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Abstract. We study the Schur algebra counterpart of a vast class of quantum wreath products. This
is achieved by developing a theory of twisted convolution algebras, inspired by geometric intuition. In
parallel, we provide an algebraic Schurification via a Kashiwara–Miwa–Stern-type action on a tensor
space. We give a uniform proof of Schur duality, and construct explicit bases of the new Schur algebras.
This provides new results for, among other examples, Vignéras’ pro-𝑝 Iwahori Hecke algebras of type
𝐴, degenerate affine Hecke algebras, Kleshchev–Muth’s affine zigzag algebras, and Rosso–Savage’s affine
Frobenius Hecke algebras.

0. Introduction

0.1. Background. Consider algebras over a field k. Following [KM22], by Schurification we mean a
procedure that, given an algebra 𝐀, produces a new algebra 𝐒(𝐀) which enjoys favorable properties
similar to the classical Schur algebra, e.g., the double centralizer property, and the existence of functors
that relate the representation theory of 𝐀 and of 𝐒(𝐀).

LetH𝑞(S𝑑) be the Hecke algebra of the symmetric groupS𝑑 with 𝑞 ∈ k
×. One instance of Schurifi-

cation is the well-known Dipper–James’ construction of the 𝑞-Schur algebras [DJ89]

𝐒
DJ
(H𝑞(S𝑑)) ≡ 𝑆𝑞(𝑛, 𝑑) ∶= EndH𝑞(S𝑑) (

⨁
𝜆∈Λ𝑛,𝑑

𝑥𝜆H𝑞(S𝑑)) ,

in terms of permutation modules. Another instance is Beilinson–Lusztig–MacPherson’s realization of
𝑞-Schur algebra via convolution algebras [BLM90], later generalized by Pouchin [Pou09]:

𝐒
BLM

(H𝑞(S𝑑)) ≡ kGL𝑑
(𝑌𝑛,𝑑 × 𝑌𝑛,𝑑),

where 𝑌𝑛,𝑑 is the (finite) set of partial flags of length 𝑛 in F𝑑

𝑞
, and kGL𝑑

(−) is the space of GL𝑑-invariant
k-valued functions. The two constructions can be identified [DJ91, Gro92]:

⨁
𝜆∈Λ𝑛,𝑑

𝑥𝜆H𝑞(S𝑑) ≡ (k
𝑛
)
⊗𝑑

≡ kGL𝑑
(𝑌𝑛,𝑑).

Each construction has its ownmerits. The convolution algebra approach usually accounts for positivity
behaviors; while Dipper–James’ approach involves Coxeter group combinatorics, and allows potential
generalizations to the case of unequal parameters.

Schurification (and further development) for these flavors of Hecke algebras of various types has
been studied intensively; see e.g. [BW18, BKLW18, LL21, FL15, DLZ24] for type B/C/D, [GRV94, Lus99,
DF15] for affine type A, [BWW18, FLL+20a, FLL+23, CFW24] for affine type B/C/D. Note that the works
on affine types use Coxeter presentation instead of Bernstein–Lusztig presentation, and hence do not
generalize in an obvious way to certain interesting variants, e.g. the quantum wreath products 𝐵 ≀H(𝑑)

introduced in [LNX24].
To our knowledge, only partial results are obtained regarding Schurification for algebras defined via

the Bernstein–Lusztig presentation (see [KMS95, FLL+20b]). It is an interesting question whether one
can extend the theory of Schurification to these algebras. If such an algebraic theory exists, does it admit
a geometric counterpart in terms of the convolution algebras? In this paper, we provide affirmative
answers to both questions, based on a new construction of convolution algebras with a twist, and a
Demazure-type operator twisted by weak Frobenius elements.
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0.2. An overview. In this paper, we construct Schurification for algebras which admit the Bernstein–
Lusztig presentation. Such algebras include the affine Hecke algebras for GL𝑑 , their degenerate, 0-
Hecke, and nil-Hecke variants, Kleshchev–Muth’s affine zigzag algebras [KM19], Vignéras’ pro-𝑝 Iwa-
hori Hecke algebras H(𝑞𝑠 , 𝑐𝑠) [Vig16] for GL𝑑(Q𝑝) (which are isomorphic to the affine Yokonuma al-
gebras introduced by Chlouveraki-d’Andecy [Cd15]), certain Rosso–Savage’s affine Frobenius Hecke
algebras [Sav20, RS20], and Rees affine Frobenius Hecke algebras considered in an ongoing work by
Mathas–Stroppel [MS].

Precisely speaking, we consider a family of quantum wreath products 𝐵 ≀ H(𝑑) (which we call of
polynomial type, or PQWP), in which the base algebra 𝐵 = 𝐹 [𝑥] (or 𝐹 [𝑥±1]) is the ring of (Laurent)
polynomials over a k-algebra 𝐹 . Typically, 𝐹 is either the ground field k, the group algebra k[𝑡]/(𝑡𝑚 −

1) of a cyclic group, or the cohomology ring of a smooth variety, e.g. 𝐻 ∗
(P𝑛

) = k[𝑐]/(𝑐
𝑛+1

). The
parameters (𝑆, 𝑅, 𝜎, 𝜌) for such PQWPs are of the form

𝑆 = Δ
10
− Δ

01
, 𝑅 ∈ (𝑍(𝐹 ⊗ 𝐹))

S2
, 𝜎 = flip, 𝜌 = 𝜕

𝛽
,

where 𝛽 = ∑
0≤𝑖,𝑗≤1

Δ
𝑖𝑗
(𝑥
𝑖
⊗ 𝑥

𝑗
) for some weak Frobenius elements Δ𝑖𝑗 ∈ (𝐹 ⊗ 𝐹)

S2 , and 𝜕𝛽 is the
Demazure operator twisted by 𝛽 (see (2.3)).

On the other hand, we consider twisted,S𝑑-equivariant convolution algebras of functions valued in
R ∶= 𝐵

⊗𝑑 , where the product in given by

(𝑓 ∗ 𝑔)(𝑥, 𝑦) ∶= ∑
𝑧∈𝑋

𝑓 (𝑥, 𝑧)𝑒(𝑧)
−1
𝑔(𝑧, 𝑦).

for some 𝑒 ∶ 𝑋 → R.
Recall that a uniform proof of Schur duality for quantum wreath products was provided in [LNX24,

§7.1–5] under strict assumptions, including finite-dimensionality of the base algebra 𝐵. In the present
paper, our Schurification allows a uniform proof for the aforementioned quantumwreath products with
infinite-dimensional base algebras.

Main results. Let 𝐵 ≀H(𝑑) be a quantum wreath product of polynomial type (see Theorem 2.7) satisfying
conditions (C1)–(C3) of Section 4.1.

(A) [Theorem 4.2] There is an embedding 𝐵 ≀H(𝑑) ↪ R
(𝑒)

S𝑑

(S𝑑 ×S𝑑) into a twisted convolution algebra,
with the twist given by

𝑒(𝑧) = 𝑧
(
∏

1≤𝑖<𝑗≤𝑑

(𝜎(𝛽)𝑖𝑗 (𝑥𝑖 − 𝑥𝑗 ) − 𝜎(𝛼)𝑖𝑗 (𝑥𝑖 − 𝑥𝑗 )
2
)
)
.

In particular, 𝐻𝑖 ↦ 𝜉
1,𝛽𝑖/(𝑥𝑖−𝑥𝑖+1)

+ 𝜉
𝑠𝑖,𝛼𝑖+𝛽𝑖/(𝑥𝑖−𝑥𝑖+1)

.
(B) [Theorems 3.11, 4.6 and 5.9] There is a Schurification of 𝐵 ≀H(𝑑) via twisted convolution algebras

such that the Schur counterpart, i.e., the coil∗ Schur algebra

𝐒
BLM

(𝐵 ≀H(𝑑)) ∶= R𝑇
𝐺
(𝑌 × 𝑌 )

has a double centralizer property (DCP) with 𝐵 ≀ H(𝑑), when the elements (4.15) are invertible.
When invertibility fails, DCP continues to hold for a slightly bigger laurel∗ Schur algebra 𝐒BLM.

(C) [Theorems 6.7 and 6.8] There is another Schurification of 𝐵 ≀H(𝑑) via permutation modules such
that DCP holds for the corresponding wreath∗ Schur algebra

𝐒
DJ
(𝐵 ≀H(𝑑)) ∶= End

𝐵≀H(𝑑)
(⨁

𝜆∈Λ𝑛,𝑑
𝑀
𝜆
) ≡ End

𝐵≀H(𝑑)
(𝑉

⊗𝑑

𝑛
),

provided that 𝑛 ≥ 𝑑. The algebras 𝐒BLM and 𝐒DJ are Morita-equivalent.
(D) [Theorem 6.5] There exists an explicit basis {𝜃𝐴,𝑃 } of these Schur algebras, where 𝐴 lies in the set

Θ𝑛,𝑑 of 𝑛-by-𝑛 matrices with non-negative integer entries summing up to 𝑑, and 𝑃 is a partially
symmetric polynomial in 𝐵⊗𝑑 .

While the conditions (C1) and (C3) are quite restrictive, we only expect to be able to remove (C2);
see the discussion in Section 5.4.
∗ “Wreath” is reserved for the centralizer algebra. Both “coil” and “laurel” evoke the skeletal shape of wreath, with laurel
being slightly thicker.
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The basis {𝜃𝐴,𝑃 } in (D) is a generalization of the Dipper–James basis {𝜃𝑔
𝜆,𝜇
} of the 𝑞-Schur algebra, and

is related to the “chicken-foot” basis in [SW24a, SW24b]. A similar basis also appears in an ongoing
work [DKMZ] by Davidson-Kujawa-Muth-Zhu.

0.3. Applications. Let us highlight some applications that we find exciting; see Section 7 for details.

Imaginary Strata of Affine KLR Algebras. Recall that quantum groups are categorified by quiver Hecke
algebras. In particular, the study of PBW bases of affine quantum groups categorifies to the study
of stratification of quiver Hecke algebras of affine type. While this was carried out in characteristic
0 in [KM19], the general case remains mysterious, the hard being the computation of the so-called
imaginary strata. We propose that (idempotent truncations of) the coil Schur algebras 𝐒BLM describe
the imaginary strata in any characteristic (Section 7.4).

Representation Theory of 𝑝-adic Groups. The pro-𝑝 Iwahori Hecke algebra (Section 7.3) and its rep-
resentation theory plays an important role in the representation theory of 𝑝-adic groups, especially
when one considers representations in local characteristic [Vig16, Oll10, Abe19], or metaplectic covers
of 𝑝-adic groups [GGK24]. In the latter case, the pro-𝑝 Iwahori Hecke algebra and its Gelfand–Graev
modules encode information about certain metaplecticWhittaker functions, see also [BP22]. We expect
our theory for 𝐒BLM and 𝐒

DJ to be useful to understand Schurification arising from [GGK24].

0.4. Organization. In Section 1, we recall the definition of convolution algebras, as well as the com-
binatorics used in the Dipper–James construction. We also remind readers the definition of QWP and
the conditions for it to have a PBW basis. In Section 2, we introduce twisted Demazure operators, and
use them to define the class of quantum wreath products of polynomial type. We show PQWPs afford
a PBW basis. In Section 3, we introduce twisted convolution algebras, and prove the double central-
izer property for their certain sublattices. In Section 4, we realize PQWPs as subalgebras of twisted
convolution algebras, and hence deduce the Schur duality under an invertibility assumption for the
coil Schur algebras. The assumption is removed in Section 5 for the price of replacing the Schur alge-
bra with a larger laurel Schur algebra. In Section 6, we prove the double centralizer property for the
wreath Schur algebra in the sense of Dipper–James, and then compare these approaches. Finally, we
summarize particular cases of new results in Section 7.

Acknowledgments. We would like to thank Valentin Buciumas and Catharina Stroppel for useful
discussions. Research of the first-named author was supported in part by NSTC grants 113-2628-M-
001-011 and the National Center of Theoretical Sciences. This collaboration started during the work-
shop “Representation Theory of Hecke Algebras and Categorification” at OIST, Japan. The authors are
grateful to Max Planck Institute for Mathematics in Bonn and Academia Sinica for their hospitality and
financial support.

1. Prereqisites

1.1. Schurification via convolution algebras. Let𝐺 be a finite group acting on a finite set𝑋 , andR a
unital ring equipped with a𝐺-action and free as a k-module. Denote byR𝐺(𝑋) the set of𝐺-equivariant
R-valued functions on 𝑋 . Then, the set R𝐺(𝑋 × 𝑋) of 𝐺-equivariant R-valued functions on 𝑋 × 𝑋 is a
unital associative algebra, with multiplication given by convolution:

(1.1) (𝑓 ∗ 𝑔)(𝑥, 𝑦) = ∑
𝑧∈𝑋

𝑓 (𝑥, 𝑧)𝑔(𝑧, 𝑦).

Such convolution algebras and the corresponding double centralizer property have been systematically
studied in [Pou09].

Let R = k with the trivial 𝐺-action. In the case 𝐺 = GL𝑑(k) acting on the set 𝑋 = 𝑌𝑑 of complete
flags in k𝑑 , the convolution algebra R𝐺(𝑋 × 𝑋) realizes the Hecke algebra H𝑞(S𝑑). A well-known
Schurification of k𝐺(𝑋 × 𝑋) ≡ H𝑞(S𝑑), due to Beilinson-Lusztig-MacPherson [BLM90], proceeds by
replacing 𝑌𝑑 with the set of 𝑛-step partial flags in k𝑑 . This produces an algebra k𝐺(𝑌𝑛,𝑑 × 𝑌𝑛,𝑑) with
monomial and canonical bases, which are indexed by the set of 𝐺-orbits in 𝑌𝑛,𝑑 ×𝑌𝑛,𝑑 . Note that this set
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is naturally identified with the set Θ𝑛,𝑑 of 𝑛-by-𝑛 matrices with non-negative integer coefficients that
add up to 𝑑.

The aforementioned bases can be constructed from the basis consisting of the following characteristic
functions:

(1.2) 𝜉𝜋 ∈ R(𝑌𝑛,𝑑 × 𝑌𝑛,𝑑), 𝜉𝜋(𝑥, 𝑦) = ∑

𝑔∈𝐺/Stab𝐺(𝜋)

𝛿
𝑔𝜋,(𝑥,𝑦)

=

{

1 if (𝑥, 𝑦) ∈ 𝐺 ⋅ 𝜋;

0 otherwise,

where 𝜋 runs over a fixed choice of representatives of Π𝑛,𝑑 .
The convolution algebra R𝐺(𝑌𝑛,𝑑 × 𝑌𝑛,𝑑) is isomorphic to the 𝑞-Schur algebra 𝑆𝑞(𝑛, 𝑑) of Dipper–

James [DJ89].

1.2. Schurification via permutation modules. Let us recall the combinatorics used in [DJ89]. De-
note the simple transpositions by 𝑠𝑖 = (𝑖, 𝑖+1) ∈ S𝑑 . For the Hecke algebraH𝑞(S𝑑), denote by {𝑇𝑤}𝑤∈S𝑑

its standard basis with multiplication rules determined by the quadratic relation 𝑇 2

𝑖
= (𝑞 − 1)𝑇𝑖 + 𝑞.

Let Λ𝑛,𝑑 be the set of (weak) compositions 𝜆 = (𝜆1,… , 𝜆𝑛), 𝜆𝑖 ≥ 0 of 𝑑 into 𝑛 parts. Denote by S𝜆

the corresponding Young subgroup S𝜆1
× ⋯ × S𝜆𝑛

⊆ S𝑑 , and let S𝜆 and 𝜆S be the sets of shortest
left and right coset representatives of S𝜆 ⊆ S𝑑 , respectively. When it is convenient, we identify each
representative with the coset:

S𝜆
≡ S𝑑/S𝜆,

𝜆S ≡ S𝜆\S𝑑 .

The set Θ𝑛,𝑑 can be identified with the set of triples (𝜆, 𝑔, 𝜇) where 𝜆, 𝜇 ∈ Λ𝑛,𝑑 are the column/row sum
vectors of 𝐴, respectively, and 𝑔 ∈

𝜆S𝜇
∶=

𝜆S ∩S𝜇 is the shortest representative in the double coset
S𝜆𝑔S𝜇 such that 𝑎𝑖𝑗 = #

(I𝜆
𝑖
∩ 𝑔I

𝜇

𝑗
) for all 𝑖, 𝑗 , where

I𝜆
𝑖
∶= {𝜆1 +⋯ + 𝜆𝑖−1 + 1, 𝜆1 +⋯ + 𝜆𝑖−1 + 2, … , 𝜆1 +⋯ + 𝜆𝑖}.

Let 𝐺 ⊆ S𝑑 be a subset with the unique longest element 𝑤𝐺
◦
. In particular, write 𝑤𝜆

◦
∶= 𝑤

S𝜆

◦
and

𝑤
𝐴

◦
∶= 𝑤

S𝜆𝑔S𝜇

◦ , where 𝐴 ≡ (𝜆, 𝑔, 𝜇). The following facts on symmetric groups are well-known, see
e.g. [DDPW08]:

Lemma 1.1. Suppose that 𝐴 ≡ (𝜆, 𝑔, 𝜇). Then,

(a) There is a unique strong composition 𝛿𝑐 = 𝛿𝑐(𝐴) ∈ Λ𝑛′,𝑑 for some 𝑛′ such thatS𝛿
𝑐 = 𝑔

−1S𝜆𝑔∩S𝜇.
Moreover, 𝛿𝑐 is obtained by column reading of nonzero entries of 𝐴.

(b) There is a unique strong composition 𝛿𝑟 = 𝛿𝑟(𝐴) ∈ Λ𝑛′,𝑑 for some 𝑛′ such thatS𝛿
𝑟 = 𝑔S𝜇𝑔

−1
∩S𝜆.

Moreover, 𝛿𝑟 = 𝛿𝑐(𝑡𝐴), and is obtained from row reading of nonzero entries of 𝐴.
(c) Write 𝛿 = 𝛿

𝑐
(𝐴) and 𝐺 =

𝛿S𝜇. Then, S𝜆𝑔S𝜇 = {𝑤 | 𝑔 ≤ 𝑤 ≤ 𝑤
𝐴

◦
}, in which the longest element

is 𝑤𝐴
◦

= 𝑤
𝜆

◦
𝑔𝑤

𝐺

◦
, where 𝑤𝐺

◦
= 𝑤

𝛿

◦
𝑤
𝜇

◦
with 𝓁(𝑤

𝐺

◦
) = 𝓁(𝑤

𝜇

◦
) − 𝓁(𝑤

𝛿

◦
). In other words, the map

𝜅 ∶ S𝜆 × (
𝛿
𝑐

S𝜇) → S𝜆𝑔S𝜇, (𝑥, 𝑦) ↦ 𝑥𝑔𝑦 is a bijection satisfying 𝓁(𝑥𝑔𝑦) = 𝓁(𝑥) + 𝓁(𝑔) + 𝓁(𝑦).

Example 1.2. If 𝐴 ∶= (
1 1

2 0 )
, then 𝛿c(𝐴) is obtained from (𝑎11, 𝑎21, 𝑎12, 𝑎22) by removing the zeroes, and

hence 𝛿𝑐(𝐴) = (1, 2, 1). Similarly, 𝛿𝑟(𝐴) = (1, 1, 2). The row sum and column sum vectors of 𝐴 are
(2, 2) and (3, 1), respectively. Then, 𝐴 ≡ ((2, 2), 𝑔, (3, 1)) with 𝑔 = |1342| = 𝑠2𝑠3, since I𝜆1 = {1, 2}, I𝜆

2
=

{3, 4}, 𝑔I
𝜇

2
= {1, 3, 4} and 𝑔I𝜇

2
= {2}. The longest element is 𝑤𝐴

◦
= (𝑠1𝑠3)(𝑠2𝑠3)(𝑠2)(𝑠2𝑠1𝑠2) = 𝑠1𝑠3𝑠2𝑠3𝑠1𝑠2.

Recall that H𝑞(S𝑑) acts on the 𝑑-fold tensor product of k𝑛 ≡ ⨁
1≤𝑖≤𝑛

k𝑣𝑖 by

(1.3) 𝑣𝑓 ⋅ 𝑇𝑖 =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝑣𝑓 ⋅𝑠𝑖
if 𝑓𝑖 < 𝑓𝑖+1;

𝑞𝑣𝑓 if 𝑓𝑖 = 𝑓𝑖+1;
𝑞𝑣𝑓 ⋅𝑠𝑖

+ (𝑞 − 1)𝑚𝑓 if 𝑓𝑖 > 𝑓𝑖+1,

where 𝑣𝑓 = 𝑣𝑓1
⊗⋯⊗ 𝑣𝑓𝑑

, 𝑓 = (𝑓𝑖)𝑖 ∈ {1,… , 𝑛}
𝑑 , on whichS𝑑 acts by place permutation. As aH𝑞(S𝑑)-

module, (k𝑛)⊗𝑑 can be decomposed into the sum of 𝑞-permutation modules 𝑥𝜆H𝑞(S𝑑) over 𝜆 ∈ Λ𝑛,𝑑 ,
where 𝑥𝜆 ∶= ∑

𝑤∈S𝜆

𝑇𝑤. The 𝑇𝑖-action on 𝑥𝜆 is explicit, because one can rewrite the quadratic relation
as 𝑇𝑖(𝑇𝑖+1) = 𝑞(𝑇𝑖+1), i.e., (𝑇𝑖+1) is a 𝑞-eigenvector of 𝑇𝑖. For 𝐴 = (𝜆, 𝑔, 𝜇)we write𝐺(𝐴) ∶= 𝛿

𝑐
(𝐴)S𝜇.
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The basis of the 𝑞-Schur algebra 𝑆𝑞(𝑛, 𝑑) is given by {𝜃𝐴}𝐴∈Θ𝑛,𝑑
, where the basis elements are right

H𝑞(S𝑑)-linear maps given by

(1.4) 𝜃𝐴 ∶ 𝑥𝜇H𝑞(S𝑑) → 𝑥𝜆H𝑞(S𝑑), 𝑥𝜇 ↦ 𝑥𝐴, where 𝑥𝐴 ∶= ∑

𝑤∈S𝜆𝑔S𝜇

𝑇𝑤 = 𝑥𝜆𝑇𝑔 ∑

𝑤∈𝐺(𝐴)

𝑇𝑤.

The map is well-defined thanks to Theorem 1.1. It is immediate from this construction that 𝜃𝐴’s are
H𝑞(S𝑑)-module homomorphisms.

To sum up, there is an identification k𝐺(𝑌𝑛,𝑑) ≡ ⨁
𝜆∈Λ𝑛,𝑑

𝑥𝜆H𝑞(S𝑑) ≡ (k
𝑛
)
⊗𝑑 that leads to the identi-

fication k𝐺(𝑌𝑛,𝑑 × 𝑌𝑛,𝑑) ≡ 𝑆𝑞(𝑛, 𝑑). Moreover, the map 𝜃𝐴 ∈ 𝑆𝑞(𝑛, 𝑑) is identified with the characteristic
function 𝜉𝜋 ∈ k𝐺(𝑌𝑛,𝑑 × 𝑌𝑛,𝑑) where 𝜋 is the representative in the orbit corresponding to 𝐴 ∈ Θ𝑛,𝑑 .

1.3. Quantumwreath products. Let 𝐵 be a unital associative k-algebra, free over kwith basis {𝑏𝑖}𝑖∈𝐼 .
Let 𝑑 ∈ Z≥2. By 𝑄 we mean a quadruple (𝑅, 𝑆, 𝜌, 𝜎) ∈ (𝐵 ⊗ 𝐵)

2
× Endk(𝐵 ⊗ 𝐵). We use the following

abbreviations, for each 1 ≤ 𝑖 ≤ 𝑑:

(1.5)
𝑌𝑖 ∶= 1

⊗𝑖−1
⊗ 𝑌 ⊗ 1

⊗𝑑−𝑖−𝑘
∈ 𝐵

⊗𝑑
, 𝑌 ∈ 𝐵

⊗𝑘+1
;

𝜑𝑖 ∶ 𝐵
⊗𝑑

→ 𝐵
⊗𝑑
, ⨂

𝑗
𝑏𝑗 ↦ (⨂

𝑖−1

𝑗=1
𝑏𝑗 ) ⊗ 𝜑(𝑏𝑖 ⊗ 𝑏𝑖+1) ⊗ (⨂

𝑑

𝑗=𝑖+2
𝑏𝑗 ), 𝜑 ∈ Endk(𝐵⊗2).

