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Abstract. Let H2 be the Lie algebra of polynomial Hamiltonian vector fields on the

symplectic plane. Let X be the moduli space of stable Higgs bundles of fixed relatively

prime rank and degree, or more generally the moduli space of stable parabolic Higgs

bundles of arbitrary rank and degree for a generic stability condition. Let H∗(X) be the

cohomology with rational coefficients. Using the operations of cup-product by tautological

classes and Hecke correspondences we construct an action of H2 on H∗(X)[x, y], where x

and y are formal variables. We show that the perverse filtration on H∗(X) coincides with

the filtration canonically associated to sl2 ⊂ H2 and deduce the P = W conjecture of de

Cataldo-Hausel-Migliorini.

1. Introduction

1.1. The P = W conjecture. Let r > 0 and d be relatively prime integers and let C

be a smooth projective algebraic curve over C. Following Hitchin [Hit87] and Simpson

[Sim90, Sim92], Higgs bundles are pairs (E , θ) such that E is an algebraic vector bundle

on C and θ : E → E ⊗ Ω, where Ω denotes the line bundle of differential forms on C. A

Higgs bundle is stable if for all proper subbundles E ′ ⊂ E of rank r′ and degree d′ satisfying

θ(E ′) ⊂ E ′ ⊗ Ω we have the inequality

d′

r′
<
d

r
.

Let Mr,d be the moduli space of stable Higgs bundles on C of rank r and degree d, which

is a (smooth) quasi-projective symplectic variety of dimension 2(g− 1)r2 +2. By the non-

abelian Hodge correspondence ([Hit87, Sim91, Sim92]), the space Mr,d is diffeomorphic to

the moduli space MBetti
r,d parameterizing certain twisted local systems on C. That latter

space is an affine algebraic variety, but the complex structure is different from the one of

Mr,d. By [Del71], the cohomology with complex coefficients H∗(MBetti
r,d ) is equipped with

a natural weight filtration. It is natural to ask for a description of the weight filtration on

H∗(Mr,d) = H∗(MBetti
r,d ) in terms of the algebraic geometry of the space Mr,d.
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A conjectural answer to this question was suggested in [dCHM12]. The moduli spaceMr,d

is endowed with the Hitchin map χ : Mr,d → C(g−1)r2+1 which reads off the coefficients

of the characteristic polynomial of θ. It turns out that χ is proper and applying the

decomposition theorem [BBD82] one constructs the perverse filtration, starting in degree

N = (g − 1)r2 + 1. The P = W conjecture then claims that the weight filtration and the

perverse filtration are essentially equal:

Conjecture (P = W , [dCHM12]). For i = 0, 1, . . . , (g − 1)r2 + 2, we have

Pi−NH
∗(Mr,d) = W2iH

∗(MBetti
r,d ).

In this paper, we prove this conjecture as well as its analog in which one replaces stable

Higgs bundles by stable parabolic Higgs bundles. Our approach goes through a variant of

the P = W conjecture knows as the P = C conjecture. As proven by [Mar02], the coho-

mology ring H∗(Mr,d) is generated by the tautological classes, which are the components

of the Künneth decomposition of the Chern classes of the tautological sheaf on Mr,d × C.

By [She16] the weight filtration may be entirely described in terms of tautological classes.

Namely, assign a weight to each tautological class so that the classes coming from the i-th

Chern class have weight 2i. Then Wm is spanned by products of tautological classes of

total weight ≤ m.

Our main result shows that the same kind of description holds for P :

Theorem (P = C conjecture). The subspace PmH
∗(Mr,d) is the span of products of tau-

tological classes of total weight ≤ 2(m+N), where N = (g − 1)r2 + 1.

This immediately implies

Corollary. The P = W conjecture holds for the spaces Mr,d.

As mentioned above, we work in a more general context of moduli spaces of stable

parabolic Higgs bundles of arbitrary rank and degree for a generic stability condition, and

prove the corresponding result in that context. In fact, it is essential for our proof to

consider both parabolic and non-parabolic setups at once.

