ (S) on V (S), which descends to a faithful action of

W
(1)
↑↓,red by Lemma 3.17.

Remark 7.14. By Lemma 6.4, any two-sided S-weak Hecke pattern which is S-strong on the right

is automatically S-strong on the left. In particular, the action of W
(r)
↓↑ (S) always has central charge

r = 0 and lifts to the action ofW
(0)
↑↑ (S). However, we expect that one can obtain actions ofW

(r)
↓↑ (S)

with non-zero central charge out of Hecke patterns living in other hearts of DbCoh(S).

8. Action on Higgs bundles

In this section we show how to apply the machinery developed in this paper to obtain explicit
formulas for the action of Hecke operators on the homology of the stack of Higgs bundles on a
smooth projective curve C.

8.1. The stack of Higgs bundles. Let us consider S = T ∗C, where C is a smooth connected
projective curve of genus g. Let S = P(ΩC ⊕ OC) be the projective completion of ΩC , which is
a smooth compactification of S, and let p : S → C be the projection. We consider the (derived)
stack Higgsr,d classifying Higgs sheaves on C of rank r and degree d, or equivalently via the BNR

correspondence, coherent sheaves E on S whose support does not intersect D∞ = S\S and for
which p∗(E) ∈ Coh(C) is of rank r and degree d. When r = 0 we recover the stacks Cohdδ(S). We
will sometimes view a Higgs sheaf as a pair (F , θ) where F ∈ Coh(C) and θ ∈ Hom(F ,F ⊗ ΩC).
The correspondence is given by E 7→ F := p∗(E) and reads as follows on the Chern classes:

c0(E) = 0, c1(E) = r, c2(E) = r(r + 1)(1− g)− d.

Note that a Higgs sheaf E is of dimension ⩾1 is and only if it is pure of dimension 1 if and only if
the associated sheaf F on C is a vector bundle. We will denote by Higgsr,d the classical truncation
of Higgsr,d.

As opposed to the case of the moduli stack of coherent sheaves on a curve, the stack Higgsr,d is
not irreducible. Luckily, as soon as g > 1, the stack Higgs◦r,d parametrizing Higgs bundles of rank
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r and degree d is irreducible. More precisely, denote by Higgstor=lr,d the locally closed substack of
Higgsr,d parametrizing Higgs sheaves whose maximal torsion subsheaf is of degree l.

Proposition 8.1. Assume that g > 1. Then the Zariski closures of Higgstor=lr,d for l⩾0 form a

complete set of irreducible components of Higgsr,d. Moreover the stack Higgstor=lr,d is of dimension

2r2(g − 1) + l + 1. In particular, we have dimHiggs◦r,d = 2r2(g − 1) + 1.

Proof. Let us first show that the stack Higgstor=0
r,d of Higgs bundles of rank r and degree d is

irreducible. This can be easily deduced from [3, Section 2], we sketch the argument for the sake
of completeness. Let Bunr,d be the stack classifying vector bundles on C of rank r and degree
d. It is a smooth, irreducible stack of dimension (g − 1)r2, with a non-empty open substack
Bunstr,d parametrizing stable vector bundles. The canonical morphism π : Higgstor=0

r,d → Bunr,d
identifies Higgsr,d with the cotangent stack of Bunr,d. It follows that any irreducible component of

Higgs◦r,d is of dimension at least 2r2(g − 1) + 1 (one can see this, for instance, by locally realizing

Higgs◦r,d as a symplectic quotient). On the other hand, the morphism π is representable and

π−1(F) ≃ Ext1(F ,F)∗. By Serre duality, dim π−1(F) = (g − 1)r2 + dim End(F). In particular,
π−1(Higgs◦r,d) is irreducible, of dimension 2(g − 1)r2 + 1. To see that there is no other irreducible
component, it is enough to check that for any n > 0, the constructible substack Xn ⊂ Bunr,d
parametrizing objects whose automorphism group is of dimension n, is of codimension at least n,
i.e. of dimension at most (g − 1)r2 − n. In other words, one must check that Bunr,d is very good
in the sense of [3, Section 1]. This is done in loc.cit. (2.10.5) for the stack BunSLr

(over a curve of
genus g > 1); the proof is easily adapted to our case.