For 𝑌 = ∑
𝑘
𝑎
(𝑘)
⊗ 𝑏

(𝑘)
∈ 𝐵 ⊗ 𝐵, we also write, for 1 ≤ 𝑖 < 𝑗 ≤ 𝑑:

(1.6) 𝑌𝑖,𝑗 ∶= ∑
𝑘

𝑎
(𝑘)

𝑖
𝑏
(𝑘)

𝑗
, 𝑌𝑗 ,𝑖 ∶= ∑

𝑘

𝑏
(𝑘)

𝑗
𝑎
(𝑘)

𝑖
∈ 𝐵

⊗𝑑
.

In particular, 𝑌𝑖 ∶= 𝑌𝑖,𝑖+1 and 𝑌𝑖+1,𝑖 = 𝜎𝑖(𝑌𝑖) if 𝜎 ∶ 𝑎 ⊗ 𝑏 ↦ 𝑏 ⊗ 𝑎 is the flip map.

Definition 1.3. The quantum wreath product (QWP) is the associative k-algebra, denoted by 𝐵 ≀H(𝑑) =

𝐵 ≀𝑄 H(𝑑), generated by the algebra 𝐵⊗𝑑 and Hecke-like generators 𝐻1,… , 𝐻𝑑−1 modulo the following
relations, for 1 ≤ 𝑘 ≤ 𝑑 − 2, 1 ≤ 𝑖 ≤ 𝑑 − 1, |𝑗 − 𝑖| ≥ 2, 𝑏 ∈ 𝐵

⊗𝑑 :

𝐻𝑘𝐻𝑘+1𝐻𝑘 = 𝐻𝑘+1𝐻𝑘𝐻𝑘+1, 𝐻𝑖𝐻𝑗 = 𝐻𝑗𝐻𝑖,(braid relations)
𝐻

2

𝑖
= 𝑆𝑖𝐻𝑖 + 𝑅𝑖,(quadratic relations)

𝐻𝑖𝑏 = 𝜎𝑖(𝑏)𝐻𝑖 + 𝜌𝑖(𝑏).(wreath relations)

For any𝑤 ∈ S𝑑 with a reduced expression𝑤 = 𝑠𝑖1
… 𝑠𝑖𝑁

we can define an element𝐻𝑤 ∶= 𝐻𝑖1
…𝐻𝑖𝑁

∈

𝐵 ≀H(𝑑). Note that 𝐻𝑤 is independent of the choice of a reduced expression due to the braid relations
above. We say that 𝐵 ≀H(𝑑) has a PBW basis if the natural spanning sets {(⨂𝑑

𝑗=1
𝑏𝑖𝑗

)𝐻𝑤 | 𝑖𝑗 ∈ 𝐼 , 𝑤 ∈ S𝑑}

and {𝐻𝑤(⨂
𝑑

𝑗=1
𝑏𝑖𝑗

) | 𝑖𝑗 ∈ 𝐼 , 𝑤 ∈ S𝑑} are linearly independent.

Proposition 1.4 ([LNX24, Theorem 3.3.1]). 𝐵 ≀H(𝑑) has a PBW basis if and only if

Conditions (P1) – (P4) hold, and (P5) – (P9) hold additionally if 𝑑 ≥ 3.

Here, the conditions are:

𝜎(1 ⊗ 1) = 1 ⊗ 1, 𝜌(1 ⊗ 1) = 0,(P1)
𝜎(𝑎𝑏) = 𝜎(𝑎)𝜎(𝑏), 𝜌(𝑎𝑏) = 𝜎(𝑎)𝜌(𝑏) + 𝜌(𝑎)𝑏,(P2)
𝜎(𝑆)𝑆 + 𝜌(𝑆) + 𝜎(𝑅) = 𝑆

2
+ 𝑅, 𝜌(𝑅) + 𝜎(𝑆)𝑅 = 𝑆𝑅,(P3)

𝑟𝑆𝜎
2
+ 𝜌𝜎 + 𝜎𝜌 = 𝑙𝑆𝜎, 𝑟𝑅𝜎

2
+ 𝜌

2
= 𝑙𝑆𝜌 + 𝑙𝑅,(P4)

where 𝑙𝑋 , 𝑟𝑋 for 𝑋 ∈ 𝐵 ⊗ 𝐵 are k-endomorphisms defined by left and right multiplication in 𝐵 ⊗ 𝐵 by 𝑋 ,
respectively,

𝜎𝑖𝜎𝑗𝜎𝑖 = 𝜎𝑗𝜎𝑖𝜎𝑗 , 𝜌𝑖𝜎𝑗𝜎𝑖 = 𝜎𝑗𝜎𝑖𝜌𝑗 ,(P5)
𝜌𝑖𝜎𝑗𝜌𝑖 = 𝑟𝑆𝑗

𝜎𝑗𝜌𝑖𝜎𝑗 + 𝜌𝑗𝜌𝑖𝜎𝑗 + 𝜎𝑗𝜌𝑖𝜌𝑗 ,(P6)
𝜌𝑖𝜌𝑗𝜌𝑖 + 𝑟𝑅𝑖

𝜎𝑖𝜌𝑗𝜎𝑖 = 𝜌𝑗𝜌𝑖𝜌𝑗 + 𝑟𝑅𝑗
𝜎𝑗𝜌𝑖𝜎𝑗 ,(P7)
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where {𝑖, 𝑗} = {1, 2}, 𝑟𝑋 for 𝑋 ∈ 𝐵
⊗3 is understood as right multiplication in 𝐵⊗3 by 𝑋 ,

𝑆𝑖 = 𝜎𝑗𝜎𝑖(𝑆𝑗 ), 𝑅𝑖 = 𝜎𝑗𝜎𝑖(𝑅𝑗 ), 𝜌𝑗𝜎𝑖(𝑆𝑗 ) = 0 = 𝜌𝑗𝜎𝑖(𝑅𝑗 ),(P8)
𝜎𝑗𝜌𝑖(𝑆𝑗 )𝑆𝑗 + 𝜌𝑗𝜌𝑖(𝑆𝑗 ) + 𝜎𝑗𝜌𝑖(𝑅𝑗 ) = 0 = 𝜌𝑗𝜌𝑖(𝑅𝑗 ) + 𝜎𝑗𝜌𝑖(𝑆𝑗 )𝑅𝑗 ,(P9)

where {𝑖, 𝑗} = {1, 2}.

2. Quantum wreath products of polynomial type

Quantum wreath products cover various examples of deformations of wreath products appearing
in literature. Unfortunately, this notion is rather unwieldy, since it is in some sense the most general
definition one can come up with. In this paper we will only consider a certain class of quantum wreath
products, which has the flavor of affine Hecke algebras of type 𝐴.

2.1. Twisted Demazure operators. Let 𝐹 be a unital finite-dimensional algebra over k.

Definition 2.1. A weak Frobenius element of 𝐹 is Δ ∈ 𝐹 ⊗ 𝐹 satisfying (𝑎 ⊗ 𝑏)Δ = Δ(𝑏 ⊗ 𝑎) for any
𝑎, 𝑏 ∈ 𝐹 .

It is clear that weak Frobenius elements form a vector space, which we denote by 𝑊 (𝐹) ⊆ 𝐹 ⊗ 𝐹 .
Such elements are sometimes called intertwiners or teleporters. We call them weak Frobenius since
they are the evaluation at identity of the comultiplication of weak Frobenius algebras (see [CG03]).
While usual Frobenius elements (which satisfy an additional non-degeneracy condition) are essentially
unique, there can be many linearly independent weak Frobenius elements.

Example 2.2. Let 𝐹 = k[𝑐]/(𝑐
𝑛+1

). Then for every 𝑘 ≥ 0 the element∑
𝑖+𝑗=𝑛+𝑘

𝑐
𝑖
⊗𝑐

𝑗 is weak Frobenius.

Definition 2.3. Let 𝛽 = ∑
𝑖,𝑗≥0

Δ
𝑖,𝑗
(𝑥
𝑖
⊗ 𝑥

𝑗
) be an element of 𝑊 (𝐹)

S2
[𝑥1, 𝑥2], i.e., a polynomial in

two variables with coefficients in symmetric weak Frobenius elements in 𝐹 . The 𝛽-twisted Demazure
operator 𝜕𝛽 ∶ 𝐹⊗2[𝑥1, 𝑥2] → 𝐹

⊗2
[𝑥1, 𝑥2] is given by

𝜕
𝛽
(𝑎 ⊗ 𝑏) =

𝛽(𝑎 ⊗ 𝑏) − (𝑏 ⊗ 𝑎)𝛽

𝑥 ⊗ 1 − 1 ⊗ 𝑥

.

Remark 2.4. A similar Demazure operator appears in [Sav20, Lemma 4.3].

Note that 𝜕𝛽 is well defined since, writing 𝑎 = 𝑓 ′𝑥𝑘 , 𝑏 = 𝑓
′′
𝑥
𝑙 for some 𝑓 ′, 𝑓 ′′ ∈ 𝐹 :

𝛽(𝑎 ⊗ 𝑏) − (𝑏 ⊗ 𝑎)𝛽 = ∑

𝑖,𝑗

Δ
𝑖,𝑗
(𝑥
𝑖
⊗ 𝑥

𝑗
)(𝑓

′
⊗ 𝑓

′′
)(𝑥

𝑘
⊗ 𝑥

𝑙
) −∑

𝑖,𝑗

(𝑓
′′
⊗ 𝑓

′
)(𝑥

𝑙
⊗ 𝑥

𝑘
)Δ
𝑖,𝑗
(𝑥
𝑖
⊗ 𝑥

𝑗
)

= 𝛽(𝑓
′
⊗ 𝑓

′′
)(𝑥

𝑘
⊗ 𝑥

𝑙
− 𝑥

𝑙
⊗ 𝑥

𝑘
) = (𝑓

′′
⊗ 𝑓

′
)(𝑥

𝑘
⊗ 𝑥

𝑙
− 𝑥

𝑙
⊗ 𝑥

𝑘
)𝛽,

and hence 𝜕𝛽(𝑓 𝑥𝑘 ⊗ 𝑔𝑥 𝑙) = 𝛽(𝑓 ⊗ 𝑔)𝜕(𝑥𝑘 ⊗ 𝑥 𝑙) = (𝑔 ⊗ 𝑓 )𝜕(𝑥
𝑘
⊗ 𝑥

𝑙
)𝛽, or

(2.1) 𝜕
𝛽
(𝑓 𝑃) = 𝜎(𝑓 )𝜕(𝑃)𝛽, for all 𝑓 ∈ 𝐹 ⊗ 𝐹, 𝑃 ∈ k[𝑥1, 𝑥2],

where 𝜎 ∶ 𝑎⊗𝑏 ↦ 𝑏 ⊗𝑎 is the flip map, and 𝜕 ∶ k[𝑥1, 𝑥2] → k[𝑥1, 𝑥2] is the usual Demazure operator.
Let us collect some useful properties of 𝜕𝛽 .

Lemma 2.5. Suppose that 𝛽 is an element as in Theorem 2.3. Then,
(a) If 𝑃 ∈ k[𝑥1, 𝑥2], then 𝜕𝛽(𝑃) = 𝛽𝜕(𝑃) = 𝜕(𝑃)𝛽. Moreover, 𝜕𝛽𝜎(𝑃) = −𝜕

𝛽
(𝑃).

(b) If 𝑓 ∈ 𝐹 ⊗ 𝐹 , then 𝜕𝛽(𝑓 ) = 0.
(c) For any 𝑎, 𝑏 ∈ (𝐹 ⊗ 𝐹)[𝑥1, 𝑥2] we have 𝜕𝛽(𝑎𝑏) = 𝜎(𝑎)𝜕

𝛽
(𝑏) + 𝜕

𝛽
(𝑎)𝑏 . In other words, 𝜕𝛽 is a

𝜎-twisted left derivation.

Proof. The first two claims are direct consequences of (2.1). The last claim follows from a quick com-
putation:

𝜕
𝛽
(𝑎𝑏) =

𝛽𝑎𝑏 − 𝜎(𝑎𝑏)𝛽

𝑥 ⊗ 1 − 1 ⊗ 𝑥

=

𝜎(𝑎)𝛽𝑏 − 𝜎(𝑎)𝜎(𝑏)𝛽 + 𝛽𝑎𝑏 − 𝜎(𝑎)𝛽𝑏

𝑥 ⊗ 1 − 1 ⊗ 𝑥

= 𝜎(𝑎)𝜕
𝛽
(𝑏) + 𝜕

𝛽
(𝑎)𝑏. □
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Remark 2.6. Note that when 𝐹 is not commutative, 𝜕𝛽 has no reason to be a right derivation.

2.2. Quantum wreath products of polynomial type. Let 𝐹 be a unital finite-dimensional algebra
as before, and let 𝐵 be either 𝐹 [𝑥] or 𝐹 [𝑥±1].

Definition 2.7. A quantum wreath product 𝐵 ≀H(𝑑), 𝑄 = (𝑅, 𝑆, 𝜌, 𝜎) is said to be of polynomial type
(PQWP) with respect to the pair (𝑅, 𝛽) ∈ (𝐹 ⊗ 𝐹)

S2
× (𝐵 ⊗ 𝐵) if

𝑅 is central in 𝐹 ⊗ 𝐹 ;(A1)

𝛽 = ∑
0≤𝑖,𝑗≤1

Δ
𝑖𝑗
(𝑥
𝑖
⊗ 𝑥

𝑗
) ∈ 𝑊 (𝐹)

S2
[𝑥1, 𝑥2], and Δ

00

1
Δ
11

2
= Δ

01

1
Δ
10

2
;(A2)

𝜎 is the flip map, 𝜌 = 𝜕
𝛽
, and 𝑆 = Δ

10
− Δ

01
.(A3)

Remark 2.8. If Δ𝑖𝑗 = 𝑎𝑖𝑗Δ, 𝑎𝑖𝑗 ∈ k, then the relation Δ
00

1
Δ
11

2
= Δ

01

1
Δ
10

2
in (A2) is equivalent to 𝛽 factoring

as 𝛽 = Δ𝛽1𝛽2, where 𝛽𝑖 ∈ k[𝑥𝑖]. See the proof of Theorem 2.11.

Lemma 2.9. The following identities hold in a PQWP:

𝐻𝑆 = 𝑆𝐻, 𝐻𝑅 = 𝑅𝐻,

𝑃𝐻 = 𝐻𝜎(𝑃) + 𝜕(𝑃)𝛽 for all 𝑃 ∈ k[𝑥]
⊗2
,

𝛽𝐻 = 𝐻𝜎(𝛽) + 𝑆𝛽, 𝐻𝛽 = 𝜎(𝛽)𝐻 + 𝑆𝛽.

Proof. The first two lines are direct consequences of Theorem 2.5 since both 𝑆 and 𝑅 lie in (𝐹 ⊗ 𝐹)
S2 .

Since 𝜎(𝛽) = Δ
00
+ Δ

01
𝑥1 + Δ

10
𝑥2 + Δ

11
𝑥1𝑥2, we have 𝛽 − 𝜎(𝛽) = 𝑆(𝑥1 − 𝑥2), and hence

𝜌(𝛽) =

𝛽
2
− 𝜎(𝛽)𝛽

𝑥1 − 𝑥2

=

𝛽 − 𝜎(𝛽)

𝑥1 − 𝑥2

𝛽 = 𝑆𝛽.

Similarly, 𝜌𝜎(𝛽) = −𝑆𝛽. The last line follows from the wreath relations. □

𝐵 𝑅 𝛽 𝑆 𝛼 PQWP
𝐹 [𝑥] 1 0 0 1 usual wreath product

k[ℏ][𝑥] 1 ℏ 0 1 graded affine Hecke
k[𝑥] 0 1 0 0 nil-Hecke algebra

k[𝑥
±1
] 𝑞

(𝑞 − 1)𝑥1
𝑞 − 1 1 or −𝑞 affine Hecke algebra

(1 − 𝑞)𝑥2

k[𝑥] 0 𝑥1𝑥2 0 0

opposite nil-Hecke
algebra 𝑁𝐻 ↓

𝑑

𝐹 [𝑥
±1
] 1 𝑞Δ𝑥2 𝑞Δ may not exist affine Frobenius

Hecke algebra [RS20]

𝐹 [ℏ, 𝑡][𝑥
±1
] ℏ

2
−𝑆(𝑥2 + ℏ𝑡) 𝜂𝜏 may not exist Rees affine Frobenius

Hecke algebra [MS]
k[𝑐]

(𝑐
2
)
[𝑥

±1
] 1 𝑐1 + 𝑐2 0 1

affine zigzag algebra
of type 𝐴1 [MM22]

k[𝑡]

(𝑡
𝑝−1

−1)
[𝑥

±1
] 1

𝑆𝑥1
(𝑞 − 𝑞

−1
)𝑒 (1 + 𝑞

−1
)𝑒 − 1 ⊗ 1

pro-𝑝 Iwahori
−𝑆𝑥2 Hecke algebra

Table 1. Examples of quantum wreath products of polynomial type

Example 2.10. (a) When (𝑅, 𝛽) = (1, 0), we recover the usual wreath product 𝐵 ≀S𝑑 .
(b) Let 𝐹 = k. The following choices of parameters recover various flavors of affine Hecke algebras

of type 𝐴: The degenerate affine Hecke algebra (resp. its graded version) are PQWP for (𝑅, 𝛽) =
(1, 1) (resp. (1, ℏ)) with 𝐵 = k[𝑥] (resp. 𝐵 = k[ℏ][𝑥]). The nil-Hecke algebra is a PQWP for (0, 1)
with 𝐵 = k[𝑥]. For 𝐵 = k[𝑥

±1
], the type A affine Hecke algebra is a PQWP for (𝑞, (𝑞 − 1)𝑥1) or

(𝑞, (1 − 𝑞)𝑥2), and hence the affine 0-Hecke algebra is a PQWP for (0,−𝑥1) or (0, 𝑥2).
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(c) Let us highlight another curious example. Let 𝐵 = k[𝑥], 𝑅 = 0, and 𝛽 = 𝑥1𝑥2. The usual
Demazure operator satisfies the following relation after extension to Laurent polynomials:

𝜕𝑥
−1

1
= 𝑥

−1

2
𝜕 − (𝑥1𝑥2)

−1
.

This tells us that the PQWP for (𝑅, 𝛽) = (0, 𝑥1𝑥2) is isomorphic to the subalgebra 𝑁𝐻 ↓

𝑑
of

difference operators on k[𝑥±1
1
,… , 𝑥

±1

𝑑
] generated by Demazure operators and multiplications

by 𝑥−1
𝑖
, 1 ≤ 𝑖 ≤ 𝑑. It can be viewed as the “opposite” of the usual nil-Hecke algebra 𝑁𝐻𝑑 . One

can easily check that 𝑁𝐻 ↓

𝑑
≄ 𝑁𝐻𝑑 for 𝑑 ≥ 2.

(d) Let 𝐹 be a Frobenuis algebra with Frobenius form Δ ∈ 𝐹 ⊗ 𝐹 . Setting 𝐵 = 𝐹 [𝑥], 𝑅 = 1, 𝛽 = Δ,
our PQWP 𝐵 ≀ H𝑑 is Savage’s affine wreath product algebra [Sav20]. If we set 𝐵 = k[𝑥

±1
],

𝑅 = 1, 𝛽 = −𝑞𝑥2Δ, the algebra 𝐵 ≀H𝑑 is isomorphic to Rosso-Savage’s affine Frobenius Hecke
algebra [RS20].

These examples, as well as further examples from Section 7, are summarized in Table 1 (see Sec-
tion 4.1 for the meaning of column 𝛼).

Lemma 2.11. The following equalities hold:

𝜌1(𝛽13) = 𝜌2(𝛽1) + 𝛽13𝑆2 = −𝜎2𝜌1(𝛽2).

Proof. We will only prove the first equality, since the other reduces to the same computation. First of
all, we have

𝜌1(𝛽13) = 𝛽12(Δ
10

13
+ Δ

11

13
𝑥3) = Δ

00

12
Δ
10

13
+ Δ

10

12
Δ
10

13
𝑥1 + Δ

01

12
Δ
10

13
𝑥2 + Δ

00

12
Δ
11

13
𝑥3

+ Δ
11

12
Δ
10

13
𝑥1𝑥2 + Δ

10

12
Δ
11

13
𝑥1𝑥3 + Δ

01

12
Δ
11

13
𝑥2𝑥3 + Δ

11

12
Δ
11

13
𝑥1𝑥2𝑥3.

On the other hand,

𝜌2(𝛽1) = 𝛽23(Δ
01

12
+ Δ

11

12
𝑥1) = Δ

00

23
Δ
01

12
+ Δ

00

23
Δ
11

12
𝑥1 + Δ

10

23
Δ
01

12
𝑥2 + Δ

01

23
Δ
01

12
𝑥3

+ Δ
10

23
Δ
11

12
𝑥1𝑥2 + Δ

01

23
Δ
11

12
𝑥1𝑥3 + Δ

11

23
Δ
01

12
𝑥2𝑥3 + Δ

11

23
Δ
11

12
𝑥1𝑥2𝑥3,

and

𝛽13𝑆2 = Δ
00

13
(Δ

10

23
− Δ

01

23
) + Δ

10

13
(Δ

10

23
− Δ

01

23
)𝑥1 + Δ

01

13
(Δ

10

23
− Δ

01

23
)𝑥3 + Δ

11

13
(Δ

10

23
− Δ

01

23
)𝑥1𝑥3.

Note that for any Δ,Δ
′
∈ 𝑊 (𝐹)

S2 we have

(2.2) Δ12Δ
′

13
= Δ

′

23
Δ12 = Δ13Δ

′

23
= Δ

′

12
Δ13 = Δ23Δ

′

12
= Δ

′

13
Δ23.

This simple observation takes care of comparing all coefficients except the two coefficients at 𝑥1 and at
𝑥3. For the remaining two coefficients to coincide, we need Δ00

23
Δ
11

12
= Δ

10

13
Δ
01

23
and Δ00

12
Δ
11

13
= Δ

01

13
Δ
10

23
. This

is precisely the condition (A2) we imposed on 𝛽 in Theorem 2.7. □

Proposition 2.12. The quantum wreath product of polynomial type with respect to (𝑅, 𝛽) has a PBW
basis.