The P = W conjecture in the case of rank 2 was proved already in [dCHM12]. The

case when C has genus 2 was established in [dCMS22]. While the present paper was in

the final stages of preparation, we learned of a proof of P = W by Maulik and Shen using

a different approach, see [MS22]. Since then, a third proof has appeared, see [MSY]. We

refer the interested reader to [Hos24] for a survey and comparison of these proofs.
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1.2. The algebra H2. Let M be the moduli space Mr,d, or more generally the moduli

space of parabolic Higgs bundles. Our proof of P = W proceeds by constructing an action

of an interesting algebra on H∗(M).

The Lie algebra H2 of polynomial Hamiltonian vector fields on the plane with respect to

the standard symplectic form has the following description. A basis is given by the fields

Vm,n with Hamiltonian xmyn; explicitly, we have

Vm,n = nyn−1xm
∂

∂x
−mxm−1yn

∂

∂y
.

The Lie bracket is given as follows:

[Vm,n, Vm′,n′ ] = (m′n−mn′)Vm+m′−1,n+n′−1.

It is expected by physicists (Lev Rozansky, private communication) thatH2 acts on many

geometric invariants. For instance, in [GHM21], in order to prove a Lefschetz property,

certain operators acting on the so-called y-ified Khovanov-Rozansky homologies of links

were constructed and it was speculated that these operations satisfy the relations of H2.

This and some other similarities with the situation of homologies of links gave us a hint

that H2 may act on H∗(M). It is easy to check however, that H2 does not have any non-

zero finite-dimensional representation, so there is no hope that it acts directly on H∗(M).

Nevertheless, H2 does naturally act on the infinite-dimensional space H∗(M)[x, y], where

x and y are formal variables satisfying some natural commutation relations with Vm,n.

1.3. The main construction. The construction of the action of H2 begins with an ex-

plicit presentation of the cohomological Hall algebra (CoHA) of zero-dimensional sheaves

on a smooth surface. This algebra describes the relations satisfied by all (punctual) Hecke

correspondences on a given surface S. As shown in [MMSV23], it is isomorphic to a

deformed W1+∞-algebra, modeled on the cohomology ring H∗(S). The presentation dras-

tically simplifies when the surface satisfies some cohomological vanishing properties, such

as for open symplectic surfaces (which is the case of interest for Higgs bundles).

Now let S = T ∗C for C a smooth complex projective curve. The CoHA of zero-

dimensional sheaves on S naturally acts on the (co)homology of the stack Cohr =
⊔
d Cohr,d

of all Higgs bundles on C (of fixed rank and varying degree), but as Hecke correspon-

dences do not preserve (semi)stablity, there is no natural action on the cohomology of

Mr =
⊔
dMr,d or its parabolic version, much less so on each individual H∗(Mr,d). To cir-

cumvent this problem, we consider the elliptic locus M ell
r ⊂ Mr, where the spectral curve

is reduced and irreducible (which automatically implies stability). This property being
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preserved under Hecke correspondences, the Hecke operators are well defined on H∗(M ell
r ),

see Section 4. Using [MMSV23], the Hecke operators and the commutation relations be-

tween them and the tautological classes are computed explicitly. In particular, the action

on the subring H∗
taut(M

ell
r ) ⊂ H∗(M ell

r ) generated by the tautological classes is described

in terms of the so-called Fock space representation (see Theorems 5.2, 5.6 formulated in a

more general case of sheaves on a surface, and Corollary 7.2 and Theorem 7.8 for Higgs

bundles).

Once we know the commutation relations between the Hecke operators, we use a specific

degree 1 Hecke operator to canonically identify the cohomology groups ofM ell
r,d for all values

of the degree d, and then follow a certain degeneration procedure, analogous to the passage

from the trigonometric Cherednik algebra to its rational version, see Section 6. We define

in this way a family of operators on H∗(Xell
r,d) for any fixed d, satisfying relations which

look almost like those of H2, see Corollary 7.3 and Proposition 7.4.