Next, let us fix l > 0. Projecting a Higgs sheaf to its vector bundle quotient and torsion
subsheaf yields a morphism Higgstor=lr,d → Higgs◦r,d×Higgs0,l which is a stack vector bundle of rank
0 (indeed, the fiber over a pair of Higgs sheaves (V, T ) is equal to RHom(V, T )[1] which is of perfect
amplitude [−1, 0] and of virtual rank ⟨(r, d), lδ⟩ = 0). Hence Higgstor=lr,d is irreducible, of dimension

2(g − 1)r2 + l + 1. Finally, it is easy to see that the union Higgstor⩽lr,d =
⊔
n⩽l Higgs

tor=n
r,d is an

open substack for any n. Since the dimensions of the irreducible locally closed substacks Higgstor=lr,d

increase with l, we deduce that the Zariski closures of each Higgstor=lr,d is an irreducible component
of Higgsr,d. □

Remark 8.2.

(i) For g = 0 or 1 the situation is quite different. When g = 0, the stack Higgs◦r,d has infinitely

many irreducible components whose classical truncations are all of dimension −r2. In that case
Higgs◦r,d coincides with the global nilpotent cone. When g = 1, the classical stack Higgs◦r,d
is also not irreducible, but the dimensions of the irreducible components may vary between 1
and r. Similar results hold for Higgstor=lr,d for any positive l.

(ii) For any g and l, the stack Higgstor=lr,d is of (virtual) dimension 2(g − 1)r2. In particular, this
dimension is independent of l.

8.2. Regularity of the Hecke pattern. For any r⩾1, let us put Higgs◦r =
⊔
d Higgs

◦
r,d. The aim

of this paragraph is to prove the following result:

Proposition 8.3. Assume that g > 1. Then the substack Higgs◦r is a regular S-strong two-sided
Hecke pattern on S = T ∗C.
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Proof. The fact that Higgs◦r is an S-strong two-sided Hecke pattern follows from Example 6.3.
Since C is of genus g > 1, Higgs◦r,d is irreducible and of dimension 2(g − 1)r2 + 1 for any d.

Let us fix d ∈ Z and set α = (r, d), γ = α + δ = (r, d + 1). We write Eη for the tautological
sheaf on Higgsη × S. Let U be any finite type open substack of Higgs◦γ × S, let E−1 → E0 be a
presentation of Eγ as a perfect complex, and let s be the associated section. The (virtual) rank

of Eγ being equal to zero, the (virtual) dimension of the map πδ,α : H̃iggsδ;α → Higgsγ is equal

to 1. It follows that dim(H̃iggs
◦
δ;α)⩾ dim(Higgs◦γ) + 1. We will show that s is regular by proving

that dim(H̃iggs
◦
δ;α)⩽dim(Higgs◦γ) + 1, which will in fact imply equality. This will also give the

regularity of the section s′, see (2.10). For this, let us denote by

µ : Higgs◦γ → A :=

r⊕
i=1

H0(C,Ω⊗i
C )

the Hitchin map. If a ∈ A we write Ca for the corresponding spectral curve, and we denote by
C ⊂ A× S the universal spectral curve. For i⩾1, we set

Ri := {(a, (x, ξ)) ∈ C | p|Ca
: Ca → C is ramified of order i at (x, ξ)} ⊂ A× S.

We denote by A(x,ξ)
i ⊂ A the fiber over (x, ξ) of the projection Ri → S. Note that R⩾i =

⊔
j⩾iRj

is closed and R⩾1 = C. We set Ri = (µ× Id)−1(Ri).