Proof. Applying Theorem 1.4, we need to check the relations (P1)–(P9). Relations (P1)–(P3), (P5), (P8),
(P9) follow immediately from Theorem 2.5. Let us check the relations (P4):

(𝜌𝜎 + 𝜎𝜌)(𝑎) =

𝛽𝜎(𝑎) − 𝑎𝛽

𝑥1 − 𝑥2

+

𝜎(𝛽)𝜎(𝑎) − 𝑎𝜎(𝛽)

𝑥2 − 𝑥1

=

(𝛽 − 𝜎(𝛽))𝜎(𝑎) − 𝑎(𝛽 − 𝜎(𝛽))

𝑥1 − 𝑥2

= 𝑆𝜎(𝑎) − 𝑎𝑆 = (𝑙𝑆𝜎 − 𝑟𝑆𝜎
2
)(𝑎),

𝜌
2
(𝑎) = 𝜌

(

𝛽𝑎 − 𝜎(𝑎)𝛽

𝑥1 − 𝑥2 )
=

𝛽
2
𝑎 − 𝛽𝜎(𝑎)𝛽 + 𝜎(𝛽)𝜎(𝑎)𝛽 − 𝑎𝜎(𝛽)𝛽

(𝑥1 − 𝑥2)
2

=

𝛽 − 𝜎(𝛽)

𝑥1 − 𝑥2

𝛽𝑎 − 𝜎(𝑎)𝛽

𝑥1 − 𝑥2

= 𝑆

𝛽𝑎 − 𝜎(𝑎)𝛽

𝑥1 − 𝑥2

= 𝑙𝑆𝜌(𝑎) = (𝑙𝑆𝜌 + 𝑙𝑅 − 𝑟𝑅𝜎
2
)(𝑎),

where we used the fact that 𝑅 is central in the last equality.
Before checking (P6)–(P7), let us make the following observation. It follows from Theorem 2.5 that

for any 𝑃 ∈ k[𝑥1, 𝑥2], 𝑓 ∈ 𝐹
⊗2 we have 𝜌(𝑓 𝑃) = 𝜎(𝑓 )𝜌(𝑃). In particular, when applying either (P6) or

8



(P7) to 𝑓 𝑃 , the element 𝜎1𝜎2𝜎1(𝑓 )will factor out, and the rest would only depend on 𝑃 . Thus it suffices
to check (P6)–(P7) only on polynomials 𝑃 ∈ k[𝑥1, 𝑥2, 𝑥3]. Since the relations are manifestly linear, we
can further restrict to 𝑃 being monomials. We will show that (P6)–(P7) hold when evaluated at 𝑃 if and
only if they hold when evaluated at 𝑥𝑖𝑃 , 1 ≤ 𝑖 ≤ 3.

Checking the equivalence above for all three relations and all three 𝑥𝑖’s would take too much space;
we will therefore only consider 𝑥1, and leave the other two variables for the interested reader. First, let
us look at the relation (P6) for 𝑖 = 1, 𝑗 = 2:

𝜌1𝜎2𝜌1(𝑥1𝑃) = 𝜌1𝜎2(𝑥2𝜌1(𝑃) + 𝛽1𝑃) = 𝑥3𝜌1𝜎2𝜌1(𝑃) + 𝛽2𝜌1𝜎2(𝑃) + 𝜌1(𝛽13)𝜎2(𝑃),

𝜌2𝜌1𝜎2(𝑥1𝑃) = 𝜌2(𝛽1𝜎2(𝑃) + 𝑥2𝜌1𝜎2(𝑃)) = 𝑥3𝜌2𝜌1𝜎2(𝑃) + 𝜌2(𝛽1)𝜎2(𝑃) + 𝛽2𝜌1𝜎2(𝑃) + 𝜑,

𝑟𝑆2
𝜎2𝜌1𝜎2(𝑥1𝑃) = 𝑟𝑆2

𝜎2(𝛽1𝜎2(𝑃) + 𝑥2𝜌1𝜎2(𝑃)) = 𝑥3𝑟𝑆2
𝜎2𝜌1𝜎2(𝑃) + 𝜑

′
,

𝜎2𝜌1𝜌2(𝑥1𝑃) = 𝜎2(𝛽1𝜌2(𝑃) + 𝑥2𝜌1𝜌2(𝑃)) = 𝑥3𝜎2𝜌1𝜌2(𝑃) + 𝜑
′′
,

(2.3)

where the terms 𝜑 ∶= 𝛽13𝜌2𝜎2(𝑃), 𝜑′ ∶= 𝑟𝑆2𝛽13𝑃 , and 𝜑′′ ∶= 𝛽13𝜎2𝜌2(𝑃) sum up to 𝛽13𝑆2𝜎2(𝑃), thanks
to (P4). Moreover, the first terms on the right hand sides of (2.3) sum up to the evaluation of (P6) at
𝑃 multiplied by 𝑥3. Therefore, it remains to check that 𝜌1(𝛽13) = 𝜌2(𝛽1) + 𝛽13𝑆2, which follows from
Theorem 2.11. The relation (P6) with 𝑖 = 2, 𝑗 = 1 is proved in an analogous fashion.

Let us finally consider the relation (P7). First, consider the two simpler terms:

𝑟𝑅1
𝜎1𝜌2𝜎1(𝑥1𝑃) = 𝑟𝑅1

𝜎1(𝛽2𝜎1(𝑃) + 𝑥3𝜌2𝜎1(𝑃)) = 𝛽13𝑃𝑅1 + 𝑥3𝑟𝑅1
𝜎1𝜌2𝜎1(𝑃),

𝑟𝑅2
𝜎2𝜌1𝜎2(𝑥1𝑃) = 𝑟𝑅2

𝜎2(𝛽1𝜎2(𝑃) + 𝑥2𝜌1𝜎2(𝑃)) = 𝛽13𝑃𝑅2 + 𝑥3𝑟𝑅2
𝜎2𝜌1𝜎2(𝑃).

Since 𝑅 is central and symmetric, and the coefficients of 𝛽 are weak Frobenius, we have

𝛽13𝑃𝑅1 = 𝑅32𝛽13𝑃 = 𝛽13𝑃𝑅32 = 𝛽13𝑃𝑅2.

Now, for the other two terms:

𝜌1𝜌2𝜌1(𝑥1𝑃) = 𝜌1𝜌2(𝛽1𝑃 + 𝑥2𝜌1(𝑃)) = 𝜌1(𝜌2(𝛽1)𝑃 + 𝛽13𝜌2(𝑃) + 𝛽2𝜌1(𝑃) + 𝑥3𝜌2𝜌1(𝑃))

= 𝜌1𝜌2(𝛽1)𝑃 + (𝜎1𝜌2(𝛽1) + 𝜌1(𝛽2) + 𝛽13𝑆1)𝜌1(𝑃) + 𝜌1(𝛽13)𝜌2(𝑃) + 𝛽2𝜌1𝜌2(𝑃) + 𝑥3𝜌1𝜌2𝜌1(𝑃),

𝜌2𝜌1𝜌2(𝑥1𝑃) = 𝜌2(𝛽1𝜌2(𝑃) + 𝑥2𝜌1𝜌2(𝑃)) = (𝜌2(𝛽1) + 𝛽13𝑆2)𝜌2(𝑃) + 𝛽2𝜌1𝜌2(𝑃) + 𝑥3𝜌2𝜌1𝜌2(𝑃).

Note that the 𝑆𝑖’s appear from using the second equation of (P4). Comparing the coefficients at 𝑃 , 𝜌1(𝑃)
and 𝜌2(𝑃), it remains to show that

𝜌1(𝛽13) = 𝜌2(𝛽1) + 𝛽13𝑆2, 𝜌1𝜌2(𝛽1) = 0, 𝜎1𝜌2(𝛽1) + 𝜌1(𝛽2) + 𝛽13𝑆1 = 0.

The first relation follows directly from Theorem 2.11. The second relation is obtained from the first one
by applying 𝜌1 and using (P4). For the last one, we have

𝜎1𝜌2(𝛽1) + 𝜌1(𝛽2) + 𝛽13𝑆1 = 𝜎1(𝜌2(𝛽1) + 𝜎1𝜌1(𝛽2) + 𝛽2𝑆1) = 𝜎1(𝜌2(𝛽1) + 𝑆1𝛽13 − 𝜌1(𝛽13))

= 𝜎1(𝑆1𝛽13 − 𝛽13𝑆2),

where we used (P4) and Theorem 2.11. Finally, since 𝛽 has weak Frobenius components, we have
𝑆12𝛽13 = 𝛽13𝑆23 by (2.2), and so we may conclude. □

3. Double centralizer property

In this section we extend the main theorem of [Pou09] to the setting of “twisted” convolution alge-
bras. Such algebras arise naturally after applying equivariant localization to convolution algebras in
Borel-Moore homology; see discussion in Section 7.4.

3.1. Twisted convolution algebras. Recall the setup from Section 1.1.

Definition 3.1. By a twist, we mean a function 𝑒 ∈ R𝐺(𝑋) such that 𝑒(𝑥) is invertible for any 𝑥 ∈ 𝑋 .
Given a twist 𝑒, the corresponding twisted convolution algebra is the associativek-algebra (R𝐺(𝑋×𝑋), ∗)
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whose multiplication is given by

(3.1) (𝑓 ∗ 𝑔)(𝑥, 𝑦) = ∑
𝑧

𝑓 (𝑥, 𝑧)𝑒(𝑧)
−1
𝑔(𝑧, 𝑦).

Lemma 3.2. The twisted convolution algebra R𝐺(𝑋 × 𝑋) with respect to a given twist 𝑒 is a unital asso-
ciative algebra.

Proof. Let 𝑓 , 𝑔, ℎ ∈ R𝐺(𝑋 × 𝑋). The chain of equialities below follows directly from the formula (3.1):

((𝑓 ∗ 𝑔) ∗ ℎ)(𝑥, 𝑦) = ∑

𝑥
′
,𝑥

′′

𝑓 (𝑥, 𝑥
′
)𝑒(𝑥

′
)
−1
𝑔(𝑥

′
, 𝑥

′′
)𝑒(𝑥

′′
)
−1
ℎ(𝑥

′′
, 𝑦) = (𝑓 ∗ (𝑔 ∗ ℎ))(𝑥, 𝑦).

This proves the associativity. We conclude by observing that the element

1𝑋 ∈ R𝐺(𝑋 × 𝑋), 1𝑋 (𝑥, 𝑦) = 𝛿𝑥,𝑦𝑒(𝑥)

is a unit of R𝐺(𝑋 × 𝑋). □

Applying Theorem 3.2 to the disjoint union of two 𝐺-sets 𝑋 , 𝑌 , we obtain a left R𝐺(𝑋 × 𝑋)-action
and a rightR𝐺(𝑌 ×𝑌 )-action onR𝐺(𝑋 ×𝑌 ). These two actions obviously commute. In particular, setting
𝑌 = pt each R𝐺(𝑋 × 𝑋) acquires a natural representation R𝐺(𝑋).

The following lemma is immediate.

Lemma 3.3. For each 𝜋 ∈ Π and 𝑟 ∈ R, consider

(3.2) 𝜉𝜋,𝑟 ∈ R𝐺(𝑋 × 𝑋), 𝜉𝜋,𝑟(𝑥, 𝑥
′
) = ∑

𝑔∈𝐺/Stab𝐺(𝜋)
𝛿
𝑔𝜋,(𝑥,𝑥

′
)
𝑒(𝑥)𝑔(𝑟).

Given a basis 𝐵𝜋R of RStab𝐺(𝜋) for each 𝜋, the collection {𝜉𝜋,𝑟 ∶ 𝜋 ∈ Π, 𝑟 ∈ 𝐵
𝜋

R} is a basis of R𝐺(𝑋 × 𝑋).

Wewill add a superscript toR𝐺(𝑋 ×𝑋)when the twist 𝑒 needs to be specified. Observe that the map
𝑓 ↦ 𝑒 ⋅ 𝑓 , (𝑒 ⋅ 𝑓 )(𝑥, 𝑦) = 𝑒(𝑥)𝑓 (𝑥, 𝑦) establishes an isomorphism of algebras R(1)

𝐺
(𝑋 ×𝑋) ↦ R

(𝑒)

𝐺
(𝑋 ×𝑋).

While this renders our definition ofR(𝑒)

𝐺
(𝑋 ×𝑋) somewhat superfluous at the first glance, its usefulness

will become clear in Section 3.3.

Remark 3.4. The product in R𝐺(𝑋 × 𝑋) is typically only k-linear, and not R-linear.

3.2. Generators. Let (Λ, 𝜔) be a pointed finite set. For each 𝜆 ∈ Λ, fix a finite 𝐺-set 𝑌𝜆, and denote
𝑌 = ⨆

𝜆∈Λ
𝑌𝜆, 𝑋 = 𝑌𝜔. We further assume that for each 𝜆 ∈ Λ we have a fixed 𝐺-equivariant surjection

𝑝𝜆 ∶ 𝑋 → 𝑌𝜆. Fix a twist 𝑒 ∈ R𝐺(𝑌 ), and denote

(3.3) 𝐀 ∶= ⨁
𝜆,𝜇∈Λ

𝐀𝜆𝜇, 𝐂 ∶= ⨁
𝜆∈Λ

𝐂𝜆, 𝐁 ∶= R𝐺(𝑋 × 𝑋),

where 𝐀𝜆𝜇 ∶= R𝐺(𝑌𝜆 × 𝑌𝜇), 𝐂𝜆 ∶= R𝐺(𝑌𝜆 × 𝑋). Both 𝐀 and 𝐁 are twisted convolution algebras (with
twist 𝑒), and 𝐂 is an (𝐀,𝐁)-bimodule. We will identify both 𝐀𝜔𝜔 and 𝐂𝜔 as right 𝐁-modules with 𝐁 by
means of 𝑝𝜆.

Definition 3.5. Let 𝜆 ∈ Λ, 𝑦, 𝑦′ ∈ 𝑌𝜆, and 𝑥 ∈ 𝑋 . Define elements which we call (full) splits andmerges,
respectively, by

(3.4) 𝑆𝜆 ∈ 𝐀𝜔𝜆, 𝑆𝜆(𝑥, 𝑦) ∶= 𝛿𝑝𝜆(𝑥),𝑦
𝑒(𝑦); 𝑀𝜆 ∈ 𝐀𝜆𝜔, 𝑀𝜆(𝑦, 𝑥) ∶= 𝛿𝑦,𝑝𝜆(𝑥)

𝑒(𝑦).

Next, define elements 1𝜆, 𝐾𝜆 ∈ 𝐀𝜆𝜆, and 𝑚 ∈ R𝐺(𝑌 ) via

(3.5) 1𝜆(𝑦, 𝑦
′
) ∶= 𝛿𝑦,𝑦′𝑒(𝑦), 𝐾𝜆(𝑥, 𝑥

′
) ∶= 𝛿

𝑝𝜆(𝑥),𝑝𝜆(𝑥
′
)
𝑒(𝑝𝜆(𝑥)), 𝑚(𝑦) ∶= ∑

𝑥∈𝑝
−1

𝜆
(𝑦)

𝑒(𝑥)
−1
𝑒(𝑦).

Finally, for any 𝑟 ∈ R𝐺(𝑌 ), define 𝑟𝜆 ∈ 𝐀𝜆𝜆 and �̃�𝜆 ∈ R𝐺(𝑌𝜆) by

(3.6) 𝑟𝜆(𝑦, 𝑦
′
) ∶= 𝛿𝑦,𝑦′𝑒(𝑦)𝑟(𝑦), �̃�𝜆(𝑦) = 𝑟(𝑝𝜆(𝑦)).

Remark 3.6. (a) The set {1𝜆 ∶ 𝜆 ∈ Λ} is a complete set of orthogonal (but not necessarily primitive)
idempotents in 𝐀.

(b) If we equip R𝐺(𝑌 ) with pointwise multiplication, the map R𝐺(𝑌 ) → 𝐀𝜆𝜆, 𝑟 ↦ 𝑟𝜆 is an algebra
monomorphism.
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Let us compute the compositions of 𝑀𝜆 and 𝑆𝜆:

Lemma 3.7. For any 𝜆 ∈ Λ, we have

𝑆𝜆 ∗ 𝑀𝜆 = 𝐾𝜆, 𝑀𝜆 ∗ 𝑆𝜆 = 𝑚𝜆.

Proof. It follows by a direct computation that

𝑆𝜆 ∗ 𝑀𝜆(𝑥, 𝑥
′
) = ∑

𝑦∈𝑌𝜆

𝛿
𝑝𝜆(𝑥),𝑦

𝛿
𝑦,𝑝𝜆(𝑥

′
)
𝑒(𝑦) = 𝛿

𝑝𝜆(𝑥),𝑝𝜆(𝑥
′
)
𝑒(𝑝𝜆(𝑥)),

𝑀𝜆 ∗ 𝑆𝜆(𝑦, 𝑦
′
) = ∑

𝑥∈𝑋

𝛿
𝑦,𝑝𝜆(𝑥)

𝛿
𝑝𝜆(𝑥),𝑦

′𝑒(𝑦)𝑒(𝑦
′
)𝑒(𝑥)

−1
= 𝛿𝑦,𝑦′ ∑

𝑥∈𝑝
−1

𝜆
(𝑦)

𝑒(𝑦)𝑒(𝑥)
−1
𝑒(𝑦)

= 𝛿𝑦,𝑦′𝑒(𝑦)∑
𝑥∈𝑝

−1

𝜆
(𝑦)

𝑒(𝑥)
−1
𝑒(𝑦),

where we used the notations of Theorem 3.5 in the second equality. □

The following lemmas are elementary, we leave their proofs to the interested reader.

Lemma 3.8. Let 𝜆, 𝜇 ∈ Λ. Consider the natural injective maps 𝜓𝑅
𝜆
∶ 𝐀𝜇𝜆 → 𝐀𝜇𝜔, 𝜓𝐿𝜆 ∶ 𝐀𝜆𝜇 → 𝐀𝜔𝜇, given

by pulling back along 𝑝𝜆. We have 𝜓𝑅
𝜆
(𝑓 ) = 𝑓 ∗ 𝑀𝜆, 𝜓𝐿𝜆(𝑓 ) = 𝑆𝜆 ∗ 𝑓 . Furthermore, left multiplication by

1𝜆 is identified with the projection 𝐂 ↠ 𝐂𝜆.

Lemma 3.9. Let 𝑟 ∈ R𝐺(𝑌 ). Then, 𝑟𝜆 ∗ 𝑀𝜆 = 𝑀𝜆 ∗ �̃�𝜆, 𝑆𝜆 ∗ 𝑟𝜆 = �̃�𝜆 ∗ 𝑆𝜆.

3.3. Double centralizer property. We will be mostly interested not in the convolution algebras per
se, but in their interesting subalgebras, which should be thought of as “integral forms”. Let us fix a
𝐺-invariant subring 𝑇 ⊆ R, and make the following assumption:

(3.7) 𝑚(𝑦) ∈ R defined in (3.5) is invertible for any 𝑦 ∈ 𝑌 , and 𝑚(𝑦)±1 ∈ 𝑇 .

Definition 3.10. Consider the following subalgebras:

𝐁
𝑇
= ⟨𝐾𝜆, 𝑡𝜔 ∶ 𝜆 ∈ Λ, 𝑡 ∈ 𝑇 ⟩ ⊆ 𝐁, 𝐀

𝑇
= ⟨𝐁

𝑇
, 𝑆𝜆, 𝑀𝜆, ∶ 𝜆 ∈ Λ⟩ ⊆ 𝐀.

We also define 𝐂𝑇 = 𝐀
𝑇
∗ 1𝜔; it is an (𝐀

𝑇
,𝐁
𝑇
)-bimodule.

The following equalities immediately follow from the definition:

𝐀
𝑇

𝜇𝜆
= 𝑀𝜇 ∗ 𝐁

𝑇
∗ 𝑆𝜆, 𝐂

𝑇

𝜆
= 𝑀𝜆 ∗ 𝐁

𝑇
.

Following closely the proof of [Pou09, Theorem 2.1], we have the following result.

Theorem 3.11. Assume that the condition (3.7) holds. Then, we have the following double centralizer
property:

End
𝐀
𝑇 (𝐂

𝑇
) = 𝐁

𝑇
, End

𝐁
𝑇 (𝐂

𝑇
) = 𝐀

𝑇
.

In particular, 𝐁𝑇 = 1𝜔 ∗ 𝐀
𝑇
∗ 1𝜔, and the Schur functor is given by 𝐀

𝑇 -mod→ 𝐁
𝑇 -mod, 𝑀 ↦ 1𝜔 ∗ 𝑀 .

Proof. The inclusions 𝐁𝑇 ⊆ End
𝐀
𝑇 (𝐂

𝑇
), 𝐀𝑇 ⊆ End

𝐁
𝑇 (𝐂

𝑇
) are obvious. Let us begin by showing the

inclusion End
𝐀
𝑇 (𝐂

𝑇
) ⊆ 𝐁

𝑇 . To this end, let 𝑃 ∈ End
𝐀
𝑇 (𝐂

𝑇
). Since 𝑃 commutes with 1𝜆, the last

statement of Theorem 3.8 implies that the direct sum decomposition 𝐂
𝑇
= ⨁

𝜆
𝐂
𝑇

𝜆
is preserved by 𝑃 .

Furthermore, 𝐂𝑇 is a cyclic 𝐀𝑇 -module generated by 1𝜔 ∈ 𝐂
𝑇

𝜔
. Thus 𝑃 is completely determined by the

element 𝑃(1𝜔) ∈ 𝐂
𝑇

𝜔
≃ 𝐁

𝑇 , and so 𝑃 lies in 𝐁
𝑇 .

It remains to show that End
𝐁
𝑇 (𝐂

𝑇
) ⊆ 𝐀

𝑇 . Let 𝑃 ∈ End
𝐁
𝑇 (𝐂

𝑇
). We can rewrite 𝑃 as a sum of maps

𝑃𝜇𝜆, 𝜆, 𝜇 ∈ Λ, where each 𝑃𝜇𝜆 belongs to Hom
𝐁
𝑇 (𝐂

𝑇

𝜆
,𝐂

𝑇

𝜇
). It suffices to show that each 𝑃𝜇𝜆 belongs to

𝐀
𝑇

𝜇𝜆
. From now on, we fix 𝜆, 𝜇 ∈ Λ and write 𝑃 ′ = 𝑃𝜇𝜆. First of all, for any 𝑓 ∈ 𝐂

𝑇

𝜆
we have

𝑃
′
(𝑓 ) = 𝑃

′
(𝑚

−1

𝜆
∗ 𝑀𝜆 ∗ 𝑆𝜆 ∗ 𝑓 ) = 𝑃

′
(𝑀𝜆) ∗ (�̃�

−1

𝜆
∗ 𝑆𝜆 ∗ 𝑓 ).

Thus 𝑃 ′ is determined by a single element 𝑃 ′(𝑀𝜆) ∈ 𝐂
𝑇

𝜇
. Observe that

𝑃
′
(𝑀𝜆) ∗ 𝐾𝜆 = 𝑃

′
(𝑀𝜆 ∗ 𝑆𝜆 ∗ 𝑀𝜆) = 𝑃

′
(𝑚𝜆 ∗ 𝑀𝜆) = 𝑃

′
(𝑀𝜆) ∗ �̃�𝜆.

We claim that

(3.8) {ℎ ∈ 𝐂
𝑇

𝜇
∶ ℎ ∗ 𝐾𝜆 = ℎ ∗ �̃�𝜆} = 𝐀

𝑇

𝜇𝜆
∗ 𝑀𝜆.
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It will follow from (3.8) that 𝑃 ′(𝑀𝜆) = 𝑔 ∗ 𝑀𝜆 for some 𝑔 ∈ 𝐀
𝑇

𝜇𝜆
, and so we may conclude.

The inclusion ⊇ in (3.8) is clear:

(𝑓 ∗ 𝑀𝜆) ∗ 𝐾𝜆 = 𝑓 ∗ 𝑀𝜆 ∗ 𝑆𝜆 ∗ 𝑀𝜆 = 𝑓 ∗ 𝑚𝜆 ∗ 𝑀𝜆 = (𝑓 ∗ 𝑀𝜆) ∗ �̃�𝜆.

For the opposite inclusion ⊆ in (3.8), let ℎ ∈ 𝐂
𝑇

𝜇
satisfying ℎ ∗ 𝐾𝜆 = ℎ ∗ �̃�𝜇. Then,

ℎ = ℎ ∗ 𝐾𝜆 ∗ �̃�
−1

𝜆
= (ℎ ∗ �̃�

−1

𝜆
∗ 𝑆𝜆) ∗ 𝑀𝜆,

where we used Theorem 3.9. The claim is proved. □

We can slightly relax the condition (3.7).