This leads us to the construction of an sl2-triple (e, h, f) acting on H∗(M ell
r,d), see Proposi-

tion 7.9. The operator e is the multiplication by a tautological class, while f is a complicated

Hecke operator. After applying a suitable gauge transformation (Proposition 7.10) we may

even assume that e is the multiplication by the class of a divisor ample relatively to the

Hitchin morphism. It easily follows that the perverse filtration matches the natural fil-

tration coming from the action of this sl2 (Proposition 8.3). We deduce that the P = C

conjecture holds for the pure part of the cohomology of the elliptic locus (Theorem 8.5).

In the rest of Section 8 we show how the results for the elliptic locus of the parabolic

moduli space imply the desired P = C statement for the entire space of stable Higgs

bundles. This goes through several reduction steps: from elliptic parabolic Higgs bundles

to stable parabolic Higgs bundles, to nilpotent stable parabolic Higgs bundles, and finally

to stable Higgs bundles. We refer to Section 8.1 for a summary.

1.4. Some remarks. (1) The fact that the perverse filtration is controlled by Hecke op-

erators is reminiscent of the construction in [OY16]. There, the authors consider an action

of trigonometric Cherednik algebra on the cohomology of affine Springer fibers by Hecke

correspondences, and degenerate it to an action of rational Cherednik algebra by taking

the associated graded with respect to the perverse filtration; the latter is inherited from

a realization of certain affine Springer fibers as Hitchin fibers. In our situation, the alge-

bra generated by the operators Dm,n can be viewed as a global version of the (spherical)

trigonometric Cherednik algebra, and the passage to the operators D̃m,n in Section 6 can

be understood as the rational degeneration.
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(2) The most conceptual framework for the study of the algebras occuring in this paper

is that of CoHAs of curves and surfaces, as considered in e.g. [Min20, SS20, KV19, DHS].

We expect that using the powerful structural results of Davison and Kinjo on the Lie

algebra version of CoHAs (work in progress) together with the computation of the zero-

dimensional CoHA in [MMSV23] one should be able to streamline our proof of P = W

and, for instance, avoid the use of the elliptic locus or parabolic Higgs bundles.

(3) Our action of sl2 on H∗(Mr,d) gives rise to an action of the Weyl group S2, which

exchanges (by conjugation) the operators of multiplication by tautological classes and the

Hecke operators, as expected by mirror symmetry.

(4) The Higgs bundles appearing here are sometimes called GLr-Higgs bundles. We

expect that our results, including the algebra action and P = W translate to the PGLr

case with only slight modifications.

(5) The original motivation for the P = W conjecture came from the observation that

the E-polynomials of character varieties and the conjectural mixed Hodge polynomials have

an interesting symmetry, which would be geometrically explained by the so-called curious

Poincaré duality or curious hard Lefschetz theorem, see [HRV08], [HLRV11]. For the per-

verse filtration, the corresponding symmetry is explained by the relative hard Lefschetz

theorem, see [dCM05], [dCHM12], and Theorem 3.6 here. The curious hard Lefschetz

theorem was established in [Mel19] by working on the Betti side. The present proof of

P = W now implies another, independent proof of the curious hard Lefschetz theorem (in

the usual and the parabolic setups).

2. Topological prerequisites

All the varieties we consider in this paper are defined over C. By a space we mean an

algebraic variety or a (classical) Artin stack X of finite type. All our stacks are in fact of

the form X = X × BGm where X is an algebraic variety. We work with the cohomology

H∗(X) = H∗(X,Q), which is a ring, and the Borel-Moore homology H∗(X) = H∗(X,Q),

which is a module over H∗(X). We refer to [CG97, Ch. 2] for standard properties of H∗

and H∗. If X is of pure dimension n, we denote by [X] ∈ H2n(X) the fundamental class;

it gives rise to a map

H i(X) → H2n−i(X), α → [X] ∩ α.