Lemma 8.4. For any i⩾1 and (x, ξ) ∈ S we have codimA(A(x,ξ)
i ) = i.

Proof. Since ΩC is base-point free, the evaluation at x ∈ C yields a surjective linear map i∗x : A →⊕r
i=1 T

∗
x (C)

⊗i. The locally closed subset A(x,ξ)
i is the inverse image of the subset of degree r − 1

polynomials in one variable y ∈ T ∗
xC vanishing with order i at ξ. This condition defines a subset

of codimension i. □

Since g > 1 the map µ is flat by [14, Cor. 9]. It follows that codimHiggs◦γ (µ
−1(A(x,ξ)

i )) = i

hence codimHiggs◦γ×S(Ri)) = i. Recall the morphism π : H̃iggs
◦
δ,α → Higgs◦γ × S which sends a

filtration H ⊂ E to (G, supp(E/H)). By construction, π lands in the closed substack R⩾1. For any
Higgs bundle F whose support is ramified at (x, ξ) of order i we have dim(HomOS

(F ,O(x,ξ)))⩽i.
It follows that dim(π−1(E , (x, ξ)))⩽i− 1 if (E , (x, ξ))) ∈ Ri, hence

dim(π−1(Ri))⩽dim(Ri) + i− 1 = dim(Higgs◦γ × S)− i+ i− 1 = dim(Higgs◦γ) + 1.

Since this is true for all i = 1, . . . , r, we get the desired dimension estimate. □

Remark 8.5.

(i) Refining the above dimension estimates, one can show that for g > 1 the Hecke correspondence

H̃iggs
◦
δ,α is irreducible.

(ii) When g = 0, 1, Higgs◦r is not a regular Hecke pattern. For instance, if gcd(r, d) = 1 and r > 1
then a generic (stable) Higgs sheaf E = (F , θ) has a scalar Higgs field, hence the fiber of pδ,α

over E is of dimension r−1 (and thus H̃iggs
◦
δ,α has a component of dimension r+dim(Higgsstr,d)

lying over Higgsstr,d).
(iii) A similar argument also shows that the stacks of HiggsL,◦ of L-twisted Higgs sheaves with

deg(L) > 2(g − 1) form a regular two-sided Hecke pattern on Tot(L).
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8.3. Action on tautological classes. Unlike the case of the stack of coherent sheaves on C [17],
the homology of the stack of Higgs sheaves on C is not generated by tautological classes. Note,
however that by Markman’s theorem [27] this is the case after restriction to the stack of stable
Higgs sheaves in the case (r, d) = 1. This motivates the study of Hecke operators on the subspace

of tautological classes of H∗(Higgs
◦,Q). By Propostion 6.8 there is an action of W

(0)
↑↑ (T ∗C) on

Vtaut
Higgs◦ . Moreover since H∗(S,Q) = H∗(C,Q), by degree reasons we have c21 = c2 = 0 and

c1∆S = 0. Analogously to Corollary 5.9 we conclude that W
(0)
↑↑ (T ∗C) ≃ U(wT∗C) where

wT∗C =
⊕
m,n⩾0
(m,n) ̸=0

⊕
γ∈Π

QDm,n(γ), Π = {1, γ1, . . . , γ2g, ω}

with γ1, . . . , γ2g a symplectic basis of H1(C,Q), with relations

[Dm,n(γ), Dm′,n′(γ′)] = (mn′ −m′n)Dm+m′,n+n′−1(γγ
′)

for all tuples (m,m′, n, n′, γ, γ′).
We should stress that Corollary 4.8 does not apply in this case, because Higgs bundles have zero

rank as sheaves on T ∗C. This is also evidenced by the fact that, contrary to the case of Hilbert
scheme, the action of bothW 0 andW+

↑ on Vtaut
Higgs◦ is not faithful. However, this non-faithfulness is

a feature; it is related to the existence of a certain “rational” degeneration of W⩾
↑ (T ∗C), which was

used in [18] to prove the P =W conjecture of de Cataldo-Hausel-Migliorini; see also § 8.4 below.