Corollary 3.12. Let 𝑇 ′ be a ring, and let 𝑒 ∈ 𝑇 ′

𝐺
(𝑌 ). Assume that 𝑒(𝑦), 𝑚(𝑦) are not zero divisors for all

𝑦 ∈ 𝑌 . Consider the localization R ∶= 𝑇
′
[𝑒(𝑦)

−1
, 𝑚(𝑦)

−1
; 𝑦 ∈ 𝑌 ], and its subring 𝑇 = 𝑇

′
[𝑚(𝑦)

−1
]. Define

𝐀
𝑇 , 𝐁𝑇 , 𝐂𝑇 as in Theorem 3.10. Then the double centralizer property of Theorem 3.11 holds. □

While the double centralizer theorem above is very general, it has two problems. First, neither of
algebras 𝐀

𝑇 , 𝐁𝑇 is very explicit; even their size is not obvious. Second, there is no reason for the
condition (3.7) to be satisfied, and it indeed fails in some situations of interest (see Theorem 4.7). The
rest of the paper is dedicated to the detailed study of a particular setup where both of these issues can
be controlled.

4. Coil Schur algebras

4.1. PQWP as twisted convolutions. From now on, we impose the following conditions PQWPs we
consider:

There exists an element 𝛼 ∈ 𝐹 ⊗ 𝐹 satisfying 𝛼(𝜎(𝛼) + 𝑆) = 𝑅;(C1)
Both 𝛼 and 𝛽 are central in 𝐹 ⊗ 𝐹 ;(C2)
The element 𝑃 ∶= 𝛼(𝑥1 − 𝑥2) + 𝛽 is not a zero divisor.(C3)

We expect that the condition (C2) is an artifact of our approach, see Section 5.4 for a discussion on how
one might tackle removing it, and the importance of the other two conditions. Since 𝑅 is expressed in
terms of 𝛼 and 𝛽, we will say that such PQWP depends on (𝛼, 𝛽) ∈ (𝐹 ⊗ 𝐹) × (𝐵 ⊗ 𝐵).

Example 4.1. The element 𝛼 for certain PQWP can be found in Table 1. For general affine Frobenius
Hecke algebra, we need to solve the following equation in 𝐹 ⊗ 𝐹 :

𝛼(𝜎(𝛼) + Δ) = 1.

It is not guaranteed such a solution in 𝐹 ⊗ 𝐹 exists. However, when either Δ is nilpotent, or 𝐹 is graded
and Δ has positive degree, we can express 𝛼 as a formal series in Δ; e.g. when Δ

2
= 0, we can take

𝛼 = (±1) − Δ/2. Under the same assumptions, the element 𝑃 is not a zero divisor both for Savage and
Rosso-Savage algebra. Solution for pro-𝑝 Iwahori Hecke algebras for GL𝑑(Q𝑝) is obtained in an ad hoc
manner.

We will realize PQWPs satifying the conditions above as twisted convolution algebras. In the nota-
tions of Section 3.1, let 𝑋 = 𝐺 = S𝑑 , and let R = 𝐹

⊗𝑑
(𝑥1,… , 𝑥𝑑) be field of fractions. Here, 𝐺 acts on 𝑋

by left multiplication, and on R by place permutation. Thanks to (C3), we can consider the following
twist:

(4.1) 𝑒(𝑔) = 𝑔(∏1≤𝑖<𝑗≤𝑑
𝑃𝑗𝑖(𝑥𝑖 − 𝑥𝑗 )).

This gives rise to a twisted convolution algebra 𝐇𝑑 ∶= R𝐺(𝑋 × 𝑋).
Let us recall the basis of Theorem 3.3. Since the action of 𝐺 on 𝑋 is transitive, we can choose the

representatives 𝜋 to be (1, 𝑔), 𝑔 ∈ S𝑑 . Denote 𝜉𝑔,𝑟 ∶= 𝜉(1,𝑔),𝑟 . By definition, 𝜉𝑔,𝑟(𝑥, 𝑦) = 𝛿𝑦,𝑥𝑔𝑒(𝑥)𝑥(𝑟).
12



Note that

(4.2)
𝜉𝑔,𝑟 ∗ 𝜉𝑔′,𝑟 ′(𝑥, 𝑦) = ∑

𝑥
′
∈S𝑛

𝛿𝑥′,𝑥𝑔𝑒(𝑥)𝑥(𝑟)𝑒(𝑥
′
)
−1
𝛿𝑦,𝑥′𝑔′𝑒(𝑥

′
)𝑥

′
(𝑟

′
) = 𝛿𝑦,𝑥𝑔𝑔′𝑒(𝑥)𝑥(𝑟𝑔(𝑟

′
))

= 𝜉
𝑔𝑔

′
,𝑟𝑔(𝑟

′
)
(𝑥, 𝑦).

Recall that we have an embedding of algebras R = RS𝑑
(S𝑑) → 𝐇𝑑 , 𝑟 ↦ 𝜉1,𝑟 by Theorem 3.6. For

𝑖 = 1,… , 𝑑 − 1, consider the following elements in 𝐇𝑑 :

(4.3) 𝐻𝑖 ∶= 𝐾𝑖 − 𝜉1,𝛼𝑖
, 𝐾𝑖 ∶= 𝜉

1,
𝑃
𝑖,𝑖+1

𝑥
𝑖
−𝑥
𝑖+1

+ 𝜉
𝑠𝑖,

𝑃
𝑖,𝑖+1

𝑥
𝑖
−𝑥
𝑖+1

.

Proposition 4.2. Let 𝐻𝑖 be the element defined in (4.3). Then,

(a) The 𝐻𝑖’s satisfy the relations in Theorem 1.3. In particular, we obtain an algebra homomorphism
Φ ∶ 𝐵 ≀H𝑑 → 𝐇𝑑 .

(b) The map Φ is injective.

Proof. Part (a) requires careful bookkeeping while applying (4.2). For the wreath and quadratic rela-
tions, it suffices to consider the 𝑑 = 2 case. The wreath relation follows since

𝐻𝑏 − 𝜎(𝑏)𝐻 =
(

𝜉
1,

𝛽

𝑥
1
−𝑥

2

+ 𝜉
𝜎,

𝑃

𝑥
1
−𝑥

2 )
∗ 𝜉1,𝑏 − 𝜉1,𝜎(𝑏) ∗ (

𝜉
1,

𝛽

𝑥
1
−𝑥

2

+ 𝜉
𝜎,

𝑃

𝑥
1
−𝑥

2 )

= 𝜉
1,
𝛽𝑏−𝜎(𝑏)𝛽

𝑥
1
−𝑥

2

+ 𝜉
𝜎,
𝑃𝜎(𝑏)−𝜎(𝑏)𝑃

𝑥
1
−𝑥

2

= 𝜉
1,𝜕

𝛽
(𝑏)

= 𝜌(𝑏),

(4.4)

while the quadratic relation follows since

𝐻
2
=
(

𝜉
1,

𝛽

𝑥
1
−𝑥

2

+ 𝜉
𝜎,

𝑃

𝑥
1
−𝑥

2 )

2

= 𝜉
1,
𝛽
2
−𝑃𝜎(𝑃)

(𝑥
1
−𝑥

2
)
2

+ 𝜉
𝜎,
𝛽𝑃−𝑃𝜎(𝛽)

(𝑥
1
−𝑥

2
)
2

= 𝜉
1,𝛼𝜎(𝛼)+

(𝛼(𝑥
1
−𝑥

2
)+𝛽)(𝛽−𝜎(𝛽))

(𝑥
1
−𝑥

2
)
2

+ 𝜉
𝜎,
𝑃(𝛽−𝑠(𝛽))

(𝑥
1
−𝑥

2
)
2

= 𝜉
1,𝛼(𝜎(𝛼)+𝑆)+

𝑆𝛽

(𝑥
1
−𝑥

2
)

+ 𝜉
𝜎,

𝑆𝑃

𝑥
1
−𝑥

2

= 𝜉1,𝑅 + 𝜉1,𝑆 ∗ 𝐻 = 𝑅 + 𝑆𝐻.

(4.5)

Next, we verify the braid relations. Suppose that |𝑖 − 𝑗 | > 1. Then, 𝐻𝑖𝐻𝑗 = 𝐻𝑗𝐻𝑖 follows from the fact
that 𝜉𝑔,𝑟 commutes with 𝜉𝑔′,𝑟 ′ provided 𝑔𝑔′ = 𝑔′𝑔 , 𝑔(𝑟 ′) = 𝑟 ′ and 𝑔′(𝑟) = 𝑟 .

Suppose that |𝑖 − 𝑗 | = 1. It suffices to consider the 𝑑 = 3 case. When we compute both sides of the
relation, we get six terms corresponding to six elements of S3. The terms corresponding to 𝑠1𝑠2, 𝑠2𝑠1,
𝑠1𝑠2𝑠1 immediately coincide. For the rest, we have the following:

𝐻1𝐻2𝐻1 − 𝐻2𝐻1𝐻2 = 𝜉

1,

𝛽
2

1
𝛽
2
(𝑥
2
−𝑥

3
)(𝑥

1
−𝑥

3
)−𝛽

1
𝛽
2

2
(𝑥
1
−𝑥

2
)(𝑥

1
−𝑥

3
)−𝛽

13
𝛽
1
𝛽
21

(𝑥
2
−𝑥

3
)
2
+𝛽

13
𝛽
2
𝛽
32

(𝑥
1
−𝑥

2
)
2

(𝑥
1
−𝑥

2
)
2
(𝑥
1
−𝑥

3
)(𝑥

2
−𝑥

3
)
2

+ 𝜉
𝑠1,𝑃1

𝛽
1
𝛽
2
(𝑥
1
−𝑥

3
)−𝛽

13
𝛽
21

(𝑥
2
−𝑥

3
)−𝛽

13
𝛽
2
(𝑥
1
−𝑥

2
)

(𝑥
1
−𝑥

2
)
2
(𝑥
1
−𝑥

3
)(𝑥

2
−𝑥

3
)

+ 𝜉
𝑠2,𝑃2

𝛽
1
𝛽
13

(𝑥
2
−𝑥

3
)−𝛽

1
𝛽
2
(𝑥
1
−𝑥

3
)+𝛽

13
𝛽
32

(𝑥
1
−𝑥

2
)

(𝑥
1
−𝑥

2
)(𝑥

1
−𝑥

3
)(𝑥

2
−𝑥

3
)
2

.

We need to check that the nominators vanish. After substituting 𝛽 = Δ
00
+ Δ

10
𝑥1 + Δ

01
𝑥2 + Δ

11
𝑥1𝑥2,

we can use the relations (2.2) and centrality of Δ𝑖𝑗 to drop the subscripts and pretend that Δ𝑖𝑗 ’s are
commuting variables. By direct computation, we can check that all the nominators become divisible
by Δ

00
Δ
11
− Δ

10
Δ
01

= 0, thanks to (A2).
For part (b), let us compute the image of the basis provided by Theorem 2.12. Thanks to the for-

mula (4.2),
Φ(𝐻𝑤) = 𝜉𝑤,𝑃𝑤

+∑
𝑤

′
<𝑤

𝜉𝑤′
,𝑃
𝑤,𝑤

′

for some 𝑃𝑤,𝑤′ ∈ R. In particular, the PBW monomial 𝑏𝐻𝑤 gets sent to 𝜉𝑤,𝑏𝑃𝑤 modulo lower terms.
We can conclude by applying Theorem 3.3 once we show that 𝑃𝑤 is not a zero divisor for all 𝑤 ∈ S𝑛.
However, by formula (4.2) it has the form∏

𝑘

𝑃𝑖
𝑘
,𝑗
𝑘

(𝑥𝑖
𝑘
−𝑥𝑗

𝑘
)
, and each 𝑃𝑖𝑘 ,𝑗𝑘 is not a zero divisor by (C3). □

4.2. The coil Schur algebras. Let Λ be the set of compositions of 𝑑, 𝜔 = (1
𝑑
), 𝑌𝜆 = S𝑑/S𝜆 for any

𝜆 ∈ Λ, and 𝑌 = ⨆
𝜆
𝑌𝜆. Note that for any 𝜆,

R𝐺(𝑌𝜆) = RS𝑑
(S𝑑/S𝜆) = RS𝜆

(pt) = RS𝜆
.
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Given a composition 𝜆 of 𝑟 parts, define

𝑁𝜆

𝑃𝜆

𝐿𝜆𝑁𝜆 = ⋃
𝑟

𝑘=1
{(𝑖, 𝑗) ∶ 1 ≤ 𝑖 ≤ 𝜆1 +⋯ + 𝜆𝑘 < 𝑗 ≤ 𝑑},

𝑃𝜆 = {(𝑖, 𝑗) ∶ 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑑} ⧵ 𝑁𝜆,

𝐿𝜆 = {(𝑖, 𝑗) ∶ 1 ≤ 𝑖 < 𝑗 ≤ 𝑑} ⧵ 𝑁𝜆,

𝑒𝜆 = ∏
(𝑖,𝑗)∈𝑁𝜆

(𝑥𝑖 − 𝑥𝑗 )∏(𝑖,𝑗)∈𝑃𝜆
𝑃𝑖𝑗 .

Consider the twisted convolution algebra 𝐒𝑑 ∶= R𝐺(𝑌 × 𝑌 ) for the twist 𝑒 ∈ R𝐺(𝑌 ) given by 𝑒([𝑔]) =
𝑔(𝑒𝜆) for [𝑔] ∈ S𝑑/S𝜆; note that 1𝜔𝐒𝑑1𝜔 = 𝐇𝑑 by definition. By our setup in Section 3.1, 𝐒𝑑 acts via
twisted convolutions on 𝐓𝑑 ∶= R𝐺(𝑌 ) = ⨁

𝜆∈Λ
RS𝜆 , which we call the polynomial representation.

Proposition 4.3. The action of 𝐒𝑑 on the polynomial representation 𝐓𝑑 is faithful.

Proof. Assume we have a nonzero element 𝜑 ∈ 𝐒𝑑 , such that 𝜑𝑣 = 0 for any 𝑣 ∈ 𝐓𝑑 . Truncating by
idempotents, we can assume that 𝜑 ∈ R𝐺(𝑌𝜆 × 𝑌𝜇). Recall that for 𝑣 ∈ R𝐺(𝑌𝜇) and [𝑔] ∈ S𝑑/S𝜆, we
have

(4.6) 𝜑𝑣([𝑔]) = ∑

ℎ∈S𝑑/S𝜇

𝜑([𝑔], [ℎ])𝑒([ℎ])
−1
𝑣([ℎ]) = ∑

ℎ∈S𝑑/S𝜇

𝜑([𝑔], [ℎ])ℎ(𝑒𝜇)
−1
ℎ(𝑣([1])).

Let us assume that 𝜇 = 𝜔 for simplicity; the general case is analogous. Consider the monomial basis
𝐵 = {𝑥

𝑖1

1
… 𝑥

𝑖𝑑−1

𝑑−1
∶ 0 ≤ 𝑖𝑗 ≤ 𝑑 − 𝑗} of the ring of coinvariants

Co𝑑 = k[𝑥1,… , 𝑥𝑑]/(k[𝑥1,… , 𝑥𝑑]
S𝑑

).

It is well known that Co𝑑 is isomorphic to the regular S𝑑-module. In particular, the 𝑑! × 𝑑! matrix
(ℎ(𝑏))ℎ∈S𝑑 ,𝑏∈𝐵

is invertible. According to the formula (4.6) and the assumption 𝜑𝑣 = 0, this implies that
the vector (𝜑([1], [ℎ])ℎ(𝑒)−1)ℎ∈S𝑑

vanishes. Since 𝜑 is S𝑑-equivariant, this means that 𝜑 = 0, and so
we arrived at a contradiction. □

Let us write out the action of our favorite elements of 𝐒𝑑 on 𝐓𝑑 ≡ ⨁
𝜆
RS𝜆 . Each split 𝑆𝜆 fixes 𝑏 ∈ RS𝜆

since 𝑆𝜆𝑏 = ∑
𝑔∈S𝑑/S𝜆

𝛿
[𝑔],[1]

𝑒(𝑔)𝑔(𝑏)𝑒(𝑔)
−1

= 𝑏 . For 𝑏 ∈ R,

𝑀𝜆𝑏 = ∑
𝑔∈S𝑑

𝛿
[1],[𝑔]

𝑒𝜆𝑔(𝑏)𝑔(𝑒)
−1

= ∑
𝑔∈S𝜆

𝑔(𝑏𝑒𝜆/𝑒) = ∑
𝑔∈S𝜆

𝑔(𝑏∏(𝑖,𝑗)∈𝐿𝜆

𝑃𝑖𝑗

𝑥𝑖−𝑥𝑗
)

= 𝜕𝜆(𝑏∏(𝑖,𝑗)∈𝐿𝜆
𝑃𝑖𝑗),

(4.7)

where 𝜕𝜆 is the Demazure operator associated to the longest element in S𝜆, and the last equality is
standard (see e.g. [MM22, Lemma 5.5]).

Using the map Φ from Theorem 4.2, let us define 𝐻𝑤 ∶= Φ(𝐻𝑤) for all 𝑤 ∈ S𝑑 by abuse of notation.
Note that for an elementary transposition 𝑠𝑖, 1 ≤ 𝑖 ≤ 𝑑 − 1 we have

(4.8) 𝐻𝑖 =
(

𝜉
1,

𝑃
𝑖,𝑖+1

𝑥
𝑖
−𝑥
𝑖+1

+ 𝜉
𝑠𝑖,

𝑃
𝑖,𝑖+1

𝑥
𝑖
−𝑥
𝑖+1 )

− 𝜉1,𝛼𝑖,𝑖+1
= 𝑆

𝜆(𝑠𝑖)
∗ 𝑀

𝜆(𝑠𝑖)
− 𝜉1,𝛼𝑖

,

where 𝜆(𝑠𝑖) = (1
𝑖−1
, 2, 1

𝑑−𝑖−1
) is a strict composition of length 𝑑 − 1 with 2 at 𝑖-th place. In particular,

let 𝑇 = 𝐵
⊗𝑑 . Then all elements 𝐻𝑤 belong to 𝐇

𝑇

𝑑
= 𝐁

𝑇 , as introduced in Theorem 3.10.
Denote the set of inversions of 𝑤 ∈ S𝑑 by

Inv(𝑤) = {1 ≤ 𝑖 < 𝑗 ≤ 𝑑 | 𝑤(𝑖) > 𝑤(𝑗)}.

The following statement is the computational heart of the paper.

Proposition 4.4. Recall 𝐾𝜆 from (3.5). Then,

(4.9) 𝐾𝜆 = ∑
𝑤∈S𝜆

∏
(𝑖,𝑗)∈𝐿𝜆⧵Inv(𝑤)

𝛼𝑖𝑗𝐻𝑤.

Consequently, 𝐇𝑇
𝑑
≃ 𝐵 ≀H𝑑 .
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Proof. Both sides clearly factor into a product over the components of 𝜆, therefore it suffices to prove the
claim for 𝜆 = (𝑑). Thanks to Theorem 4.3, it suffices to prove it on the polynomial representation. We
thus identify 𝐾

(𝑑)
with the difference operator 𝜕𝑤0

∏
1≤𝑖<𝑗≤𝑛

𝑃𝑖𝑗 . This operator can be further factorized
as 𝑀𝑑−1𝑀𝑑−2…𝑀1, where

(4.10) 𝑀𝑘 = 𝜕(𝑘−1,1)∏

𝑘−1

𝑖=1

𝑃𝑖𝑘 , 𝜕
(𝑘−1,1)

∶= 𝜕1… 𝜕𝑘−1.

Analogously, we can factor the right hand side:

(4.11) ∑
𝑤∈S𝜆

𝐻𝑤 = 𝐻
′

𝑑−1
𝐻

′

𝑑−2
…𝐻

′

1
, 𝐻

′

𝑘
= 𝐻

(1 2 ⋯ 𝑘)
+ 𝛼12𝐻(2 ⋯ 𝑘)

+ … +∏

𝑘−1

𝑖=1

𝛼𝑖,𝑘 .

Therefore, it suffices to show that 𝑀𝑘 = 𝐻
′

𝑘
for all 𝑘. For 𝑘 = 1, this follows from the definition of

𝐻𝑖 in Theorem 4.2. Furthermore, note that 𝐻 ′

𝑘+1
= 𝐻

′

𝑘
𝐻
(𝑘 𝑘+1)

+ ∏
𝑘

𝑖=1
𝛼𝑖,𝑘+1. Therefore, reasoning by

recurrence, we are reduced to proving that

(4.12) 𝑀𝑘+1 = ∏

𝑘

𝑖=1

𝛼𝑖,𝑘+1 +𝑀𝑘𝐻𝑘

as operators on RS𝑘 = (𝐹
⊗𝑘
[𝑥1,… , 𝑥𝑘])

S𝑘 ⊗ 𝐹
⊗(𝑑−𝑘)

[𝑥𝑘+1,… , 𝑥𝑑]. For 𝑗 < 𝑘, write

(4.13) Π𝑗 ,𝑘 = ∏

𝑗

𝑖=1

𝑃𝑗 ,𝑘 .

We have:

𝑀𝑘+1 −𝑀𝑘𝐻𝑘 = 𝜕(𝑘,1)Π𝑘,𝑘+1 − 𝜕(𝑘−1,1)Π𝑘−1,𝑘(𝜕𝑘𝑃𝑘,𝑘+1 − 𝛼𝑘)

= 𝜕
(𝑘−1,1) (Π𝑘−1,𝑘𝜕𝑘𝑃𝑘,𝑘+1 + 𝜕𝑘(Π𝑘−1,𝑘+1)𝑃𝑘,𝑘+1 − Π𝑘−1,𝑘𝜕𝑘𝑃𝑘,𝑘+1 + 𝛼𝑘Π𝑘−1,𝑘)

= 𝜕
(𝑘−1,1) (𝛼𝑘(Π𝑘−1,𝑘+1 − Π𝑘−1,𝑘) + 𝛽𝑘𝜕𝑘(Π𝑘−1,𝑘+1) + 𝛼𝑘Π𝑘−1,𝑘)

= 𝜕
(𝑘−1,1) (𝛼𝑘Π𝑘−1,𝑘+1 + 𝜌𝑘(Π𝑘−1,𝑘+1)) .

Note that this operator commutes with multiplication by any element in RS𝑘 . Thus it remains to prove
the following equality of elements in R:

(4.14) 𝜕
(𝑘−1,1) (𝛼𝑘Π𝑘−1,𝑘+1 + 𝜌𝑘(Π𝑘−1,𝑘+1)) = ∏

𝑘

𝑖=1

𝛼𝑖,𝑘+1.

We proceed by induction on 𝑘, with the base case 𝑘 = 1 being trivial. Using the condition (A2) on 𝛽,
we get the following:

𝜕𝑘−1 (𝛼𝑘𝑃𝑘−1,𝑘+1 + 𝜌𝑘(𝑃𝑘−1,𝑘+1))

= 𝜕𝑘−1 (𝛼𝑘𝛼𝑘−1,𝑘+1(𝑥𝑘−1 − 𝑥𝑘+1) + 𝛼𝑘𝛽𝑘−1,𝑘+1 + 𝛼𝑘−1,𝑘+1𝛽𝑘 + 𝛽𝑘(Δ
01

𝑘−1,𝑘+1
+ Δ

11

𝑘−1,𝑘+1
𝑥𝑘−1))

= 𝛼𝑘𝛼𝑘−1,𝑘+1 + 𝜕𝑘−1 (𝛽𝑘(Δ
01

𝑘−1,𝑘+1
+ Δ

11

𝑘−1,𝑘+1
𝑥𝑘−1))

= 𝛼𝑘𝛼𝑘−1,𝑘+1 + (Δ
00

𝑘
Δ
11

𝑘−1,𝑘+1
− Δ

10

𝑘
Δ
01

𝑘−1,𝑘+1)
+ (Δ

01

𝑘
Δ
11

𝑘−1,𝑘+1
− Δ

11

𝑘
Δ
01

𝑘−1,𝑘+1)
𝑥𝑘+1

= 𝛼𝑘𝛼𝑘−1,𝑘+1.