When X is smooth, this is an isomorphism, and we will sometimes use it implicitly to

identify H∗(X) and H2n−∗(X). If X is not smooth, consider a resolution of singularities
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π : X̃ → X. By the projection formula, the above map factors as

(2.1) H i(X)
π∗
−→ H i(X̃) ∼= H2n−i(X̃)

π∗−→ H2n−i(X).

If X, Y are smooth spaces of dimensions n,m respectively, and f : X → Y is proper, we

have the Gysin map in cohomology

H i(X) ∼= H2n−i(X)
f∗−→ H2n−i(Y ) ∼= H2m−2n+i(Y ).

We denote the Gysin map by f∗ as well.

2.1. Correspondences. Let Z be a space of pure dimension n, together with maps π1 :

Z → X and π2 : Z → Y such that π2 is proper. We call this collection of data a

correspondence, and consider the induced map

H i(X) → H2n−i(Y ), α → π2∗([Z] ∩ π∗
1α).

If Y is smooth of dimension m this gives a map H i(X) → H2m−2n+i(Y ). The factoriza-

tion (2.1) implies that Z can be replaced by a resolution of singularities without changing

the induced map. If X is proper, we can decompose the induced map as follows:

H i(X)
π∗
X−→ H i(X × Y )

(π1×π2)∗[Z]∩−−−−−−−−→ H2n−i(X × Y )
πY ∗−−→ H2n−i(Y ).

Notice that since π2 is proper, π1×π2 is also proper. If moreover X and Y are smooth, the

class (π1 × π2)∗[Z] corresponds to a class in H∗(X × Y ) = H∗(X) ⊗H∗(Y ), which using

the Poincaré duality on X and a choice of basis in H∗(X), H∗(Y ) can be identified with a

matrix so that the induced map of the correspondence is the action of this matrix.

2.2. Purity. Let X be a smooth space. Consider any smooth compactification X ⊃ X.

The pure part H∗
pure(X) ⊂ H∗(X) is the image of the restriction map H∗(X) → H∗(X).

This definition is independent of the choice of a smooth compactification. Indeed, for any

two smooth compactifications X, X
′
, let X

′′
be a resolution of singularities of the closure

of X in X ×X
′
. Then we have a diagram

X X

X X
′′

X
′

ι π2ι

π1 π2

with cartesian square, and therefore by base change we have ι∗ = (π2ι)
∗π2∗. Thus

Im(π1ι)
∗ ⊂ Im ι∗ = Im(π2ι)

∗π2∗ ⊂ Im(π2ι)
∗,
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from which the result follows. The following claim is standard; we include the proof for

completeness.

Proposition 2.1. Let Z → X×Y be a correspondence between smooth spaces. The induced

map in cohomology preserves the pure part. In particular, if X is proper then the image of

the induced map is contained in H∗
pure(Y ).

Proof. We may assume that Z is smooth. Hence it is enough to prove that the pure part is

preserved under pullbacks and proper pushforwards by maps between smooth spaces. Let

f : Z → X be such a map. Pick a smooth compactification of X, a smooth compactifi-

cation of Z, and resolve singularities of the closure of Z in the corresponding product of

compactifications to obtain a commutative diagram

Z X

Z X

ιZ

f

ιX

f

where ιZ , ιX are smooth compactifications. Taking pullbacks implies that f ∗H∗
pure(X) ⊂

H∗
pure(Z). Next, assume f : Z → Y is proper, and consider a commutative square as above.

The canonical map j : Z → Z ×Y Y is both proper and an open embedding, hence it is an

isomorphism, and the base change implies f∗H
∗
pure(Z) ⊂ H∗

pure(Y ). □

Note in particular that the Chern classes of any vector bundle (or a bounded complex

of vector bundles) on a smooth space X are pure.