Example 8.6. Consider Higgs bundles of rank 1 on a curve C of genus g > 1. In this case Higgs◦1,d ≃
JacdC ×BGm ×H0(C,ΩC). We have the Poincaré line bundle P on (Jacd ×BGm)× C, and it is
known that

c1(P) = u⊗ 1 +
∑
γ

bγ ⊗ γ + 1⊗ [pt],

where u is the generator of H∗(BGm,Q), and bγ form the basis of H1(C,Q) ⊂ Λ•H1(C,Q) ≃
H∗(Jacd,Q). Starting from this observation, an easy but tedious computation shows that

ψ1([pt]) = a, ψ1(γ) = bγ , ψ0([pt]) = 1,

where the classes ψi are obtained from the universal sheaf on a natural compactification of Higgs◦1,d×
T ∗C in accordance with § 1.6. This means that the cohomology of Higgs◦1,d is generated by the
classes ψ1. In particular, ψ2(1) can be expressed in terms of these classes for all d at once, so that
the action of W 0(T ∗C) on Vtaut

Higgs◦1
is not faithful. Applying AdD10(1) twice to such an expression,

we see that q2(1) expresses in terms of q1’s, and so the action of W+
↑ (T ∗C) is not faithful either.

8.4. One-dimensional sheaves on K3 surfaces. Let us now briefly consider another example.
Let S be a K3 surface, and fix a smooth curve C ⊂ S of genus g > 1 which is a very ample divisor.
We denote by Mukair the moduli stack of coherent sheaves E of purely 1-dimensional support on
S, such that c1(E) = rC. It is well known [30, 7] that Mukair behaves similarly to Higgs◦r ; in

particular, it admits a morphism Mukair → Pr2(g−1)+1 with properties analogous to the Hitchin
map Higgs◦r → A.

It follows again from Example 6.3 that Mukair is a two-sided Hecke pattern. While we expect
that Mukair is in fact regular, let us for simplicity’s sake restrict our attention to the subspace
Vvtaut

Mukair
⊂ H∗(Mukair,Q) of classes obtained by capping the virtual fundamental class [Mukair]vir

with tautological classes. Invoking Proposition 2.8, we can apply an analogue of Proposition 6.8
obtain an action of W (0)(S) on Vvtaut

Mukair
. While c1 = 0, it is known that s2 = −24[pt]. Thus we
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are placed in the semi-deformed situation of § 3.8, where we can take q = (−
∫
S
C2/24)−1/2C up

to passing to a finite extension of Q in the coefficients.
Similarly to Example 8.6, it is easy to check that the action of W (0)(S), or indeed of W+(S) on

Vvtaut
Mukair

is not faithful. However, with an argument analogous to the one found in [18, Section 6],

one can show that the action of W⩾(S) degenerates to the action of the algebra U(wlog
S ), where

wlog
S has basis xm∂nλ, m,n ∈ N, λ ∈ H∗(S,Q), and the Lie bracket is given by

[xm∂aλ, xn∂bµ] =
∑
i⩾1

i!

((
a

i

)(
n

i

)
−
(
b

i

)(
m

i

))
xm+n−i∂n+b−iqi−1λµ.

One way to think of this is that wS looks like the Lie algebra of differential operators on C∗ with
coefficients in H∗(S,Q), and so rational degeneration should look like the Lie algebra of differential
operators on C.

Note that the defining relations of wlog
S imply that {x2/2, x∂ + 2q, ∂2/2} is an sl2-triple, which

should control the perverse filtration on the cohomology of the stable locus of Mukair. We plan to
return to this in the future work.