As a consequence, using Leibniz rule for 𝜕𝑘−1 and 𝜌𝑘 (see (P2)), we get

𝜕
(𝑘−1,1) (𝛼𝑘Π𝑘−1,𝑘+1 + 𝜌𝑘(Π𝑘−1,𝑘+1))

= 𝜕
(𝑘−2,1) (Π𝑘−2,𝑘+1𝜕𝑘−1(𝛼𝑘𝑃𝑘−1,𝑘+1) + 𝜕𝑘−1(Π𝑘−2,𝑘+1𝜌𝑘(𝑃𝑘−1,𝑘+1) + 𝜌𝑘(Π𝑘−2,𝑘+1)𝑃𝑘−1,𝑘))

= 𝜕
(𝑘−2,1) (Π𝑘−2,𝑘+1𝜕𝑘−1(𝛼𝑘𝑃𝑘−1,𝑘+1 + 𝜌𝑘(𝑃𝑘−1,𝑘+1)) + 𝜕𝑘−1(𝜌𝑘(Π𝑘−2,𝑘+1)𝑃𝑘−1,𝑘))

= 𝜕
(𝑘−2,1)

(𝛼𝑘𝛼𝑘−1,𝑘+1 + 𝛼𝑘−1𝜌𝑘 + (𝛼𝑘−1 + 𝑆𝑘−1)𝜎𝑘−1𝜌𝑘 + 𝜌𝑘−1𝜌𝑘)(Π𝑘−2,𝑘+1)

= 𝜕
(𝑘−2,1) ((𝛼𝑘−1𝜌𝑘 + (𝛼𝑘−1 + 𝑆𝑘−1)𝜎𝑘−1𝜌𝑘 + 𝜌𝑘−1𝜌𝑘)(Π𝑘−2,𝑘+1) − 𝛼𝑘𝜎𝑘𝜌𝑘−1(Π𝑘−2,𝑘))

+∏

𝑘

𝑖=1

𝛼𝑖,𝑘+1,

where we applied the inductive assumption to 𝜕
(𝑘−2,1)

(𝛼𝑘−1,𝑘+1Π𝑘−2,𝑘+1) in the last line. Since Π𝑘−2,𝑘 is
independent of (𝑘 − 1)-st factor in R, and 𝜌𝑘−1 = 𝛽𝑘−1𝜕𝑘−1, we have

𝛼𝑘𝜎𝑘𝜌𝑘−1(Π𝑘−2,𝑘) = 𝛼𝑘−1𝜎𝑘𝜌𝑘−1(Π𝑘−2,𝑘) = 𝛼𝑘−1𝜎𝑘−1𝜌𝑘(Π𝑘−2,𝑘+1).
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Continuing our chain of equalities, we have

𝜕
(𝑘−1,1) (𝛼𝑘Π𝑘−1,𝑘+1 + 𝜌𝑘(Π𝑘−1,𝑘+1))

= ∏

𝑘

𝑖=1

𝛼𝑖,𝑘+1 + 𝜕(𝑘−2,1)(𝛼𝑘−1𝜌𝑘 + 𝑆𝑘−1𝜎𝑘−1𝜌𝑘 + 𝜌𝑘−1𝜌𝑘)(Π𝑘−2,𝑘+1)

= ∏

𝑘

𝑖=1

𝛼𝑖,𝑘+1 + 𝜕(𝑘−2,1)(𝛼𝑘−1𝜌𝑘 + 𝑆𝑘−1𝜎𝑘−1𝜌𝑘𝜎𝑘−1 + 𝜌𝑘−1𝜌𝑘𝜎𝑘−1)(Π𝑘−2,𝑘+1)

= ∏

𝑘

𝑖=1

𝛼𝑖,𝑘+1 + 𝜕(𝑘−2,1)𝛼𝑘−1𝜌𝑘(Π𝑘−2,𝑘+1) + 𝜕(𝑘−2,1)𝜌𝑘𝜎𝑘−1𝜌𝑘(Π𝑘−2,𝑘+1),

where we used (P6) and the fact that 𝜌𝑘−1(Π𝑘−2,𝑘+1) = 0.
Finally, consider the last term in the expression above, and use the inductive assumption:

𝜕
(𝑘−2,1)

𝜌𝑘𝜎𝑘−1𝜌𝑘(Π𝑘−2,𝑘+1) = 𝜕(𝑘−2,1)𝜌𝑘𝜎𝑘𝜌𝑘−1(Π𝑘−2,𝑘) = 𝜌𝑘𝜎𝑘𝜕(𝑘−2,1)𝜌𝑘−1(Π𝑘−2,𝑘)

= 𝜌𝑘𝜎𝑘
(
−𝜕

(𝑘−2,1)
(𝛼𝑘−1Π𝑘−2,𝑘) +∏

𝑘−1

𝑖=1

𝛼𝑖,𝑘
)
= −𝜕

(𝑘−2,1)
𝜌𝑘𝜎𝑘(𝛼𝑘−1Π𝑘−2,𝑘)

= −𝜕
(𝑘−2,1)

𝜌𝑘(𝛼𝑘−1,𝑘+1Π𝑘−2,𝑘+1) = −𝜕
(𝑘−2,1)

𝛼𝑘−1𝜌𝑘(Π𝑘−2,𝑘+1).

This concludes the proof of (4.14), which implies (4.12), and thus the proposition is proved. □

Corollary 4.5. We have the following expression for 𝑚𝜆:

(4.15) 𝑚𝜆 = ∑

𝑤∈S𝜆

∏

(𝑖,𝑗)∈𝐿𝜆⧵Inv(𝑤)

𝛼𝑖𝑗 ∏

(𝑖,𝑗)∈𝐿𝜆∩Inv(𝑤)

(𝜎(𝛼) + 𝑆)
𝑖𝑗
.

In particular, if 𝛼 ∈ 𝐹 ⊗ 𝐹 is invertible and 𝑆 ∈ 𝐹 ⊗ 𝐹 is nilpotent, 𝑚𝜆 is invertible as long as chark > 𝑑.

Proof. Recall that 𝑚𝜆 = 𝑀𝜆𝑆𝜆(1). Since the action of 𝑆𝜆 on 𝑉𝑑 is by inclusion RS𝜆 ↪ R,

𝑚𝜆 = 𝑀𝜆𝑆𝜆(1) = 𝑀𝜆(1) = 𝐾𝜆(1) = ∑
𝑤∈S𝜆

∏
(𝑖,𝑗)∈𝐿𝜆⧵Inv(𝑤)

𝛼𝑖𝑗𝐻𝑤(1).

It remains to show that 𝐻𝑤(1) = ∏
(𝑖,𝑗)∈𝐿𝜆∩Inv(𝑤)

(𝛼𝑖𝑗 + 𝑆𝑖𝑗 ). We know that

𝐻𝑖(1) = 𝑆𝜆(𝑠𝑖)
𝑀
𝜆(𝑠𝑖)

(1) − 𝛼𝑖 = 𝛼𝑖 + (𝜎𝑖(𝛼𝑖) + 𝑆𝑖) − 𝛼𝑖 = 𝜎𝑖(𝛼𝑖) + 𝑆𝑖,

and moreover, 𝐻𝑖𝑡 = 𝑠𝑖(𝑡)𝐻𝑖 for any 𝑡 ∈ 𝐹⊗𝑑 . Writing out a reduced expression for 𝐻𝑤, we arrive at the
desired formula. □

Recall the subalgebra 𝐀
𝑇 and the module 𝐂

𝑇 from Theorem 3.10. We call the subalgebra 𝐒
𝑇

𝑑
∶=

⟨𝐇
𝑇

𝑑
, 𝑆𝜆, 𝑀𝜆 | 𝜆 ∈ Λ⟩ the coil Schur algebra, i.e., 𝐒BLM = 𝐒

𝑇

𝑑
as in the introduction. Next, 𝐂𝑇 = ⨁

𝜆
𝑀𝜆𝐇

𝑇

𝑑

is the (𝐒𝑇
𝑑
,𝐇

𝑇

𝑑
)-bimodule. The following double centralizer property is an immediate consequence of

Theorem 3.11:

Corollary 4.6. Assume that𝑚
(𝑖)
is invertible for all 𝑖 ≤ 𝑑. Then, End

𝐒
𝑇

𝑑

(𝐂
𝑇
) = 𝐵 ≀H(𝑑), End

𝐵≀H(𝑑)
(𝐂

𝑇
) =

𝐒
𝑇

𝑑
.

Example 4.7. Let us come back to Theorem 2.10.
◦ For nil-Hecke algebras, we have 𝛼 = 𝑆 = 0. Therefore, 𝑚𝜆 = 0 for all 𝜆, and so Theorem 4.6
does not apply;

◦ For degenerate affine Hecke algebras, we have 𝛼 = 1, 𝑆 = 0, so that 𝑚𝜆 = ∏
𝑖
𝜆𝑖!. In particular,

𝑚
(𝑖)

= 𝑖! for all 𝑖, and hence Theorem 4.6 applies when chark > 𝑑;
◦ For affine Hecke algebras, 𝛼 = 1, 𝑆 = 𝑞 − 1, therefore 𝑚𝜆 = ∏

𝑖
[𝜆𝑖]𝑞! are 𝑞-factorials. In

particular, 𝑚
(𝑖)

= ∏
𝑖

𝑡=1

𝑞
𝑡
−1

𝑞−1
for all 𝑖, and hence Theorem 4.6 applies when 𝑞 is not a root of

unity of order ≤ 𝑑; note that 𝑚𝜆 = 1 for 0-Hecke algebra, and so Theorem 4.6 always applies;
◦ Finally, in the case of affine Frobenius Hecke algebras, Theorem 4.5 applies when the quadratic
relation splits (see Theorem 4.1). In this case, Theorem 4.6 applies when chark > 𝑑.

4.3. (𝛼, 𝑆)-multinomial coefficients. For any 𝛾 ∈ 𝑍(𝐹 ⊗ 𝐹), let us define

𝛾𝑤 ∶= ∏
(𝑖,𝑗)∈Inv(𝑤) 𝛾𝑖,𝑗 ∈ 𝐵

⊗𝑑
, 𝛾

∗

𝑤
∶= 𝛾

𝑤
−1 .
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Lemma 4.8. We have

𝛾𝑤 = 𝛾𝑖𝑁
𝜎𝑖𝑁

(𝛾𝑖𝑁−1
) … (𝜎𝑖𝑁

…𝜎𝑖2
)(𝛾𝑖1

), 𝛾
∗

𝑤
∶= 𝛾𝑖1

𝜎𝑖1
(𝛾𝑖2

) … (𝜎𝑖1
…𝜎𝑖𝑁−1

)(𝛾𝑖𝑁
),

where 𝑤 = 𝑠𝑖1
… 𝑠𝑖𝑁

∈ S𝑑 is any reduced expression. It is understood that 𝛾𝑒 = 𝛾 ∗𝑒 = 1
⊗𝑑 .

In particular, if 𝛾 = 𝑞(1 ⊗ 1) for some 𝑞 ∈ k, then 𝛾𝑤 = 𝑞
𝓁(𝑤)

(1 ⊗ 1).

Proof. The proof for 𝛾𝑤 follows from an induction on the length of 𝑤. The initial case is trivial. The
inductive case follows from the fact that Inv(𝑠𝑖𝑤) = Inv(𝑠𝑖𝑤) ⊔ {𝑤

−1
(𝑖) < 𝑤

−1
(𝑖 + 1)} if 𝑠𝑖𝑤 > 𝑤. □

As a corollary, (4.9) and (4.15) become, respectively,

(4.16) 𝐾𝜆 = ∑
𝑤∈S𝜆

𝛼
𝑤
𝜆

◦
𝑤
𝐻𝑤, 𝑚𝜆 = ∑

𝑤∈S𝜆

𝛼
𝑤
𝜆

◦
𝑤
(𝜎(𝛼) + 𝑆)𝑤.

Let 𝐹 be a unital ring, 𝑆 ∈ 𝐹 ⊗ 𝐹 a weak Frobenius element, and let 𝛼 ∈ 𝑍(𝐹 ⊗ 𝐹) be such that
𝛼 ∶= 𝜎(𝛼) + 𝑆 is also central.

In view of Theorems 4.5 and 4.7, we may define a notion of (𝛼, 𝑆)-multinomial coefficients, for 𝜆 ⊨ 𝑑,
by

(4.17)
[

𝑑

𝜆]
(𝛼,𝑆)

∶= ∑

𝑤∈S𝜆

∏

(𝑖,𝑗)∈𝑁𝜆⧵Inv(𝑤)

𝛼𝑖𝑗 ∏

(𝑖,𝑗)∈𝑁𝜆∩Inv(𝑤)

𝛼𝑖𝑗 .

Such multinomial coefficients appear when one tries to describe relations in the laurel Schur algebras,
see Theorem 5.7. In particular, 𝑚

(𝑑)
= [

𝑑

1
𝑑]

(𝛼,𝑆)
, and it specializes to the 𝑞-factorial [𝑑]𝑞! = ∑

𝑤∈S𝑑

𝑞
𝓁(𝑤)

when 𝛼 = 1⊗ 1 and 𝑆 = (𝑞 − 1)(1⊗ 1). When 𝜆 = (𝑘, 𝑑 − 𝑘), the setS𝜆 is identified with the set of size
𝑘 subsets of {1,… , 𝑑}. In the case 𝐹 = k, 𝛼 = 𝑞(1 ⊗ 1) ≡ 𝑞, 𝑆 = 𝑡 − 𝑞, we recover the (𝑞, 𝑡)-binomial
coefficients

[

𝑑

𝑘, 𝑑 − 𝑘]
(𝑞,𝑡−𝑞)

= ∑

𝐼⊆[𝑑],
#
𝐼=𝑘

𝑞
𝑐(𝐼 ,<)

𝑡
𝑐(𝐼 ,>)

, 𝑐(𝐼 ,≷) ∶=
#
{(𝑖, 𝑗) ∈ 𝐼 × ([𝑑] ⧵ 𝐼 ) | 𝑖 ≷ 𝑗}.

Note that [ 𝑑

𝑘,𝑑−𝑘](𝛼,𝑆)
≠ [

𝑑

𝑑−𝑘,𝑘](𝛼,𝑆)
in general. It is an interesting combinatorial question to see which

classical formula for (𝑞, 𝑡)-binomial coefficients extend to this setting. We would also like to know the
geometric meaning of these elements when 𝐹 is the cohomology ring of a smooth manifold 𝑋 , and
𝑆 ∈ 𝐻

dim𝑋
(𝑋 × 𝑋) is the class of the diagonal.

4.4. Bases of coil Schur algebras. The basis of 𝐒𝑇
𝑑
can be expressed in a straightforward way from

the basis of 𝐵 ≀H(𝑑). Recall that by Theorem 3.10, we have the following direct sum decomposition:

𝐒
𝑇

𝑑
≃ ⨁

𝜆,𝜇

𝐒
𝑇

𝜆,𝜇
, where 𝐒

𝑇

𝜆,𝜇
∶= 𝑀𝜆𝐒

𝑇

𝑑
𝑆𝜇.

Let us fix two compositions 𝜆, 𝜇 ∈ Λ until the end of this section. By Theorem 2.12, 𝐵 ≀H𝑑 has a PBW
basis in which a PBWmonomial is of the form 𝑏𝐻𝑤 where 𝑏 ∈ 𝐵

⊗𝑑 and𝑤 ∈ S𝑑 , and hence any element
in 𝐵 ≀H(𝑑) can be spanned by PBW monomials in a different order as below:

(4.18) 𝐻𝑤1
𝑏𝐻𝑔𝐻𝑤2

, 𝑏 ∈ 𝐵
⊗𝑑
, 𝑤1 ∈ S𝜆, 𝑤2 ∈ S𝜇, 𝑔 ∈

𝜆S𝜇
.

Lemma 4.9. For any 𝑤 ∈ S𝜆, we have 𝐻𝑤𝑆𝜆 = 𝛼𝑤𝑆𝜆, 𝑀𝜆𝐻𝑤 = 𝑀𝜆𝛼𝑤.

Proof. Interpreting 𝐒
𝑇

𝑑
as a subalgebra of the convolution algebra 𝐒𝑑 from Section 4.2, we see that the

two equations are completely symmetric. It therefore suffices to check the first one. By Theorem 4.3
we can check it on the polynomial representation 𝐓𝑑 . Let 𝑓 ∈ 𝑅

S𝜆 , and let 𝑤 = 𝑠𝑖1
… 𝑠𝑖𝑙

be a reduced
expression. Then,

𝐻𝑤𝑆𝜆(𝑓 ) = 𝐻𝑤(𝑓 ) = 𝐻𝑠𝑖
1

…𝐻𝑠𝑖
𝑙

(𝑓 ) = 𝐻𝑠𝑖
1

…𝐻𝑠𝑖
𝑙−1

((𝜎𝑖𝑙
(𝛼𝑖𝑙

) + 𝑆𝑖𝑙
)𝜎𝑖𝑙

(𝑓 ) + 𝜌𝑖𝑙
(𝑓 ))

= 𝐻𝑠𝑖
1

…𝐻𝑠𝑖
𝑙−1

(𝛼𝑖𝑙
𝑓 ) = … = ∏

(𝑖,𝑗)∈𝐿𝜆,𝑤(𝑖)>𝑤(𝑗)

𝛼𝑖𝑗𝑓 = 𝛼𝑤𝑆𝜆,

where we have repeatedly used that 𝑓 is S𝜆-symmetric. □

Let 𝜈 = 𝛿
𝑟
(𝜆, 𝑔, 𝜇), 𝛿 = 𝛿

𝑐
(𝜆, 𝑔, 𝜇) (see Theorem 1.1).
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Proposition 4.10. Pick a k-basis B of 𝑀𝜈𝑇𝑆𝜈 ⊆ 𝑇
S𝜈 . Then the set below is a k-basis of 𝐒𝑇

𝜆,𝜇
:

(4.19) {𝑀𝜆𝑏𝐻𝑔𝑆𝜇 | 𝑔 ∈
𝜆S𝜇

, 𝑏 ∈ B}.

Proof. Theorem 4.9 together with (4.18) imply that 𝐒𝑇
𝜆,𝜇

has the following spanning set:

{𝑀𝜆(⨂
𝑑

𝑗=1
𝑏𝑖𝑗

)𝐻𝑤𝑆𝜇 | 𝑖𝑗 ∈ 𝐼 , 𝑤 ∈
𝜆S𝜇

}.

Furthermore, combining Theorems 4.4, 4.5 and 4.9 we obtain

(4.20) 𝑀𝜆𝐾𝜈 = 𝑀𝜆𝑚𝜈 , 𝐾𝜈𝑆𝜆 = 𝑚𝜈𝑆𝜆.

Let 𝑓 ∈ 𝐵
⊗𝑑 . Using (4.20) and the braid relations in 𝐵 ≀H𝑑 , we obtain

𝑀𝜆𝑓 𝐻𝑤𝑆𝜇 = 𝑀𝜆𝐾𝜈𝑚
−1

𝜈
𝑓 𝐻𝑤𝑚

−1

𝛿
𝐾𝛿𝑆𝜇

.

= 𝑀𝜆𝐾𝜈𝑚
−2

𝜈
𝑓 𝐻𝑤𝐾𝛿𝑆𝜇

= 𝑀𝜆𝐾𝜈𝑚
−2

𝜈
𝑓 𝐾𝜈𝐻𝑤𝑆𝜇 = 𝑀𝜆𝑆𝜈 (𝑀𝜈𝑚

−2

𝜈
𝑓 𝑆𝜈 )𝑀𝜈𝐻𝑤𝑆𝜇

= 𝑀𝜆𝐾𝜈𝑚
−1

𝜈
(𝑀𝜈𝑚

−1

𝜈
𝑓 𝑆𝜈 )𝐻𝑤𝑆𝜇 = 𝑀𝜆(𝑀𝜈𝑚

−1

𝜈
𝑓 𝑆𝜈 )𝐻𝑤𝑆𝜇,

where the dot over an equality .

= means that it holds up to lower terms in 𝑤. We deduce that the
set (4.19) spans 𝐒𝑇

𝜆,𝜇
over k.

In order to check linear independence, recall the basis of 𝐒𝑑 from Theorem 3.3:

𝜉𝑤,𝑓 (𝑦, 𝑦
′
) = ∑

𝜎∈S𝑑/S𝜈

𝛿
[𝜎],𝑦

𝛿
[𝜎],𝑦

′𝜎(𝑒𝜆𝑓 ), 𝑤 ∈
𝜆S𝜇

, 𝑓 ∈ 𝐵
S𝜈

R .

A lengthy computation completely analogous to the one in the proof of [MM22, Theorem 4.10] shows
that in terms of this basis, 𝑀𝜆𝑓 𝐻𝑤𝑆𝜇 has the highest term 𝜉

𝑤,𝑓 𝑒𝜇𝛽
−1

𝑤

, where

𝛽𝑤 = ∏
(𝑖,𝑗)∈𝑁𝜆∪𝑤(𝑁𝜇)

(𝑥𝑖 − 𝑥𝑗 )∏
(𝑖,𝑗)∈𝑃𝜆∩𝑤(𝑃𝜇)

𝑃𝑖𝑗 .

Since 𝑒𝜇𝛽−1𝑤 is invertible, we see that the set (4.19) is related to a subset of (3.2) by an upper-triangular (in
𝑤) change of basis. This yields that its elements are linearly independent, and so we may conclude. □

5. Laurel Schur algebras

5.1. Removing invertibility assumption. Without the invertibility of 𝑚𝜆, the subalgebra 𝐒𝑇𝜆,𝜆 is too
small to satisfy double centralizer proprety. For instance, it does not even contain the identity map
𝑀𝜆𝐇

𝑇

𝑑
→ 𝑀𝜆𝐇

𝑇

𝑑
. Indeed, for 𝜆 = (𝑑) we have 𝜆S𝜇

= {1}, S𝜈 = S𝛿 = S𝑑 , and so all elements of 𝐒𝑇
(𝑑),(𝑑)

are of the form
𝑀

(𝑑)
𝑓 𝑆

(𝑑)
= 𝑓 𝑀

(𝑑)
𝑆
(𝑑)

= 𝑓 𝑚
(𝑑)
, 𝑓 ∈ 𝑇

S𝑑
.

This illustrates the failure of double centralizer property as stated in Theorem 4.6. In order to remove
the condition on 𝑚𝜆, we will exploit the extra structure afforded by subdivision of compositions. Let us
begin by proving some properties of PQWP algebra 𝐇𝑇

𝑑
= 𝐵 ≀H(𝑑).

For any 𝜆 ∈ Λ and a refinement 𝜈 ⊨ 𝜆, write𝑤′

◦
∶= 𝑤

(
𝜈S𝜆)

◦
and𝑤′′

◦
∶= 𝑤

(S𝜈

𝜆
)

◦ for short; see Section 1.2
for the notation. Define

(5.1) 𝐾
𝜈

𝜆
∶= ∑

𝑤∈
𝜈S𝜆

𝐻𝑤𝛼𝑤𝑤′

◦

, 𝐾
𝜈

𝜆
∶= ∑

𝑤∈S𝜈

𝜆

𝛼
∗

𝑤
′′

◦
𝑤
𝐻𝑤.

Example 5.1. Let 𝜆 = (3). Then,
𝐾
(3)

= 𝐻1𝐻2𝐻1 + 𝛼1𝐻2𝐻1 + 𝛼2𝐻1𝐻2 + 𝛼1𝛼13𝐻2 + 𝛼2𝛼13𝐻1 + 𝛼1𝛼13𝛼2,

= (𝐻1𝐻2 + 𝛼
∗

𝑠1
𝐻2 + 𝛼

∗

𝑠1𝑠2
)(𝐻1 + 𝛼1) = (𝐻1 + 𝛼1)(𝐻2𝐻1 + 𝐻2𝛼𝑠1

+ 𝛼𝑠2𝑠1
),

Indeed,
𝐾

(2,1)

(3)
= 𝐻2𝐻1 + 𝐻2𝛼𝑠1

+ 𝛼𝑠2𝑠1
, 𝐾

(2,1)

(3)
= 𝐻1𝐻2 + 𝛼

∗

𝑠1
𝐻2 + 𝛼

∗

𝑠1𝑠2
,

and hence 𝑦
(3)
𝐻1 = 𝑦(3)𝛼1.