2.3. Diagonal class. Let X be smooth of pure dimension n and let X ⊃ X be a smooth

compactification. The identity map X → X factors as a composition of proper maps

X → X × X → X. By (2.1), we can rewrite the restriction map H∗(X) → H∗
pure(X) as

the composition

H∗(X)
π∗
1−→ H∗(X ×X)

[∆]∩−−→ H∗(X ×X)
π2∗−−→ H∗

pure(X),

where ∆ ⊂ X ×X is the diagonal. Thus the classes in H∗
pure(X) of any Künneth decom-

position of [∆] span H∗
pure(X).

2.4. Virtual fundamental class. Suppose X is smooth of dimension n and let E be a

complex vector bundle on X of rank r. We have the Thom class

τE ∈ H2r(TotE ,TotE \X),
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where TotE is the total space of E . If s : X → TotE is a section, by pullback we obtain a

class in H2r(X,X \Z) ∼= H2n−2r(Z), where Z = X∩s(X) is the zero set of s, which we call

the virtual fundamental class and denote [Z]vir. The image of [Z]vir under the pushforward

H∗(Z) → H∗(X) is [X] ∩ cr(E). Note that the class [Z]vir does depend on the realization

of Z as the zero set of a vector bundle. However, if Z has pure dimension n − r and the

intersection X ∩ s(X) is generically transversal over Z, we have [Z]vir = [Z].

3. Relative Lefschetz theory, perverse filtration and Hecke operators

In this section we review some notions of the relative Hard Lefschetz theorem of de

Cataldo and Migliorini, and describe its behaviour with respect to correspondences.

3.1. Relative Lefschetz theory. Before summarizing the relative Hard Lefschetz theo-

rem from [dCM05] we need to develop some algebraic framework.

Definition 3.1. A Lefschetz structure is a finite dimensional vector space V endowed

with a linear endomorphism ω and a finite increasing filtration P•V such that we have

ωPiV ⊂ Pi+2V for all i, and for all k ≥ 0 the map

ωk : P−kV/P−k−1V → PkV/Pk−1V

is an isomorphism. A map of Lefschetz structures is a map of vector spaces compatible

with the filtration and commuting with ω.

Denote by GrV the associated graded

GrV =
⊕
i

Gri V, Gri V = PiV/Pi−1V.

This is a graded vector space on which ω induces an operator of degree 2. A map of

Lefschetz structures φ : U → V induces a map Grφ : GrU → GrV . The following is

well-known.

Proposition 3.2. The triple of a vector space V , an increasing filtration P•V and ω :

V → V satisfying ωPiV ⊂ Pi+2V is a Lefschetz structure if and only if there exists an

action of sl2 on GrV for which e = ω and h acts on Gri V as the multiplication by i. For

any map of Lefschetz structures φ : U → V the induced map Grφ commutes with f. In

particular, the sl2-action above is unique. □

Lefschetz structures are similar to mixed Hodge structures [Del71] in the following sense:
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Proposition 3.3. The category of Lefschetz structures is abelian and the functor V →
GrV is an exact faithful functor from the category of Lefschetz structures to the category

of finite dimensional representations of sl2.

Proof. Let φ : U → V be a map of Lefschetz structures. By the snake lemma applied to

the short exact sequence

0 → PiU/Pi−kU → Pi+1U/Pi−kU → Pi+1U/PiU → 0,

the corresponding sequence for V and the map between them induced by φ we obtain a

long exact sequence

0 → KerφPi/Pi−k
→ KerφPi+1/Pi−k

→ KerφPi+1/Pi
→ CokerφPi/Pi−k

→ CokerφPi+1/Pi−k
→ CokerφPi+1/Pi

→ 0.

Here we denote by φPi/Pj
the induced map PiU/PjU → PiV/PjV .

Lemma 3.4. The connecting map KerφPi+1/Pi
→ CokerφPi/Pi−k

is zero.

Proof. We proceed by induction. Notice that
⊕

iKerφPi+1/Pi
= KerGrφ is a repre-

sentation of sl2, and therefore is generated over ω by primitive elements, i.e. elements

x ∈ KerφP−i/P−i−1
for i ≥ 0 satisfying ωi+1x = 0. The image of such x under the connect-

ing map is some y ∈ CokerφP−i−1/P−i−1−k
satisfying ωi+1y = 0.