9. Some conjectures

9.1. Action beyond tautological classes. Let us informally summarize what we proved, omit-
ting most adjectives. First, given any two-sided Hecke pattern X, we have two actions of W+(S)
on the Borel-Moore homology of X. Second, for a regular Hecke pattern these two actions glue to
an action of W (c)(S) on the subspace of tautological classes. Somewhat frustratingly, our methods
do not prove the relation (4.8) for non-tautological classes. This reflects the fact that W (c)(S) is
supposed to be related to a Drinfeld double of H0(S), which has not yet been defined. In view of
Proposition 2.8, it also seems natural drop the regularity condition.

Conjecture 9.1. For any two-sided Hecke pattern X of rank r, there is an action of W⋆,⋆(S) on
H∗(X) for appropriate ⋆ ∈ {↑, ↓}.

Our main theorems were proved under the assumption that S has pure cohomology, but we
conjecture that they hold without this assumption. The reason for this assumption is that we need
Vtaut(S) to be a faithful representation of U(hS) in order to compare the deformed W -algebra with

the COHA as subalgebras of End(Vtaut(S)). We plan to address this problem in future work by
considering another family of tautological classes on Hilb(S), obtained from the correspondence

S Qn Hilbn(S)

where Qn is the universal subscheme.

9.2. W -algebras for 3-dimensional varieties. Let S be a smooth surface. The Borel-Moore
homology of the stack Coh0(S) is isomorphic to the critical cohomology H∗

crit(Coh0(M)) of the
stack of finite length sheaves Coh0(M) on the Calabi-Yau threefold M = TotS(KS) by dimensional
reduction [21]. For any 3-Calabi-Yau M , the space Hcrit

0 (M) = H∗
crit(Coh0(M)) is an associative

algebra, called critical COHA, at least admitting Joyce’s conjectures [1, Conjecture 5.22]. We
expect that an isomorphism similar to the one of Theorem B should hold for critical CoHAs as
well:

Conjecture 9.2. Let W+(M) be an algebra generated by Tn(λ), n⩾0, λ ∈ H∗(M), modulo the
relations (b), (e)-(g) of Definition 3.1, where we replace s2 by c2(TM), and c1∆S by ∆M . Then
Hcrit

0 (M) ≃W+(M).
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One may wonder if a similar statement can be made without Calabi-Yau condition. Our pre-
liminary computations suggest that the analogues of relations (f), (g) become significantly more
complicated. We hope to return to this in future work.
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Appendix A. Borel-Moore homology for derived stacks

A derived stack X is a functor R 7→ X(R) assigning an∞-groupoid to every simplicial commuta-
tive ring, that satisfies étale hyperdescent. We say that X is 1-Artin if its diagonal is representable
by an algebraic space and if there is a scheme Y with a smooth and surjective morphism Y → X.
This morphism is called a smooth atlas for X. Unless specified otherwise, in this work all derived
stacks are supposed to be 1-Artin, and locally quotient stacks of finite type. We will work over the
ground field C.

A.1. Dualizing complexes and virtual classes. We will use the formalism introduced in [20],
to which we refer for details (see also [35]). In particular, for any derived stack X there is an
∞-category ShQ(X) of constructible Q-sheaves on X, and these satisfy a six-functor formalism
(see [20, Thm. A.5]). The dualizing complex is defined as DX = p!Q where p : X → Spec(C) is the
map to the point. The sheaf of Borel-Moore chains on X is

CBM
• (X,Q) = p∗p

!Q = p∗DX ∈ ShQ(Spec(C)) = D(Q-mod).

The Borel-Moore homology is obtained as usual by taking derived global sections Hi(X,Q) =
HBM
i (X,Q) = H−i(CBM

• (X,Q)). Likewise, the sheaf of cochains and the cohomology groups are
defined as

C•(X,Q) = p∗p
∗Q = p∗QX , Hi(X,Q) = Hi(C•(X,Q)).