Lemma 5.2. Suppose that 𝐴 ≡ (𝜆, 𝑔, 𝜇), 𝜈 = 𝛿
𝑟
(𝜆, 𝑔, 𝜇), and 𝛿 = 𝛿

𝑐
(𝜆, 𝑔, 𝜇). Then,

𝐾𝜇 = 𝐾𝛿𝐾
𝛿

𝜇
, 𝐾𝜆 = 𝐾

𝜈

𝜆
𝐾𝜈 .
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In particular, 𝐾𝐴 ∶= 𝐾𝜆𝐻𝑔𝐾
𝛿

𝜇
= 𝐾

𝜈

𝜆
𝐻𝑔𝐾𝜇 is well-defined.

Proof. It suffices to consider a transposition 𝑠𝑖 ∈ S𝜆. Let 𝐼 be the composition such that S𝐼 = ⟨𝑠𝑖⟩.
Denote by S𝐼

𝜆
and 𝐼S𝜆 the set of shortest left and right coset representatives of S𝐼 ⊆ S𝜆 with longest

elements 𝑤𝑙
◦
and 𝑤𝑟

◦
, respectively. Then,

(5.2) 𝐾𝜆 = ∑
𝑤∈S𝐼

𝜆

𝛼
𝑤
𝑙

◦
𝑤
𝐻𝑤(𝐻𝑖 + 𝛼𝑖) = ∑

𝑤∈
𝐼S𝜆

(𝐻𝑖 + 𝛼𝑖)𝐻𝑤𝛼
∗

𝑤𝑤
𝑟

◦

,

and we are done. □

Lemma 5.3. Let 𝐹 ∈ 𝐇
𝑇

𝑑
. Then, 𝐹 ∈ 𝐇

𝑇

𝑑
𝐾𝜆 if and only if 𝐹𝐻𝑖 = 𝐹𝛼𝑖 for all 𝑖 with 𝑠𝑖 ∈ S𝜆.

Proof. Fix an 𝑖 such that 𝑠𝑖 ∈ S𝜆, and let 𝐼 be the composition such that S𝐼 = ⟨𝑠𝑖⟩. Thanks to (C1),
0 = (𝐻𝑖 + 𝛼𝑖)(𝐻𝑖 − 𝛼𝑖), and hence

(5.3) (𝐻𝑖 + 𝛼𝑖)𝐻𝑖 = (𝐻𝑖 + 𝛼𝑖)𝛼𝑖.

The necessity follows from (5.2), since 𝐾𝜆𝐻𝑖 = 𝐾𝜆𝛼𝑖. For sufficiency, use Theorem 2.12 to write
𝐹 = 𝐹1 + 𝐹2𝐻𝑖, where 𝐹1, 𝐹2 are linear combinations of elements 𝑏𝐻𝑤, 𝑏 ∈ 𝐵, 𝑤 ∈ S𝐼 . Then

0 = (𝐹1 + 𝐹2𝐻𝑖)(𝛼𝑖 − 𝐻𝑖) = 𝐹1𝛼𝑖 − 𝐹2𝑅𝑖 + (𝐹2𝛼𝑖 − 𝐹1)𝐻𝑖,

and so 𝐹1 = 𝐹2𝛼𝑖. Thus, 𝐹 = 𝐹2(𝛼𝑖+𝐻𝑖). Doing the same computation for all 𝑖with 𝑠𝑖 ∈ S𝜆, we conclude
that 𝐹 = 𝐹

′
𝐾𝜆, where 𝐹 ′ is a linear combinations of elements 𝑏𝐻𝑤, 𝑏 ∈ 𝐵, 𝑤 ∈ S𝜆. □

Proposition 5.4. Let 𝜆, 𝜇 ∈ Λ. For each 𝑔 ∈
𝜆S𝜇, let 𝜈(𝑔) ∶= 𝛿𝑟(𝜆, 𝑔, 𝜇), 𝛿(𝑔) ∶= 𝛿𝑐(𝜆, 𝑔, 𝜇), and pick

k-bases B𝑔 of 𝑇S
𝜈(𝑔) and B

′

𝑔
of 𝑇S

𝛿(𝑔) , respectively. Then:

(a) The set {𝐾𝐴,𝑏 ∶= 𝐾𝜆𝑏𝐻𝑔𝐾
𝛿(𝑔)

𝜇 | 𝑔 ∈
𝜆S𝜇

, 𝑏 ∈ B𝑔 } is a k-basis of 𝐾𝜆𝐇𝑇𝑑 ∩ 𝐇
𝑇

𝑑
𝐾𝜇, and so is the set

{𝐾
𝜈(𝑔)

𝜆
𝐻𝑔𝑏𝐾𝜇 | 𝑔 ∈

𝜆S𝜇
, 𝑏 ∈ B

′

𝑔
}.

(b) Let 𝛼𝐴 ∶= ∏
(𝑖,𝑗)∈(𝑁𝜆∩𝑔(𝑁𝜇))⧵Inv(𝑔)

𝛼𝑖𝑗 . For any 𝜆, 𝜇 ∈ Λ, we have

(5.4) 𝐾
(𝑑)

= ∑
𝑔∈

𝜆S𝜇
𝛼𝐴𝐾

𝜈(𝑔)

𝜆
𝐻𝑔𝐾𝛿𝐾

𝛿(𝑔)

𝜇
.

Proof. For (a), it follows from Theorem 5.2 that 𝐾𝐴,𝑏 ∈ 𝐾𝜆𝐇
𝑇

𝑑
∩ 𝐇

𝑇

𝑑
𝐾𝜇 =∶ H. Let H′

⊆ H be the
subspace spanned by elements of the form 𝐾𝐴,𝑏 . We want to show that any ℎ ∈ H lies in H′. Since
ℎ ∈ 𝐾𝜆𝐇

𝑇

𝑑
, we can write

ℎ = ∑
𝑤∈

𝜆S
𝐾𝜆𝑏𝑤𝐻𝑤 for some 𝑏𝑤 ∈ 𝐵

⊗𝑑
.

Pick any 𝑥 ∈
𝜆S with 𝑏𝑥 ≠ 0. Suppose that 𝑥 ∉

𝜆S𝜇, then one can pick an 𝑠 = 𝑠𝑖 ∈ S𝜇 with 𝑥𝑠 < 𝑥 and
𝑥𝑠 ∈

𝜆S. Since ℎ ∈ 𝐇
𝑇

𝑑
𝐾𝜇, by Theorem 5.3 we have ℎ𝐻𝑖 = ℎ𝛼𝑖, and hence by comparing the coefficients

of 𝐻𝑥 on both sides of ∑
𝑤
𝐾𝜆𝑏𝑤𝐻𝑤𝛼𝑖 = ∑

𝑤
𝐾𝜆𝑏𝑤𝐻𝑤𝐻𝑖 yields that 𝑏𝑥𝑠 ≠ 0. Therefore, one can repeat

this procedure to find a representative 𝑔 ∈
𝜆S𝜇 with 𝑏𝑔 ≠ 0.

Let 𝑠 = 𝑠𝑖 ∈ S
𝛿(𝑔)

. On one hand we have 𝐾𝜆𝑏𝑔𝐻𝑔𝐻𝑖 = 𝐾𝜆𝑏𝑔𝐻𝑔𝛼𝑖 by Theorem 5.3, and on the other
hand,

𝐾𝜆𝑏𝑔𝐻𝑔𝐻𝑖 = 𝐾𝜆𝑏𝑔𝐻𝑗𝐻𝑔 = 𝐾𝜆(𝐻𝑗𝜎𝑗 (𝑏𝑔) + 𝜌𝑗 (𝑏𝑔))𝐻𝑔

= 𝐾𝜆𝜎𝑗 (𝑏𝑔)𝐻𝑔𝛼𝑖 + 𝐾𝜆𝜌𝑗 (𝑏𝑔)𝐻𝑔 ,

where 𝑗 = 𝑔(𝑖). This implies that 𝛼𝑗𝜎𝑗 (𝑏𝑔) + 𝜌𝑗 (𝑏𝑔) = 𝛼𝑗𝑏𝑔 , and so

0 = (𝛽𝑗 − 𝛼𝑗 (𝑥𝑗 − 𝑥𝑗+1))(𝑏𝑔 − 𝜎𝑗 (𝑏𝑔)) = 𝜎𝑗 (𝛼𝑗 (𝑥𝑗 − 𝑥𝑗+1) + 𝛽𝑗 )(𝑏𝑔 − 𝜎𝑗 (𝑏𝑔)).

Since 𝛼𝑗 (𝑥𝑗 − 𝑥𝑗+1) + 𝛽𝑗 is not a zero divisor by (C3), it follows that 𝑏𝑔 = 𝜎𝑗 (𝑏𝑔). We proved that
𝑏𝑔 ∈ 𝑇

S
𝛿(𝑔) , and so ℎ − 𝐾𝐴,𝑏𝑔 ∈ H′. Proceeding by recurrence, we obtain that ℎ is a sum of terms of the

form 𝐾𝐴,𝑏𝑔
, 𝑏𝑔 ∈ 𝑇S

𝛿(𝑔) , and so ℎ ∈ H′.
The linear independence follows from k-linear independence of the set {𝐾𝐴 | 𝑔 ∈

𝜆S𝜇
}. Recall the

longest elements 𝑤𝜆
◦
= 𝑤◦, 𝑤′′

◦
= 𝑤

𝛿S𝜇

◦ , 𝑤𝐴
◦
= 𝑤

S𝜆𝑔S𝜇

◦ . Then the elements 𝐾𝐴 are linearly independent,
because their highest terms 𝐻

𝑤
𝜆

◦

𝐻𝑔𝐻𝑤′′

◦

= 𝐻
𝑤
𝐴

◦

are.
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Finally, the proof of (b) is a direct computation. Namely, recall the definitions (4.9,5.1) of all the terms.
Since all the coefficients are products of 𝛼𝑖𝑗 ’s over non-inversions, it suffices to check the equality of
coefficients at each 𝐻𝑔 , 𝑔 ∈

𝜆S𝜇. There, we conclude by noticing that

𝐿
(𝑑)

⧵ Inv(𝑔) = (𝐿𝜆 ∪ 𝑔(𝐿𝜇)) ⊔ (𝑁𝜆 ∩ 𝑔(𝑁𝜇)) ⧵ Inv(𝑔),

and that the coefficient of 𝐻𝑔 on the right hand side of (5.4) is precisely∏
(𝑖,𝑗)∈𝐿𝜆∪𝑔(𝐿𝜇)

𝛼𝑖𝑗 . □

5.2. Laurel Schur algebras.

Definition 5.5. Let 𝜆, 𝜈 ∈ Λ with 𝜈 ⊨ 𝜆. Define partial splits and merges by

𝑆𝜈𝜆 ∈ R𝐺(𝑌𝜈 × 𝑌𝜆), 𝑆𝜆(𝑥, 𝑦) ∶= 𝛿𝑝𝜈𝜆(𝑥),𝑦𝑒(𝑦); 𝑀𝜆𝜈 ∈ 𝐴𝜆𝜈 , 𝑀𝜆(𝑦, 𝑥) ∶= 𝛿𝑦,𝑝𝜈𝜆(𝑥)
𝑒(𝑦).

where 𝑝𝜈𝜆 ∶ S𝑑/S𝜈 → S𝑑/S𝜆 is the natural projection. Define a subalgebra

(5.5) 𝐒
BLM

= 𝐒
𝑇

𝑑
∶= ⟨𝑆𝜈𝜆, 𝑀𝜆𝜈 , 𝑡𝜆 | 𝜈 ⊨ 𝜆 ∈ Λ, 𝑡 ∈ 𝑇

S𝜆
= 𝑇S𝑑

(𝑌𝜆)⟩ ⊆ 𝐒𝑑 ,

which we call the laurel Schur algebra.

Lemma 5.6. Let 𝜈 ⊨ 𝜇 ⊨ 𝜆. We have 𝑆𝜈𝜇𝑆𝜇𝜆 = 𝑆𝜈𝜆, 𝑀𝜆𝜇𝑀𝜇𝜈 = 𝑀𝜆𝜈 . In particular, 𝑆𝜆𝜆 = 𝑀𝜆𝜆 is an
idempotent in 𝐒

𝑇

𝑑
.

Proof. The computation is identical for splits and merges, so we only write it for the former:

𝑆𝜈𝜇𝑆𝜇𝜆(𝑥, 𝑦) = ∑
𝑧

𝛿
𝑝𝜈𝜇(𝑥),𝑧

𝛿
𝑝𝜇𝜆(𝑧),𝑦

𝑒(𝑧)𝑒(𝑧)
−1
𝑒(𝑦) = 𝛿

𝑝𝜈𝜆(𝑥),𝑦
𝑒(𝑦) = 𝑆𝜈𝜆. □

The following result is proved completely analogously to Theorem 4.5; we will not use it.

Lemma 5.7. Let 𝜆 ⊨ 𝑑. Then, 𝑆(𝑑)
𝜆
𝑀
𝜆

(𝑑)
= [

𝑑

𝜆](𝛼,𝑆)
. □

It is clear from the definition that 𝐒𝑇
𝑑
⊆ 𝐒

𝑇

𝑑
.

Proposition 5.8. We have 𝐒𝑇
𝑑
= 𝐒

𝑇

𝑑
if 𝑚𝜆 is invertible for all 𝜆.

Proof. We have
𝑀𝜆𝜈 = 𝑀𝜆𝜈𝑀𝜈𝑆𝜈𝑚

−1

𝜈
= 𝑀𝜆𝑆𝜈𝑚

−1

𝜈
, 𝑆𝜈𝜆 = 𝑚

−1

𝜈
𝑀𝜈𝑆𝜆,

by Theorem 5.6, so that it only remains to prove that any 𝑡 ∈ 𝑇S𝑑
(𝑌𝜆) belongs to 𝐒

𝑇

𝑑
. However, 𝑡 =

𝑀𝜆𝑆𝜆𝑚
−1

𝜆
𝑡 = 𝑀𝜆𝑚

−1

𝜆
𝑡
′
𝑆𝜆, where 𝑡′ is the image of 𝑡 in 𝑇 = 𝑇S𝑑

(S𝑑). We are done. □

The goal of this section is to prove the following double centralizer property without an invertibility
assumption.

Theorem 5.9. We have End
𝐒
𝑇

𝑑

(𝐂
𝑇
) = 𝐵 ≀ H(𝑑), End

𝐵≀H(𝑑)
(𝐂

𝑇
) = 𝐒

𝑇

𝑑
. In particular, 𝐵 ≀ H(𝑑) = 𝑆𝜔𝜔 ∗

𝐒
𝑇

𝑑
∗ 𝑆𝜔𝜔, and the Schur functor is given by 𝐒

𝑇

𝑑
−mod→ 𝐵 ≀H(𝑑)−mod, 𝑀 ↦ 𝑆𝜔𝜔 ∗ 𝑀 .

By Theorem 3.8, we have a natural inclusion

𝜓 = 𝜓
𝐿

𝜆
◦ 𝜓

𝑅

𝜇
∶ 𝐒𝜆𝜇 ↪ 𝐇𝑑 , 𝑥 ↦ 𝑆𝜆𝑥𝑀𝜇.

Let us denote by 𝐀𝜆𝜇 the intersection 𝐾𝜆𝐇𝑇𝑑 ∩ 𝐇
𝑇

𝑑
𝐾𝜇. Since 𝐾𝜆 = 𝑆𝜆𝑀𝜆, all such elements belong to the

image of 𝜓; we will therefore implicitly identify 𝐀𝜆𝜇 with its preimage in 𝐒𝜆𝜇 under 𝜓. Note that we
can alternatively write

𝐀𝜆𝜇 = 𝜓
𝐿

𝜆
(𝑀𝜆𝐇

𝑇

𝑑
) ∩ 𝜓

𝑅

𝜇
(𝐇

𝑇

𝑑
𝑆𝜇).

Let 𝜆, 𝜇 ∈ Λ, and 𝑤, 𝜈, 𝛿 as in Theorem 5.4. Consider the element

(5.6) 𝐻𝑤 ∶= 𝐻𝑤𝐾𝜈 .

We have 𝐻𝑤 = (𝐻𝑤𝑆𝜈 )𝑀𝜈 , but also by braid relations 𝐻𝑤 = 𝐾𝛿𝐻𝑤 = 𝑆𝛿(𝑀𝛿𝐻𝑤); therefore 𝐻𝑤 ∈ 𝐀𝛿𝜈 .

Lemma 5.10. For any 𝜆, 𝜇 ∈ Λ the vector space 𝐀𝜆𝜇 ⊆ 𝐒𝑑 is spanned by elements of the form𝑀𝜆𝜈𝑏𝐻𝑤𝑆𝛿𝜇,
where 𝑤 ∈

𝜆S𝜇, 𝑏 ∈ 𝑇
S𝜈 , and 𝜈, 𝛿 are as in Section 4.4.
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Proof. Applying 𝜓, this follows from Theorem 5.4(a). □

Lemma 5.11. Let 𝜆 = (𝑑1, 𝑑2), 𝜇 = (𝑑2, 𝑑1). For any 0 ≤ 𝑖 ≤ min(𝑑1, 𝑑2) denote 𝜈𝑖 = (𝑖, 𝑑1 − 𝑖, 𝑑2 − 𝑖, 𝑖),
𝛿𝑖 = (𝑖, 𝑑2 − 𝑖, 𝑑1 − 𝑖, 𝑖), and 𝑤𝑖 ∈ S𝑑 the shuffle sending 𝜈 ′

𝑖
to 𝜈𝑖. Denote 𝑐𝑖 = ∏

1≤𝑖
′
,𝑗
′
≤𝑖
𝛼𝑖′,𝑑−𝑖+𝑗 ′ . Then we

have 𝑆
𝜆,(𝑑)

𝑀
(𝑑),𝜇

= ∑
min(𝑑1,𝑑2)

𝑖=0
𝑐𝑖𝑀𝜆,𝜈𝑖

𝐻𝑤𝑖
𝑆𝛿𝑖,𝜇

.

Proof. It suffices to check this equiality after applying 𝜓. Note the following simple equialities:

𝑆𝜈𝑆𝜈𝜆𝑀𝜆 = 𝐾𝜆 = 𝑆𝜈𝑀𝜈𝐾
(𝜈)

𝜆
⇒ 𝑆𝜈𝜆𝑀𝜆 = 𝑀𝜈𝐾

(𝜈)

𝜆
,

𝑆𝜆𝑀𝜆𝜈𝑀𝜈 = 𝐾𝜆 = 𝐾
(𝜈)

𝜆
𝑆𝜈𝑀𝜈 ⇒ 𝑆𝜆𝑀𝜆𝜈 = 𝐾

(𝜈)

𝜆
𝑆𝜈 .

Using these and the associativity equations of Theorem 5.6, we get in the image of 𝜓

𝐾
(𝑑)

= ∑

min(𝑑1,𝑑2)

𝑖=0

𝑐𝑖𝑆𝜆𝑀𝜆,𝜈𝑖
𝐻𝑤𝑖

𝑆𝛿𝑖,𝜇
𝑀𝜇

= ∑

min(𝑑1,𝑑2)

𝑖=0

𝑐𝑖𝐾
(𝜈𝑖)

𝜆
𝑆𝜈𝑖
𝐻𝑤𝑖

𝑀𝛿𝑖
𝐾

(𝛿𝑖)

𝜇
= ∑

min(𝑑1,𝑑2)

𝑖=0

𝑐𝑖𝐾
(𝜈𝑖)

𝜆
𝐻𝑤𝑖

𝐾𝛿𝐾
(𝛿𝑖)

𝜇
.

One easily checks that 𝑐𝑖 = 𝛼𝐴 for 𝐴 = (𝜆, 𝑤𝑖, 𝜇), so we can conclude by Theorem 5.4(b). □

5.3. Proof of double centralizer property.

Proof of Theorem 5.9. The actions of 𝐵 ≀ H(𝑑) = 𝐇
𝑇

𝑑
and 𝐒

𝑇

𝑑
on 𝐂 manifestly commute. Moreover, the

action of 𝐒𝑇
𝑑
descends to 𝐂

𝑇 . Indeed,

𝑡𝜆(𝑀𝜆𝐹) = 𝑀𝜆(�̃�𝜆𝐹); 𝑀𝜆𝜈 (𝑀𝜈𝐹) = 𝑀𝜆𝐹 , 𝑆𝜈𝜆(𝑀𝜆𝐹) = 𝑀𝜈 (𝐾
(𝜈)

𝜆
𝐹).

It follows that 𝐒𝑇
𝑑
⊂ End

𝐇
𝑇

𝑑

(𝐂
𝑇
). The first equality also immediately follows:

𝐇
𝑇

𝑑
= End

𝐒
𝑇

𝑑

(𝐂
𝑇
) ⊇ End

𝐒
𝑇

𝑑

(𝐂
𝑇
) ⊇ 𝐇

𝑇

𝑑
⇒ End

𝐒
𝑇

𝑑

(𝐂
𝑇
) = 𝐇

𝑇

𝑑
.

It remains to show the inclusion End
𝐇
𝑇

𝑑

(𝐂
𝑇
) ⊆ 𝐒

𝑇

𝑑
. As in the proof of Theorem 3.11, a map 𝑃 of 𝐇𝑇

𝑑
-

modules 𝐂𝑇
𝜆

→ 𝐂
𝑇

𝜇
is completely determined by the element 𝑃(𝑀𝜆). Moreover, it has to satisfy the

conditions of Theorem 5.3 by Theorem 4.9:

𝑃(𝑀𝜆)𝐻𝑖 = 𝑃(𝑀𝜆𝐻𝑖) = 𝑃(𝑀𝜆(𝜎𝑖(𝛼𝑖) + 𝑆𝑖)) = 𝑃(𝑀𝜆)(𝜎𝑖(𝛼𝑖) + 𝑆𝑖).

Therefore End
𝐇
𝑇

𝑑

(𝐂
𝑇
) ⊆ 𝐀𝜆𝜇. By Theorem 5.10, every element of 𝐀𝜆𝜇 is written as a product of partial

splits, partial merges, elements of 𝑇S𝜈 and 𝐻𝑤. Note that 𝐻𝑤 belongs to 𝐒
𝑇

𝑑
. Indeed, let us write 𝑤

as a reduced expression 𝑠𝑖1 … 𝑠𝑖𝑙 , where 𝑠𝑖𝑗 are elementary transpositions in S|𝜈 |. By definition, 𝐻𝑤 =

𝑆𝜈 (𝑀𝜈𝐻𝑤) = (𝐻𝑤𝑆𝛿)𝑀𝛿 as an element of 𝐀𝜈𝛿 . Given another 𝐻𝑤′ = 𝑆𝛿(𝑀𝛿𝐻𝑤′) = (𝐻𝑤′𝑆𝛿′)𝑀𝛿
′ , we can

compute the product 𝐻𝑤𝐻𝑤′ inside 𝐒𝑑 , but as an element of 𝐀𝜈𝛿 , as follows:

𝐻𝑤𝐻𝑤′ = (𝐻𝑤𝑆𝛿)(𝑀𝛿𝐻𝑤′) = 𝐻𝑤𝐾𝛿𝐻𝑤′ = 𝐻𝑤𝐻𝑤′𝐾𝛿′ = 𝐻𝑤𝑤′𝐾𝛿′ = 𝐻𝑤𝑤′ .