Let us show that ωi is injective on CokerφP−i/P−i−k
for all i > 0. By the induction

assumption we have a short exact sequence

0 → CokerφP−i−1/P−i−k
→ CokerφP−i/P−i−k

→ CokerφP−i/P−i−1
→ 0,

and the same short exact sequence for i instead of −i. By snake lemma applied to the

maps induced by ωi, we have a short exact sequence

0 → Ker(CokerφP−i−1/P−i−k
→ CokerφPi−1/Pi−k

) →

Ker(CokerφP−i/P−i−k
→ CokerφPi/Pi−k

) → Ker(CokerφP−i/P−i−1
→ CokerφPi/Pi−1

).

Since CokerGrφ is a representation of sl2, the map ωi : CokerφP−i/P−i−1
→ CokerφPi/Pi−1

is an isomorphism, and therefore its kernel vanishes. We know that ωi+1 on CokerφP−i−1/P−i−k

is injective, since this was already proved when treating the k − 1 case. Hence ωi on it

is injective, and therefore Ker(CokerφP−i−1/P−i−k
→ CokerφPi−1/Pi−k

) vanishes, and we

conclude that the remaining kernel also has to vanish.
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Coming back to the element y ∈ CokerφP−i−1/P−i−1−k
, we see that ωi+1y = 0 implies

y = 0, and therefore the connecting map vanishes on all primitive elements, and therefore

on all elements. □

Having established the vanishing of connecting map for all k, taking k sufficiently large

we see that for all i the map

Kerφ ∩ PiU → KerφPi/Pi−1
,

is surjective, which implies that the natural map

Kerφ ∩ PiU/Kerφ ∩ Pi−1U → KerφPi/Pi−1

is an isomorphism; equivalently, GrKerφ→ KerGrφ is an isomorphism. Thus Kerφ is a

Lefschetz structure. Similarly, we obtain that CokerGrφ→ GrCokerφ is an isomorphism,

and so Cokerφ is a Lefschetz structure as well. This implies that the category of Lefschetz

structures has kernels and cokernels given by the usual kernels and cokernels together with

the induced filtrations. To see that it is abelian, we use the commutative square

CokerKerGrφ KerCokerGrφ

GrCokerKerφ GrKerCokerφ

∼

∼ ∼

to see that GrCokerKerφ→ GrKerCokerφ is an isomorphism. This implies that the two

filtrations on Imφ coincide. We have shown that the category of Lefschetz structures is

abelian. We have also shown that kernels and cokernels commute with Gr, which means

that Gr is exact. Finally, it is faithful because GrV = 0 and finiteness of the filtration

implies V = 0. □

Definition 3.5. For a nilpotent operatorN acting on a vector space the canonical filtration

or weight filtration is the increasing filtration W• defined by

Wk =
∑

i≥max(0,k)

KerN i+1 ∩ ImN i−k

We refer to e.g. [dCM05] for the definition of the perverse filtration associated to a

projective morphism. We will only use the following properties of the perverse filtration,

proved by de Cataldo and Migliorini:
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Theorem 3.6 (See [dCM05], Theorems 2.1.1, 2.1.4, 2.3.3 and Sections 4.5, 4.6). Let f :

X → Y be a projective map of algebraic varieties. Suppose that X is smooth of dimension

n. Let ω ∈ H2(X) be a relative ample class, i.e. a class whose positive multiple comes from

the embedding X → Y ×PN . Then the associated perverse filtration P•H
∗(X) together with

the operator of cup product by ω form a Lefschetz structure on H∗(X). Moreover,

(i) If U ⊂ Y is open, then the restriction H∗(X) → H∗(f−1(U)) is a map of Lefschetz

structures,

(ii) If Y is projective and L is the pullback of an ample class on Y , then PiH
∗(X) =⊕

b∈ZWi−bH
n+b(X), where W• is the canonical filtration induced by the nilpotent

operator of cup product by L.