These satisfy all the usual properties, see [20, Section 2]. In addition, Borel-Moore homology is
insensitive to the derived structure, in the sense that the direct image map Hi(X

cl,Q)→ Hi(X,Q)
is an isomorphism for any X and i. Of crucial importance for us are the notions of Gysin pullback
and virtual fundamental classes for quasi-smooth morphisms. Let f : X → Y be a quasi-smooth
morphism of dimension d. There is a map f ! : Hi(Y,Q)→ Hi+2d(X,Q) which is in fact induced by
a morphism

[f ]vir : f
∗DY → f !DY [−2d] = DX [−2d].

In particular, when X is itself quasi-smooth then the (virtual) fundamental class of X is defined
as [X] = p!(1) ∈ H2 dimX

(X,Q). Note that if X is smooth and classical then [X] is just the usual
fundamental class; in general, [X] and [Xcl] differ –in fact they typically live in different homological
degrees of H•(X,Q) = H•(X

cl,Q).

We collect here some of the basic properties of derived pullbacks which we will use.
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Proposition A.1. Let f : X → Y be a quasi-smooth morphism of derived stacks. The following
hold:

(a) If f is an open embedding then f ! = f∗,

(b) If g : Y → Z is quasi-smooth then [g]vir[f ]vir = [gf ]vir : g
∗f∗DZ → DX [−2 dim(f)−2 dim(g)];

in particular, (gf)! = g!f ! : H∗(Z,Q)→ H∗+2dim(f)+2 dim(g)(X,Q), and hence f !([Y ]) = [X],

(c) Compatibility with cap product: for any c ∈ H∗(Y,Q), c′ ∈ H∗(Y,Q) we have f !(c ∩ c′) =
f∗(c) ∩ f !(c′),

(d) Assume furthermore that f is proper representable, of finite Tor-amplitude, so that f∗ :
H∗(X,Q) → H∗(Y,Q) is well-defined. Then the following projection formula holds: for any
class c ∈ H∗(X,Q) and any α ∈ H∗(Y,Q), we have f!(c ∩ f !(α)) = f∗(c) ∩ α.

(e) Let

X
f //

g

��

Y

g

��
X ′ f // Y ′

be a cartesian diagram of derived stacks with f quasi-smooth and g proper. Then the proper

base change formula holds: g!f
!
= f !g! : H∗(Y,Q)→ H∗(X

′,Q).

A.2. Relative and hyperbolic homology. Let X be a derived stack, S a scheme and let π :
X → S be a morphism. Let us also denote by p : S → pt the projection. We define the space of
relative Borel-Moore chains on X/S as

CBM∗ (X/S,Q) = π∗DX ∈ Db(S),

and we define the S-hyperbolic, or simply hyperbolic homology, as

Hi(X/S,Q) = H−i(p!π∗DX).

Example A.2. Taking X = S we get that H∗(S/S,Q) is the usual homology of S. On the other
hand, if S is a point then H∗(X/S,Q) is the Borel-Moore homology of X.

When S is understood from the context, we might abbreviate Hc
i (X,Q) = Hi(X/S,Q). There is

a canonical isomorphism Hc
∗(X

cl,Q)
∼→ Hc

∗(X,Q). Dually, we define the space of relative cochains
on X/S as

C∗(X/S,Q) = π∗QX ∈ Db(S),

and we define the S-hyperbolic, or simply hyperbolic cohomology as

Hi(X/S,Q) = Hi(p!π∗QX).

There is a natural morphism π∗ : H∗
c (S,Q)→ H∗(X/S,Q).