Reasoning by induction, we obtain 𝐻𝑤 = 𝐻𝑠𝑖
1

…𝐻𝑠𝑖
𝑙

. Theorem 5.11 implies that each 𝐻𝑠𝑖
𝑗

is expressed
inductively in terms of partial splits and merges:

𝐻𝑠𝑖
𝑗

= 𝐻𝑤0
= 𝑆

𝜆,(𝑑)
𝑀

(𝑑),𝜇
−∑

min(𝑑1,𝑑2)

𝑖=1

𝑐𝑖𝑀𝜆,𝜈𝑖
𝐻𝑤𝑖

𝑆𝛿𝑖,𝜇
.

Therefore 𝐀𝜆𝜇 ⊆ 𝐒
𝑇

𝑑
, and we may conclude. □

Corollary 5.12. Let 𝜆, 𝜇 ∈ Λ. For each 𝑔 ∈
𝜆S𝜇, let 𝜈(𝑔) ∶= 𝛿𝑟(𝜆, 𝑔, 𝜇), and pick a k-basis B𝑔 of 𝑇S

𝜈(𝑔) .
Then, the following set forms a k-basis of 𝐒𝑇

𝜆,𝜇
:

(5.7) {𝑀𝜆𝜈𝑏𝐻𝑔𝑆𝛿𝜇 | 𝑔 ∈
𝜆S𝜇

, 𝑏 ∈ B𝑔 }.

Proof. Thanks to Theorem 5.10, it suffices to check linear independence. This is done in the same way
as in Theorem 4.10. □

In order to better explain the difference between coil Schur 𝐒𝑇
𝑑
and laurel Schur 𝐒𝑇

𝑑
, let us represent

their bases diagrammatically. We read algebra elements from right to left, and diagrams from bottom to
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top. We represent the idempotents 1𝜆, see (3.5), by drawing strands of thicknesses 𝜆1,… , 𝜆𝑘 , elements
𝑡 ∈ 𝑇 by coupons on strands, splits and merges by splits and merges, and the elements 𝐻𝑤 by crossings
of thick strands. First of all, note that our definition (5.6) translates to “splits/merges go past crossings”.
For example:

𝑆
(3,3)

𝐻𝑤𝑀(3,3)
= = = 𝐻𝑤𝐾(3,3)

.

Below is a typical presentation of a basis element (4.19) in coil Schur, and its translation into a basis
element (5.7) in laurel Schur, using Theorem 5.6 and the equation above. In this example 𝐴 ∶= (

1 2

1 0 )

with 𝜆 = (3, 1), 𝜇 = (2, 2), 𝛿 = (1, 1, 2), 𝜈 = (1, 2, 1), 𝑔 = 𝑠3𝑠2, 𝑏 = 𝑏1 ⊗ 𝑏2 ⊗ 𝑏3 ⊗ 𝑏4 ∈ 𝐵
⊗4, and we

denote 𝑏2 ∗ 𝑏3 ∶= 𝑀𝜆𝜈 (𝑏2 ⊗ 𝑏3)𝑆𝜈𝜆 for simplicity:

𝑏1 𝑏2 𝑏3 𝑏4

=

𝑏1
𝑏2 𝑏3

𝑏4

=

𝑏1
𝑏2 ∗ 𝑏3

𝑏4

In particular, only coupons valued in𝑀𝜈𝑇𝑆𝜈 can appear on thick strands for the elements in coil Schur,
while in laurel Schur coupons belong to a slightly larger space 𝑇S𝜈 .

Remark 5.13. We do not pursue a description of 𝐒𝑇
𝑑
in generators and relations here, but we expect

a result similar to [SW24a, SW24b]. However, we end up proving analogues of most of the defining
relations in loc. cit.; here is a schematic comparison (omitting indices and coefficients):

(2.3) (2.4) (2.5) (2.6) (2.7) (2.8)

=
= ∑ = [

𝑑

𝜆]
= ∑ = = [𝑑]!

Theorem 5.6 Theorem 5.11 Theorem 5.7 ??? Theorem 3.9 Theorem 4.5
The relation (2.6) is significantly more complicated in our context, because of the presence of algebra 𝐹
in the coefficients and great freedom of choice of 𝛽. However, note that computation analogous to (4.7)
gives a formula for the action of partial merges on the polynomial representation:

𝑀𝜆𝜈 (𝑓 ) = 𝜕𝜆𝜈
(
𝑓 ∏

(𝑖,𝑗)∈𝐿𝜆⧵𝐿𝜈

𝑃𝑖𝑗
)
,

where 𝜕𝜆𝜈 is the Demazure operator corresponding to the longest element 𝑤◦ ∈ S𝜈

𝜆
. We expect to be

able to compute an analogue of (2.6) using these formulas, and thus to obtain a presentation of 𝐒𝑇
𝑑
and

𝐒
𝑇

𝑑
by generators and relations.

5.4. Relaxing conditions (C1)–(C3). When the elements 𝛼, 𝛽 are not central, Theorem 4.2 immedi-
ately fails:

𝐻𝑏 − 𝜎(𝑏)𝐻 = 𝜉
1,
𝛽𝑏−𝜎(𝑏)𝛽

𝑥
1
−𝑥

2

+ 𝜉
𝜎,
𝑃𝜎(𝑏)−𝜎(𝑏)𝑃

𝑥
1
−𝑥

2

= 𝜌(𝑏) + 𝜉
𝜎,
𝑃𝜎(𝑏)−𝜎(𝑏)𝑃

𝑥
1
−𝑥

2

≠ 𝜌(𝑏).

This suggests that our approach via convolution algebras is not viable in general. Instead, one should
take a version of Theorem 4.4, with all products taken in correct order, as the definition of quasi-
idempotents 𝐾𝜆. We expect that with enough bookkeeping of product orderings one can show that
𝐾

2

𝜆
= 𝑚𝜆𝐾𝜆, which would imply the analogue of Theorem 4.6. However, we wanted to highlight the

very general Theorem 3.11 as a result of independent interest.

Conjecture 5.14. Assume that 𝐵 ≀H𝑑 is a PQWP satisfying (C1) and (C3). Let us write 𝐇𝑑 = 𝐵 ≀H𝑑 . For
any composition 𝜆 ⊨ 𝑑, define 𝐾𝜆 by the formula (4.9), where the product is taken in lexicographic order.
Consider the right 𝐇𝑑-module 𝐂𝑇 ∶= ⨁

𝜆
𝐾𝜆𝐇𝑑 . Furthermore, let 𝐒𝑇

𝑑
∶= ⨁

𝜆,𝜇
𝐒
𝑇

𝜆,𝜇
, 𝐒𝑇 ∶= 𝐾𝜆𝐇𝑑 ∩ 𝐇𝑑𝐾𝜇,
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equipped with the product

𝑥𝐾𝜇 ∗ 𝐾𝜇𝑦 ∶= 𝑥𝐾𝜇𝑦, 𝑥𝐾𝜇 ∈ 𝐒
𝑇

𝜆,𝜇
, 𝐾𝜇𝑦 ∈ 𝐒

𝑇

𝜇,𝜈
.

Then the statement of Theorem 5.9 holds.

On the other hand, the existence of solutions of (C1) seems to be crucial to get the theory going.
Indeed, suppose we want to extend the left action of 𝐵⊗𝑑 on itself to the whole 𝐵 ≀ H(𝑑), that is to
construct a polynomial representation. By wreath relation, this action is completely determined by
𝛾𝑖 ∶= 𝐻𝑖(1). However, using the quadratic relation

0 = (𝐻
2

𝑖
− 𝑆𝐻𝑖 − 𝑅)(1) = 𝐻𝑖(𝛾𝑖) − 𝑆𝛾𝑖 − 𝑅 = (𝜎𝑖(𝛾𝑖) − 𝑆𝑖)𝛾𝑖 − 𝑅𝑖,

and so (−𝛾𝑖) satisfies the condition (C1).
Similarly, when the condition (C3) fails the polynomial representation ceases to be faithful. Indeed,

let us fix 𝛾 = −𝛼, and assume that 𝜁𝑃 = 0 for some 𝜁 ∈ 𝐵 ⊗ 𝐵. Then

(𝜁 (𝑥2 − 𝑥1)𝐻 + 𝜁𝛽)(𝑓 ) = 𝜁 (𝑥1 − 𝑥2)𝜎(𝑓 )𝛼 − 𝜁𝛽(𝑓 − 𝜎(𝑓 )) + 𝜁𝛽𝑓 = 𝜁𝑃𝜎(𝑓 ) = 0

for all 𝑓 ∈ 𝐵 ⊗ 𝐵.

6. Schurification of qantum wreath products à la Dipper–James

In this section, we translate our Schurifications into a different flavor, which is closer to [DJ89].
We will define the wreath Schur algebra 𝐒DJ = 𝐒𝑛,𝑑 ∶= End𝐇𝑑 (𝑉

⊗𝑑

𝑛
) algebraically, and use the double

centralizer property on the convolution side to prove the double centralizer property on the algebraic
side when 𝑛 = 𝑑. Finally, we prove the case 𝑛 > 𝑑 by explicitly constructing idempotents. The
aforementioned algebras are related via the following diagram:

𝐒
𝑇

𝑑
⨁

𝜆∈Λ
𝑀𝜆𝐇

𝑇

𝑑
𝐇
𝑇

𝑑

𝐒𝑑,𝑑 𝑉
⊗𝑑

𝑑
≃ ⨁

𝜆∈Λ𝑑,𝑑
𝑀
𝜆

𝐵 ≀H(𝑑)

𝐒𝑛,𝑑 𝑉
⊗𝑑

𝑛
𝐵 ≀H(𝑑)

↷ ↶

↷ ↶

↷ ↶

6.1. A tensormodule over affineHecke algebras. Let us recall the action of the affineHecke algebra
of type A on a tensor space appearing in [KMS95]. Renormalizing Theorem 2.10 by 𝜈 = 𝑞

1/2, the affine
Hecke algebra is a PQWP with 𝐵 = k[𝑥

±1
], 𝑆 = (𝜈 − 𝜈

−1
)(1 ⊗ 1), and 𝑅 = 1 ⊗ 1. Consider the set

𝐼𝑛 = {1,… , 𝑛} together with its natural total order, and let 𝑉𝑛 = ⨁
𝑖∈𝐼𝑛
𝑣𝑖𝐵 be a free right 𝐵-module

with basis {𝑣𝑖}𝑖∈𝐼𝑛 . We further consider the right 𝐵⊗𝑑-module 𝑉⊗𝑑
𝑛

. It has an obvious k-basis, given by
elements

𝑣𝑖𝑥𝑘 , 𝑖 = (𝑖1,… , 𝑖𝑑) ∈ 𝐼
𝑑

𝑛
, 𝑗 = (𝑗1,… , 𝑗𝑑) ∈ Z𝑑

,

where 𝑣𝑖 = 𝑣𝑖1
⊗ ⋯ ⊗ 𝑣𝑖𝑑

, 𝑥𝑗 = 𝑥
𝑗1
⊗ ⋯ ⊗ 𝑥

𝑗𝑑 . We have a natural right S𝑑-action on both 𝐼𝑑
𝑛
and 𝐵⊗𝑑

and 𝑉⊗𝑑
𝑛

by permuting factors; we will denote it by − ⋅ 𝜎. The action of each 𝐻𝑘 ∈ 𝐵 ≀ H(𝑑) on 𝑉⊗𝑑
𝑛

in [KMS95, (32)] can be rephrased as follows:

(𝑣𝑖𝑥𝑗 )𝐻𝑘 ∶=

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝑣𝑖⋅𝑠𝑘
(𝑥𝑗 ⋅ 𝑠𝑘) − (𝜈 − 𝜈

−1
)𝑣𝑖𝜕𝑘(𝑥𝑗 )𝑥𝑘+1 if 𝑖𝑘 < 𝑖𝑘+1;

𝜈𝑣𝑖(𝑥𝑗 ⋅ 𝑠𝑘) − (𝜈 − 𝜈
−1
)𝑣𝑖𝜕𝑘(𝑥𝑗 )𝑥𝑘+1 if 𝑖𝑘 = 𝑖𝑘+1;

𝑣𝑖⋅𝑠𝑘
(𝑥𝑗 ⋅ 𝑠𝑘) − (𝜈 − 𝜈

−1
)𝑣𝑖𝜕𝑘(𝑥𝑗𝑥𝑘+1) if 𝑖𝑘 > 𝑖𝑘+1.

This suggests a uniform construction for other PQWPs.

6.2. A tensor module over polynomial quantum wreath products. Let 𝐵 ≀H(𝑑) be a PQWP sat-
isfying (C1)–(C2), where 𝐵 is the ring of (Laurent) polynomials over a unitary algebra 𝐹 . As before,
consider the free right 𝐵-module 𝑉𝑛 = ⨁

𝑖∈𝐼𝑛
𝑣𝑖𝐵, and the right 𝐵⊗𝑑-module 𝑉⊗𝑑

𝑛
. Given a k-basis B of
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𝐵
⊗𝑑 , we have an obvious k-basis of 𝑉⊗𝑑

𝑛
:

{𝑣𝑖𝑏 ∶ 𝑖 ∈ 𝐼
𝑑

𝑛
, 𝑏 ∈ B}.

Let 𝛼 ∶= 𝜎(𝛼) + 𝑆 as in Section 4.3; note that −𝛼 satisfies the equation (C1). We define the right action
of each Hecke-like generator 𝐻𝑘 ∈ 𝐵 ≀H(𝑑) on 𝑉⊗𝑑

𝑛
by

(6.1) (𝑣𝑖𝑏)𝐻𝑘 =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝑣𝑖⋅𝑠𝑘
(𝑏 ⋅ 𝑠𝑘) + 𝑣𝑖𝜕

𝛽

𝑘
(𝑏) if 𝑖𝑘 < 𝑖𝑘+1;

𝑣𝑖𝛼𝑘(𝑏 ⋅ 𝑠𝑘) + 𝑣𝑖𝜕
𝛽

𝑘
(𝑏) if 𝑖𝑘 = 𝑖𝑘+1;

𝑣𝑖⋅𝑠𝑘
𝑅𝑘(𝑏 ⋅ 𝑠𝑘) + 𝑣𝑖(𝜕

𝛽

𝑘
(𝑏) + 𝑆𝑘(𝑏 ⋅ 𝑠𝑘)) if 𝑖𝑘 > 𝑖𝑘+1.

Note that 𝜕(𝑏)𝛽 = 𝜕
𝛽
(𝑏), 𝜕(𝑏𝛽) = 𝜕𝛽(𝑏)+𝑆𝜎(𝑏) by (C2) and Leibniz rule; therefore for affine Hecke

algebras, (6.1) specializes to the formula from [KMS95].

Proposition 6.1. Let 𝐵≀H(𝑑) be a PQWP satisfying (C1)–(C2). The formulas (6.1) define a 𝐵≀H(𝑑)-action
on 𝑉⊗𝑑

𝑛
.

Proof. For quadratic and wreath relations, the verification reduces to the case 𝑑 = 𝑛 = 2. If 𝑖1 = 𝑖2, the
action of 𝐻 preserves 𝑣𝑖. Dropping it from the notation, we have

𝑃(𝐻𝑏) = 𝛼𝜎(𝑃)𝑏 + 𝜌(𝑃)𝑏
Leibniz
= 𝛼𝜎(𝑃)𝑏 + 𝜌(𝜎(𝑏)𝑃) + 𝑃𝜌(𝑏)

= 𝑃(𝜎(𝑏)𝐻 + 𝜌(𝑏));

𝑃𝐻
2
= (𝛼𝜎(𝑃) + 𝜌(𝑃))𝐻 = 𝛼𝜎(𝛼) + 𝛼(𝜎𝜌 + 𝜌𝜎)(𝑃) + 𝜌

2
(𝑃)

(P4)
= (𝛼𝜎(𝛼) − 𝛼𝑆)𝑃 + 𝛼𝑆𝜎(𝑃) + 𝑆𝜌(𝑃) = 𝑃𝑅 + 𝑃(𝑆𝐻 ).

If 𝑖1 < 𝑖2, then 𝑣𝑖 = 𝑣12, and so we have

𝑣12𝑃(𝐻𝑏) = 𝑣21𝜎(𝑃)𝑏 + 𝑣12𝜌(𝑃)(𝑏) = 𝑣21𝜎(𝑃)𝑏 + 𝑣12𝜌(𝜎(𝑏)𝑃) + 𝑣12𝑃𝜌(𝑏)

= 𝑣12(𝜎(𝑏)𝐻 + 𝜌(𝑏));

𝑣12𝑃𝐻
2
= (𝑣21𝜎(𝑃) + 𝑣12𝜌(𝑃))𝐻 = 𝑣12𝑅𝑃 + 𝑣21𝜌𝜎(𝑃) + 𝑣21𝑆𝑃 + 𝑣21𝜎𝜌(𝑃) + 𝑣12𝜌

2
(𝑏)

= 𝑣12𝑅𝑃 + 𝑣12𝑆𝜌(𝑃) + 𝑣21𝑆𝜎(𝑏) = 𝑣12𝑃𝑅 + 𝑣12𝑃(𝑆𝐻 ).

The case 𝑖2 > 𝑖1 is checked in an analogous fashion.
It remains to check the braid relations. It is clear from definition that 𝑣𝑖𝑃𝐻𝑖𝐻𝑗 = 𝑣𝑖𝑃𝐻𝑗𝐻𝑖 when

|𝑖 − 𝑗 | > 1. Thus it remains to check the cubic braid relation, for which we can assume that 𝑑 = 𝑛 = 3.
Using wreath relations, we can write

(𝑣𝑖𝑃)𝐻1𝐻2𝐻1 = 𝑣𝑖𝐻1𝐻2𝐻1(𝑠1𝑠2𝑠1)(𝑃) +∑
𝑤<𝑠1𝑠2𝑠1

𝑣𝑖𝐻𝑤𝑃𝑤

for some 𝑃𝑤 ∈ 𝐵
⊗3 expressed in terms of 𝑃 , 𝜎𝑖 and 𝜌𝑖. One can similarly rewrite (𝑣𝑖𝑃)𝐻2𝐻1𝐻2 as a sum

of 𝑣𝑖𝐻2𝐻1𝐻2(𝑠2𝑠1𝑠2)(𝑃) and lower terms. One checks directly that, thanks to relations (P5)–(P7), the
lower terms coincide on the nose. Thus it suffices to check the braid relation on vectors 𝑣𝑖. In this case,
(6.1) simplifies to

(6.2) 𝑣𝑖𝐻𝑘 =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝑣𝑖⋅𝑠𝑘
if 𝑖𝑘 < 𝑖𝑘+1;

𝑣𝑖⋅𝑠𝑘
𝛼𝑘 if 𝑖𝑘 = 𝑖𝑘+1;

𝑣𝑖⋅𝑠𝑘
𝑅𝑘 + 𝑣𝑖𝑆𝑘 if 𝑖𝑘 > 𝑖𝑘+1.

By [Eli22, Lemma 5.1], a minimal set of the rank three ambiguities corresponds to the following:
𝑣
(1,2,3)

(𝐻1𝐻1)𝐻2𝐻1 = 𝑣(1,2,3)𝐻1(𝐻2𝐻1𝐻2),

𝑣
(1,2,3)

𝐻1𝐻2(𝐻1𝐻2𝐻1) = 𝑣(1,2,3)𝐻1(𝐻
2

2
)𝐻1𝐻2.

That is, checking 𝑣𝑖𝐻1𝐻2𝐻1 = 𝑣𝑖𝐻2𝐻1𝐻2 can be reduced to checking it for 𝑖 ∈ {(1, 3, 2), (2, 3, 1)} and for
the case 1 ≤ 𝑖𝑘 ≤ 2.

By a direct computation, the equality 𝑣
(1,3,2)

𝐻1𝐻2𝐻1 = 𝑣
(1,3,2)

𝐻2𝐻1𝐻2 holds if and only if the coef-
ficients of 𝑣𝑖, 𝑖 ∈ (1, 2, 3) ⋅ S3 on both sides coincide. This is equivalent to conditions (P8)–(P9). By a
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similar computation, the equality 𝑣
(2,3,1)

𝐻1𝐻2𝐻1 = 𝑣
(2,3,1)

𝐻2𝐻1𝐻2 holds if and only the following hold,
if 𝑌 = 𝑆 or 𝑅:

(6.3) 𝑆1𝜎1𝜎2(𝑌1) + 𝜌1𝜎2(𝑌1) = 𝜎1(𝑌2)𝑆1 + 𝜌1(𝑌2), 𝑅1𝜎2(𝑌1) = 𝜎1(𝑌2)𝑅1.

The first equality of (6.3) follows from (P4) and (P8). Namely, we have 𝜌1𝜎2(𝑌1) = 0 and
𝑆1𝜎1𝜎2(𝑌1) = 𝑙𝑆1

𝜎1(𝜎2(𝑌1)) = (𝑟𝑆1
𝜎
2

1
+ 𝜌1𝜎1 + 𝜎1𝜌1)(𝜎2(𝑌1))

= 𝜎2(𝑌1)𝑆1 + 𝜌1(𝜎1𝜎2(𝑌1)) + 𝜎1(𝜌1𝜎2(𝑌1)) = 𝜎2(𝑌1)𝑆1 + 𝜌1(𝑌2).

The second equality in (6.3) follows from centrality of 𝑅. Finally, if 1 ≤ 𝑖𝑘 ≤ 2, then any such case is a
degenerate case of the corresponding rank three calculation since at least two of the tensor factors in
𝑣𝑖 agree. If all 𝑖𝑘’s are the same, then the braid relation holds if and only if 𝛼1𝛼13𝛼2 = 𝛼2𝛼13𝛼1, which
holds thanks to (C2). For themost complicated degenerate case, it requires to verify that 𝑣

(2,2,1)
𝐻1𝐻2𝐻1 =

𝑣
(2,2,1)

𝐻2𝐻1𝐻2, Equivalently, it suffices to check that

(6.4) 𝑅1𝑅13𝛼2 = 𝛼2𝑅13𝑅1, 𝑆1𝑅13𝛼2 = 𝑅2𝛼13𝑆1, 𝛼1𝑆13𝛼2 = 𝑆13𝑅1 + 𝑆2𝛼13𝑆1,

which follows from combining the fact that 𝑆 is weak Frobenius and (P2). This concludes the verification
of braid relations. □

Definition 6.2. Wecall the centralizing algebra 𝐒DJ = 𝐒𝑛,𝑑 ∶= End
𝐵≀H(𝑑)

(𝑉
⊗𝑑

𝑛
) thewreath Schur algebra.

6.3. An analog of permutation modules. Suppose that 𝑀 is a 𝐵⊗𝑑-module, 𝑁 is a k-vector space.
The conditions on𝑄 such that𝑁⊗𝑀 has a module structure over an arbitrary quantumwreath product
𝐵 ≀H(𝑑) have been developed [LNX]. Here, we provide a special case of the theory therein.

Let 𝐵 ≀H(𝑑) be a PQWP such that (C1)–(C2) holds. Recall from (5.3) that (𝐻𝑖 + 𝛼𝑖) is an eigenvector
with respect to the rightmultiplication by𝐻𝑖, and the corresponding eigenvalue is 𝛼𝑖 = 𝑆𝑖+𝜎𝑖(𝛼𝑖) ∈ 𝐵⊗𝑑 .
We want to construct an analog 𝑁 𝜆 of the permutation module 𝑥𝜆H𝑞(S𝑑) using eigenvectors of this
form.