Lemma A.3. There is a natural action ∩ of H∗(X,Q) on H∗(X/S,Q):

∩ : Hi(X,Q)⊗Hj(X/S,Q)→ Hj−i(X/S,Q)

for all i, j. Likewise, there is a natural cap product

∩ : Hi(X/S,Q)⊗Hj(X,Q)→ Hj−i(X/S,Q)

for all i, j.
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Proof. Consider the following diagram

X

∆

��

π // S

∆′

��

Id

""
X ×X π×π // S × S

pr2 // S
p // {pt}

where pr2 : S × S is the second projection. We have ∆∗(QX ⊠ DX) = DX . The adjunction
Id→ ∆∗∆

∗ yields a map QX⊠ DX → ∆∗DX . Applying (π×π)∗ we get a morphism (π×π)∗(QX⊠
DX)→ ∆′

∗π∗DX , hence a map p!pr2∗(π×π)∗(QX⊠DX)→ p!π∗DX . The construction of the second
cap product is similar. □

Lemma A.4. Let X,Y be derived stacks, S a scheme. Let πX : X → S, πY : Y → S and f : X → Y
be morphisms such that πY ◦ f = πX . Then

(a) Assume that f is quasi-smooth of relative dimension d. Then there is a canonical morphism
f∗ : Hi(Y/S,Q)→ Hi+2d(X/S,Q),

(b) Assume that f is proper. Then there is a canonical morphism f∗ : Hi(X/S,Q)→ Hi(Y/S,Q).
Moreover, the projection formula holds, i.e. for any c ∈ H∗(Y,Q) and any x ∈ H∗(X/S) we
have f∗(f

∗(c) ∩ x) = c ∩ f∗(x),

(c) For any cartesian diagram of S-stacks

X
f //

g

��

Y

g

��
X ′ f // Y ′

with f smooth and g proper we have g!f
!
= f !g! : H∗(Y/S,Q)→ H∗(X

′/S,Q).

Proof. Let p : S → pt be the projection. Assume that f is quasi-smooth of dimension d. The virtual
fundamental class gives a morphism f∗DY → DX [−2d]. Applying p!πX∗ and using the adjunction
Id→ f∗f

∗ yields a canonical morphism p!πY ∗DY → p!πX∗DX [−2d], proving (a). The construction
of the direct image morphism follows directly from the adjunction f!f

! → Id. We leave the proof of
the projection formula to the reader. It boils down to the commutativity of the following diagram

f∗DX ⊠QY f∗DX ⊠ f∗QX (f × f)∗∆∗DX ∆∗f∗DX

DY ⊠QY ∆∗DY

QY →f∗QX

f∗DX→DY

1→∆∗∆
∗

f∗DX→DY

1→∆∗∆
∗

The proper base change statement (c) is obtained by taking compactly supported cohomology of
the proper base change over the base S. □

We will also need to consider base change operations associated to an open immersion ι : S◦ → S.
For πX : X → S a derived S-stack we set X◦ = X ×S S◦ and denote by ιX : X◦ → X and
π◦
X : X◦ → S◦ the induced maps. We define a pushforward map iX! : H∗(X

◦/S◦,Q)→ H∗(X/S,Q)
as the following composition of identifications and morphisms:

p◦! π
◦
X∗DX◦ = p◦! π

◦
X∗i

!
XDX = p◦! i

!
SπX∗DX = p!iS!i

!
SπX∗DX

iS!i
!
S→1−→ p!πX∗DX .
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Example A.5. Assume that S is proper. Then the composition ι∗ι! : H
c
∗(S

◦,Q) = H∗(S
◦/S◦,Q)→

H∗(S/S,Q) = H∗(S,Q) → H∗(S
◦,Q) is the canonical morphism from usual homology to Borel-

Moore homology.

Proposition A.6. Let S◦, S be as above. Let πX : X → S, πY : Y → S be two derived S-stacks,
f : X → Y a morphism of S-stacks and let f◦ : X◦ → Y ◦ be the base change of f . The following
hold:

(a) If f is quasi-smooth then f !iY ! = iX!f
◦! : H∗(Y

◦/S◦,Q)→ H∗+2dim(f)(X/S,Q),

(b) If f is proper then f!iX! = iY !f
◦
! : H∗(X

◦/S◦,Q)→ H∗(Y/S,Q).

Proof. This follows from some tedious but unimaginative diagram chasing (see also [35, §3, 4] where
similar results are proven in a dual context). □
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