For 𝐴 ≡ (𝜆, 𝑔, 𝜇), we further write 𝛿 ∶= 𝛿
𝑐
(𝐴), 𝐺(𝐴) ∶= 𝛿S𝜇, and recall the elements

𝐾𝜆 = ∑
𝑤∈S𝜆

𝛼𝑤𝐻𝑤𝑤𝜆
◦

, 𝐾
𝛿

𝜇
= ∑

𝑤∈𝐺(𝐴)

𝐻𝑤𝛼𝑤𝑤𝛿
◦
𝑤
𝜇

◦
, 𝐾𝐴 = 𝐾𝜆𝐻𝑔𝐾

𝛿

𝜇

defined by (4.16), (5.1) and Theorem 5.2 respectively. In order to make the notation closer to Dipper-
James contruction, we will write

𝑦𝜆 ∶= 𝐾𝜆, 𝑦
𝛿

𝜇
∶= 𝐾

𝛿

𝜇
, 𝑦𝐴 ∶= 𝐾𝐴

until the end of this section. For any 𝜆 ∈ Λ𝑛,𝑑 , we define a subspace

𝑁
𝜆
∶= Span

k
{𝑦𝜆𝐻𝑔 ∈ 𝐵 ≀H(𝑑) | 𝑔 ∈

𝜆S},

on which the right multiplication of 𝐵 ≀H(𝑑) induces a structure map

(6.5) 𝜏
𝜆
∶ 𝑁

𝜆
⊗ kS𝑑 → 𝑁

𝜆
⊗ 𝐹

⊗𝑑
, 𝑦𝜆𝐻𝜂 ⊗ 𝑤 ↦ ∑

𝑔∈
𝜆S
(𝑦𝜆𝐻𝑔) ⊗ 𝑏

𝑔

𝜂,𝑤
,

where 𝑏𝑔𝜂,𝑤 are the coefficients appearing in 𝑦𝜆𝐻𝜂𝐻𝑤 = ∑
𝑔∈

𝜆S 𝑦𝜆𝐻𝑔𝑏
𝑔

𝜂,𝑤.

Example 6.3. Let 𝑑 = 2. Then,S
(1,1)

= 1 =
(2)S and (1,1)S = S2 = S

(2)
. Hence, 𝑦

(1,1)
= 1, 𝑦

(2)
= 𝐻1−𝛼.

Note that right multiplication by 𝐻1 does not preserve 𝑁 (1,1)
= Span

k
{𝑦

(1,1)
, 𝑦

(1,1)
𝐻1}. More precisely,

the structure map (6.5) for 𝜆 = (1, 1) is given explicitly by

𝑦
(1,1)

⊗ 𝑠1 ↦ 𝑦
(1,1)

𝐻1 ⊗ 1, 𝑦
(1,1)

𝐻1 ⊗ 𝑠1 ↦ 𝑦
(1,1)

𝐻1 ⊗ 𝑆1 + 𝑦(1,1) ⊗ 𝑅1.

Similarly, the structure map for 𝑁 (2)
= k𝑦

(2)
is given by 𝑣 ⊗ 𝑠1 ↦ 𝑣 ⊗ 𝛼.

For any 𝑖 ∈ 𝐼𝑑
𝑛
, denote by 𝑖+ ∈ 𝐼

𝑑

𝑛
the non-decreasing rearrangement of 𝑖, and let 𝑤(𝑖) ∈ 𝜆S be such

that 𝑖+ ⋅ 𝑤(𝑖) = 𝑖. Then, 𝑖+ is of the form (1
𝜆1
,… , 𝑛

𝜆𝑛
) for some 𝜆 = 𝜆(𝑖) ∈ Λ𝑛,𝑑 . Write 𝑣+

𝜆
∶= 𝑣𝑖+ .

Note that 𝑉𝑛 decomposes into a direct sum 𝑈1 ⊕ ⋯ ⊕ 𝑈𝑛, where 𝑈𝑖 ∶= 𝑣𝑖𝐵. For 𝜆 ∈ Λ𝑛,𝑑 , let 𝑈 𝜆 ∶=

𝑣
+

𝜆
𝐵
⊗𝑑

= 𝑈
⊗𝜆1

1
⊗⋯⊗𝑈

⊗𝜆𝑛

𝑛
be a free right 𝐵⊗𝑑-module by factorwisemultiplication. Define a vector space

𝑀
𝜆
∶= 𝑁

𝜆
⊗ 𝑈

𝜆. It inherits a right 𝐵⊗𝑑-action from 𝑈
𝜆. Furthermore, using the structure map (6.5),
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define a right action of 𝐻𝑘 , 1 ≤ 𝑘 ≤ 𝑑 − 1 on 𝑀𝜆 by

(𝑦𝜆𝐻𝜂 ⊗ 𝑃)𝐻𝑘 = 𝑦𝜆𝐻𝜂 ⊗ 𝜕
𝛽

𝑘
(𝑃) +∑

𝑔∈
𝜆S
(𝑦𝜆𝐻𝑔) ⊗ 𝑏

𝑔

𝜂,𝑠𝑘
(𝑃 ⋅ 𝑠𝑘).

We have a vector space isomorphism

(6.6) ⨁
𝜆∈Λ𝑛,𝑑

𝑀
𝜆
≃ 𝑉

⊗𝑑

𝑛
; 𝑦𝜆𝐻𝑔 ⊗ 𝑣

+

𝜆
𝑃 ↦ 𝑣𝑖+ ⋅𝑔𝑃, 𝑦𝜆𝐻𝑔(𝑖) ⊗ 𝑣𝑖+𝑃 ←[ 𝑣𝑖𝑃.

Proposition 6.4. Let 𝐵 ≀H(𝑑) be a PQWP satisfying (C1)–(C2).
(a) The map (6.6) is compatible with the right action of 𝐻𝑘 , 1 ≤ 𝑘 ≤ 𝑑 − 1. In particular, 𝑀𝜆 is an

𝐵 ≀H(𝑑)-submodule of 𝑉⊗𝑑
𝑛

;
(b) Let 𝜆′ be the strict composition obtained from 𝜆 ∈ Λ𝑛,𝑑 by removing zeroes. Then𝑀𝜆

≡ 𝐂
𝑇

𝜆
′ , where

𝐂
𝑇

𝜆
′ = 𝑀𝜆

′𝐇
𝑇

𝑑
is the direct factor of the bimodule in Theorem 4.6, via

𝑦𝜆𝐻𝑔 ⊗ 𝑣
+

𝜆
𝑃 ↦ 𝑀𝜆

′𝐻𝑔𝑃, 𝑃 ∈ 𝐵
⊗𝑑
, 𝑔 ∈

𝜆S.

Proof. It is easy to see that the action (6.6) is obtained by rewriting (6.1)–(6.2) under the isomor-
phism (6.6), hence the first claim. The second claim follows by direct comparison, recalling that the
map 𝜓𝐿

𝜆
from Theorem 3.8 induces an isomorphism of right modules 𝑀𝜆

′𝐇
𝑇

𝑑
→ 𝐾𝜆′𝐇

𝑇

𝑑
. □

6.4. Schur duality and a basis of wreath Schur. Let us describe a basis of wreath Schur algebra
𝐒𝑛,𝑑 in terms of homomorphisms between permutation modules 𝑀𝜆. For 𝐴 ≡ (𝜆, 𝑔, 𝜇) and 𝑃 ∈ 𝐵

⊗𝑑 , let
𝜃𝐴,𝑃 ∈ Homk(𝑀

𝜇
, 𝑀

𝜆
) be the following map:

(6.7) 𝜃𝐴,𝑃 ∶ 𝑀
𝜇
→ 𝑀

𝜆
, (𝑦𝜇 ⊗ 𝑣

+

𝜇
) ⋅ ℎ ↦

(
∑

𝑤∈S𝜇 ,𝑤
′
∈
𝜆S
𝑦𝜆𝐻𝑤′ ⊗ 𝑣

+

𝜆
𝑏
𝑤

′

𝑔,𝑤
𝑃𝑤

)
⋅ ℎ,

where 𝑃𝑤 are defined by 𝑃𝑦𝛿
𝜇
= ∑

𝑤∈S𝜇

𝐻𝑤𝑃𝑤. The statement below follows immediately from Theo-
rem 5.4 in view of identifications in Theorem 6.4.

Proposition 6.5. For each 𝜈 ⊨ 𝑑, fix a k-basis B𝜈 of (𝐵⊗𝑑)S𝜈 . Then, 𝐒𝑛,𝑑 has the following basis:

{𝜃𝐴,𝑃 | 𝐴 ∈ Θ𝑛,𝑑 , 𝑃 ∈ B
𝛿
𝑐
(𝐴)

}. □

Note that 𝑃 = 1, we recover the Dipper–James elements 𝜃𝐴,𝑃 = 𝑦𝐴. In general, the situation is more
complicated.

Example 6.6. Suppose that 𝐴 ∶= (
1 1

2 0 )
with 𝜆 = (2, 2), 𝜇 = (3, 1), 𝛿 ∶= 𝛿

𝑐
(𝐴) = (1, 2, 1), and 𝑔 = 𝑠2𝑠3,

and 𝐺(𝐴) = 𝛿
𝑐

S𝜇. Then,

S𝜆 = ⟨𝑠1, 𝑠3⟩, 𝐺(𝐴) = {𝑔 ∈ ⟨𝑠1, 𝑠2⟩ | 𝑠2𝑔 > 𝑔} = {𝑒, 𝑠1, 𝑠1𝑠2},

where the longest element in 𝐺(𝐴) is 𝑠1𝑠2 = 𝑤𝛿◦ 𝑤𝜇◦ . Pick 𝑤 ∶= 𝜅
−1
(𝑠1, 𝑠1) = 𝑠1𝑔𝑠1. Then, 𝑤𝐴◦ 𝑤 = 𝑠1𝑠2,

𝐻𝑔 = 𝐻2𝐻3, and 𝑦𝛿𝜇 = (𝐻1𝐻2 + 𝐻1𝛼2 + 𝛼𝑠1𝑠2
). Let 𝑓 ∈ 𝐹 , 𝑃 ∶= 𝑓1𝑥2𝑥3 = 𝑓 ⊗ (𝑥1𝑥2) ⊗ 1; then

𝜃𝐴,𝑃 (𝑦𝜇 ⊗ 𝑣
+

𝜇
) = 𝑦𝜆𝐻2𝐻3𝐻1𝐻2 ⊗ 𝑣

+

𝜆
𝑥1𝑥2𝑓3 + 𝑦𝜆𝐻2𝐻3𝐻1 ⊗ 𝑣

+

𝜆
𝑥1𝑓2(𝑥3𝛼2 − 𝛽23)

+ 𝑦𝜆𝐻2𝐻3 ⊗ 𝑣
+

𝜆
𝑓1(𝛽13𝛽2 + 𝑥2𝑥3𝛼𝑠1𝑠2

− 𝛽1𝛼2𝑥3 − 𝑥2𝛼2𝛽13 − 𝜌2(𝛽1)𝑥3).

Theorem 6.7. Assume that 𝑛 ≥ 𝑑. Then 𝐵 ≀H(𝑑) ≅ End𝐒𝑛,𝑑 (𝑉
⊗𝑑

𝑛
), and so Schur duality holds for the pair

(𝐒𝑛,𝑑 , 𝐵 ≀H(𝑑)).

Proof. We have an obvious inclusion 𝐵 ≀H(𝑑) ⊆ End𝐒𝑛,𝑑 (𝑉
⊗𝑑

𝑛
). For the opposite inclusion, letΛ′

𝑛,𝑑
⊂ Λ𝑛,𝑑

be the subset of non-decreasing compositions, and consider the following 𝐵 ≀ H(𝑑)-submodule 𝑉 ′
⊂

𝑉
⊗𝑑

𝑛
:

𝑉
′
= ⨁

𝜆∈Λ
′

𝑛,𝑑

𝑀
𝜆
.

Note that Λ′

𝑛,𝑑
is in bijection with the set of strong compositions of 𝑑. Applying Theorem 6.4(b), we get

an isomorphism of 𝐵 ≀H(𝑑)-modules 𝑉 ′
≃ 𝐂

𝑇 . In particular, by Theorem 5.9 we have End𝐒𝑛,𝑑 (𝑉⊗𝑑𝑛 ) ⊆

End
𝐒
𝑇

𝑑

(𝑉
′
) = 𝐵 ≀H(𝑑), and so we may conclude. □

Corollary 6.8. Suppose that 𝐵 ≀ H(𝑑) is a PQWP satisfying (C1)–(C3). The wreath and laurel Schur
algebras are Morita-equivalent, provided that 𝑛 ≥ 𝑑.
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Proof. By Theorem 6.4(b), both the tensor space 𝑉⊗𝑑
𝑛

and the polynomial representation 𝐂
𝑇 have the

same direct summands as right 𝐵 ≀ H(𝑑)-modules. Let 𝜖 ∈ 𝐒𝑛,𝑑 be the idempotent corresponding to
the split inclusion 𝑉 ′

≃ 𝐂
𝑇
⊂ 𝑉

⊗𝑑

𝑛
. Then 𝐒

𝑇

𝑑
≃ 𝜖𝐒𝑛,𝑑𝜖, and Morita theory implies that 𝐒𝑛,𝑑−mod →

𝐒
𝑇

𝑑
−mod, 𝑀 ↦ 𝑀𝜖 is an equivalence of categories. □

7. Examples and applications

7.1. Affine Hecke algebras. The affine Hecke algebra of type A is a PQWP with the following pa-
rameters:

𝐵 = k[𝑥
±1
], 𝑆 = (𝑞 − 1)(1 ⊗ 1), 𝑅 = 𝑞(1 ⊗ 1), 𝛼 = 1 ⊗ 1, 𝛽 = (1 − 𝑞)𝑥2.

It is well-known [GRV94] that the corresponding Schur algebra 𝑆𝑞(𝑛, 𝑑) can be realized as a convolution
algebra for affine partial flags (such a realization corresponds to the Coxeter presentation). 𝑆𝑞(𝑛, 𝑑) has
a Morita equivalent version given by the 𝐾-theoretic convolution algebra

𝑆
𝐾

𝑞
(𝑑) ∶= ∑

𝜆,𝜇⊨𝑑
𝐾

GL𝑑×C∗

(𝑇
∗
(GL𝑑/𝑃𝜆) ×N𝑑 𝑇

∗
(GL𝑑/𝑃𝜇)),

defined as in [CG97, Ch. 5], where 𝑃𝜆 ⊆ GL𝑑 are standard parabolic subgroups, and N𝑑 ⊆ gl
𝑑
the

nilcone. The Schur duality is known for both 𝑆𝑞(𝑛, 𝑑) ≡ 𝐒𝑛,𝑑 and 𝑆𝐾𝑞 (𝑑) ≡ 𝐒
𝑇

𝑑
. Our work only produces

a new twisted convolution algebra construction for 𝑆𝑞(𝑛, 𝑑), which can be related to the 𝐾-theoretic
convolution via equivariant localization, as in [MM22]. The basis 𝜃𝐴,𝑃 is different from Dipper–James
basis, and rather recovers the basis in [MS19, Prop. 4.17].

7.2. Degenerate affine Hecke algebras. The degenerate affine Hecke algebra H
deg
𝑑

of type A is a
PQWP with the following parameters:

𝐵 = k[𝑥], 𝑆 = 0, 𝑅 = 1 ⊗ 1 = 𝛼 = 𝛽.

Anotion of degenerate affine Schur algebras has not been explicitly studied, to our knowledge (however,
see [BK08, SW11] for cyclotomic versions in characteristic 0).

The closest but different notion appeared in the (higher) Schur duality of Arakawa–Suzuki [AS98],
which states that for any gl

𝑛
-module𝑀 , there is aHdeg

𝑑
-action on𝑀 ⊗ (k

𝑛
)
⊗𝑑 such that the 𝑥𝑖-actions

involve permuting tensor factors in (k
𝑛
)
⊗𝑑 . A functor that connects the representation theory of Yan-

gians Y(gl
𝑛
) and ofHdeg

𝑑
is given. However, it was not about double centralizer property, nor the Schur

algebras were studied. In contrast, ourHdeg
𝑑

-action is defined on the tensor space (kZ
)
⊗𝑑

≃ (k
𝑛
[𝑥])

⊗𝑑 ,
such that the tensor factors do not permute under the actions of 𝑥𝑖’s.

Corollary 7.1. There is a double centralizer property between H
deg
𝑑

and the corresponding wreath Schur
algebra 𝐒𝑛,𝑑 on the tensor space 𝑉⊗𝑑

𝑛
for 𝑛 ≥ 𝑑 over a field k of any characteristic.

We expect that there exists an explicit quotient map Y(gl
𝑛
) ↠ 𝐒𝑛,𝑑 for any 𝑑. In contrast, while the

laurel Schur algebra 𝐒𝑇
𝑑
also enjoys a double centralizer property (on a submodule of 𝑉⊗𝑑

𝑛
), we suspect

that its connection with the Yangians is less transparent.

7.3. Pro-𝑝 Iwahori Hecke algebras. Denote by H(𝑞𝑠 , 𝑐𝑠) the generic pro-𝑝 Iwahori Hecke algebras
with respect a 𝑝-adic group 𝐺 and choice of parameters 𝑞𝑠 and 𝑐𝑠 . Consider the case 𝐺 = GL𝑑(Q𝑝),
𝑞𝑠 = 1, and 𝑐𝑠𝑖 = (𝑞 − 𝑞

−1
)𝑒𝑖 for some idempotent 𝑒 ∈ (

k[𝑡]

(𝑡
𝑝−1

−1)
)
⊗2 for all 𝑖. The quadratic relation does

split since

(7.1) 𝐻
2
− (𝑞 − 𝑞

−1
)𝑒𝐻 − 1 = (𝐻 + (𝑞

−1
+ 1)𝑒 − 1)(𝐻 − (𝑞 + 1)𝑒 + 1).

Assume that 𝑒 is weak Frobenius. Then,H(𝑞𝑠 , 𝑐𝑠) is a PQWP with the following parameters:

𝐵 =

k[𝑡]

(𝑡
𝑝−1

− 1)

[𝑥
±1
], 𝑆 = (𝑞 − 𝑞

−1
)𝑒, 𝑅 = (1 ⊗ 1), 𝛼 = (1 + 𝑞

−1
)𝑒 − 1 ⊗ 1, 𝛽 = (𝑞

−1
− 𝑞)𝑒𝑥2.
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When 𝑒 = 1

𝑝−1
∑
𝑝−1

𝑗=1
𝑡
𝑗
⊗ 𝑡

−𝑗 , such an algebra is isomorphic to the affine Yokonuma algebra [CS16], a
quantization of the group algebra of (𝐶𝑚 × Z) ≀S𝑑 .

Corollary 7.2. Consider the pro-𝑝 Iwahori Hecke algebras H = H(𝑒) for GL𝑑(Q𝑝) at the specialization
𝑞𝑠 = 1, and 𝑐𝑠𝑖 = (𝑞 − 𝑞

−1
)𝑒𝑖 for some weak Frobenius idempotent 𝑒. Then, there is a double centralizer

property betweenH(𝑒) and the corresponding wreath Schur algebra 𝐒𝑛,𝑑 on the tensor space 𝑉⊗𝑑𝑛 , if 𝑛 ≥ 𝑑.

We expect our results to be useful to understand a Schur duality involving the pro-𝑝 Iwahori Hecke
algebra and its Gelfand–Graev representation from [GGK24], essentially computing the endomorphism
ring of the Gelfand–Graev representation over H (working at the Iwahori level instead of the pro-𝑝
level, one obtains the Schur duality present in Section 7.1).

In particular, Theorem 7.2 holds for the affine Yokonuma algebras in which 𝑒 = 1

𝑝−1
∑
𝑗
𝑡
𝑗
⊗𝑡

−𝑗 . Since
these algebras arise from the constructing knot invariants in the solid torus, and hence we are curious
whether there can be any applications to knot theory.

We also remark that the Schur algebras for finite Yokonuma algebras with respect to a different
action has been studied in an unpublished manuscript [Cui14] due to Cui.

7.4. Affine zigzag algebras and curve Schur algebras. Let 𝑄 be a Dynkin quiver. The affine zigzag
algebras Z𝑑(𝑄) were studied in [KM19] in relation to (imaginary) semicuspidal categories for quiver
Hecke algebras for the associated affine quiver 𝑄(1). These algebras are particular cases of Savage
algebras, and as such satisfy conditions (C1) and (C3), as explained in Theorem 4.1. Since the zigzag
algebra of 𝑄 is commutative only in type 𝐴1 (namely, 𝑍𝐴1

≃ 𝐻
∗
(P1

) = k[𝑐]/𝑐
2), the condition (C2)

only holds in this case.
For the affine zigzag algebra Z𝑑(𝐴1), the coil and laurel Schur algebras appeared in [MM22]. There,

the authors defined a notion of curve Hecke algebra H𝐶

𝑑
and curve Schur algebra S𝐶

𝑑
for any smooth

projective curve 𝐶. The latter admitted two distinct Z-forms, in the notations of loc. cit., 𝐒𝑇
𝑑
≡
̃SP1

𝑑
⊆

𝐒
𝑇

𝑑
≡ SP1

𝑑
, which gave rise to very different reductions modulo 𝑝. For instance, the reduction of coil

Schur algebra ̃SP1

𝑑
controls the semicuspidal category of type 𝐴(1)

1
in small characteristic. Our Theo-

rem 5.9 establishes Schur duality between S𝐶
𝑑
andH𝐶

𝑑
, but suggests that one should not expect a double

centralizer description of ̃SP1

𝑑
in small characteristic.

Admitting Theorem 5.14, one could expect that coil Schur algebra 𝐒
𝑇

𝑑
describes the semicuspidal

category for other (simply-laced) affine types. It turns out that this is not quite the right answer. One
way to see this is by looking at the idempotents. Suppose that the algebra 𝐹 has a complete set of
idempotents parameterized by 𝐼 . By construction both 𝐒

𝑇

𝑑
and 𝐒𝑇

𝑑
have at least as many idempotents as

the size of the set
{(𝜆, 𝐢) ∶ 𝜆 ⊨ 𝑑, 𝐢 ∈ 𝐼𝑑/S𝜆}.

On the other hand, Gelfand-Graev idempotents in the semicuspidal algebra are parameterized by a
smaller set

{(𝜆, 𝜑) ∶ 𝜆 ⊨ 𝑑, 𝜑 ∈ 𝐼
|𝜆|
}.

Diagrammatically, this means only allowing thick strands of “pure color”. So, while the answer should
still be contained in 𝐒

𝑇

𝑑
, it is smaller than the coil algebra 𝐒𝑇

𝑑
.

Conjecture 7.3. Assume that Theorem 5.14 holds. Let 𝑄 be a Dynkin quiver, 𝑄(1) the corresponding
affine quiver, and 𝑅(𝑑𝛿) the quiver Hecke algebra, where 𝑛𝛿 is an imaginary root of ĝ𝑄 . Let 𝐹 be the
zigzag algebra of 𝑄 over Z, and Δ ∈ 𝐹 ⊗ 𝐹 the Frobenius element. Consider the laurel Schur algebra 𝐒

𝑇

𝑑

with parameters 𝛼 = 1, 𝛽 = Δ. For any 𝜆 ⊨ 𝑑, denote

𝑇𝜆 ∶= ⨂

𝑘

⨁

𝑖∈𝐼

(𝑒𝑖𝐹 [𝑥]𝑒𝑖)
⊗𝜆𝑘
,

where {𝑒𝑖}𝑖∈𝐼 is the set of idempotents in 𝐹 . Consider the subalgebra 𝐒
′

𝑑
⊂ 𝐒

𝑇

𝑑
with basis of the form (5.7),

where the set B𝑔 runs over a Z-basis of Z[𝑥1,… , 𝑥𝑑]
S𝜈

(𝑀𝜈𝑇𝜈𝑆𝜈 ). Then in any characteristic 𝑝, the semi-
cuspidal algebra 𝐶(𝑑𝛿) is Morita equivalent to the reduction of 𝐒′

𝑑
modulo 𝑝.
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While one of our reasons to leave Theorem 5.14 unproven is an ongoing infestation with seventh
deadly sin, a more pragmatic reason is the hope that we can still realize these smaller subalgebras as
twisted convolution algebras, exploiting the fact that idempotent truncations of zigzag algebras are
commutative. This was recently achieved in [MM] in the smallest non-trivial case, where the authors
relate the semicuspidal category for quiver Schur algebra of type 𝐴(1)

1
to “pure color” idempotent trun-

cation of the coil Schur algebra associated to the extended zigzag algebra of type 𝐴1.
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