3.2. Functoriality. In this section we analyze the effect of pullback and Gysin maps on

the perverse filtration. We assume that a quasi-projective base A ⊂ PM is fixed. Let A be

the closure of A. Any projective map π : X → A induces an embedding X ⊂ PN ×PM and

resolving the singularities of the closure we obtain a smooth projective compactification

ι : X → X together with a map X → PN×PM . Let ω be an ample class of X. By pullback

we obtain a map of Lefschetz structures

ι∗ : H∗(X) → H∗(X),

which induces a Lefschetz structure on H∗
pure(X). In particular, we have

PkH
∗
pure(X) = PkH

∗(X) ∩H∗
pure(X) = ι∗PkH

∗(X).

Any α ∈ H i(X) induces the cup-product map H∗(X) → H∗+i(X), which commutes with

L, which is the pullback of the hyperplane class from PM . So α preserves the canonical

filtration associated with L and therefore we have

αPkH
∗(X) ⊂ Pk+iH

∗+i(X).

Restricting to H∗(X), we obtain the following:

Proposition 3.7. For any α ∈ H i
pure(X) we have αPkH

∗
pure(X) ⊂ Pk+iH

∗+i
pure(X). □

Next, suppose we have a commutative diagram

(3.1)
X Y

A

f

πX
πY

,
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where πX and πY are projective and X, Y are smooth of dimensions dX , dY . Note that

the map f is automatically projective. We pick smooth compactifications ιX : X → X,

ιY : Y → Y and a commutative diagram

X Y

A

f

πX
πY

,

which produces (3.1) when restricted to A. The pullback H∗(Y ) → H∗(X) and the Gysin

map H∗(X) → H∗+2dY −2dX (Y ) commute with the multiplication by L and therefore pre-

serve the canonical filtration associated to it. So we obtain

Proposition 3.8. For a commutative diagram of the form (3.1) with πX , πY projective

and X, Y smooth of dimensions dX , dY the pullback map and the Gysin map satisfy

f ∗PkH
∗
pure(Y ) ⊂ Pk+dY −dXH

∗
pure(X), f∗PkH

∗
pure(X) ⊂ Pk+dY −dXH

∗+2dY −2dX
pure (Y ).

More generally, suppose that we have a commutative diagram

(3.2)
X Z Y

A

πX
πZ

π1 π2

πY
,

where X, Y , Z are smooth and πX , πY , πZ are projective. Let us also assume that Z

carries a virtual fundamental class [Z]vir ∈ H∗(Z), see Section 2.4. Consider the action of

the correspondence

(3.3) α → π2∗(π
∗
1α ∩ [Z]vir).

By (2.1), we can assume that Z is smooth. Suppose the dimensions of X, Y , Z are dX ,

dY , dZ respectively. Then Proposition 3.8 implies

Proposition 3.9. The correspondence (3.3) sends PiH
∗(X) to Pi+dX+dY −2dZ+2kH

∗+2dY −2dZ+2k(Y ).

Notice that dZ and k enter the statement via the difference dZ − k, which corresponds

to the difference between the (naive) dimension and the virtual dimension of Z.

Remark 3.10. (i) When 2dZ − 2k = dX + dY , e.g. for k = 0, X and Y symplectic, and Z

a Lagrangian in X × Y , the correspondence preserves the perverse filtration.

(ii) When dX = dY , a correspondence of cohomological degree j sends Pi to Pi+j.
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4. Hecke correspondences

4.1. Notations. Let S be a smooth projective surface, and set H = H∗ = H∗(S,Q). Let

δ ∈ H4 be the class of a point; by abuse of notation we write ∆ ∈
⊕

iH
i ⊗H4−i for the

class of the diagonal. Denote the Chern roots of the tangent bundle of S by t1, t2. We then

have

Td−1
S =

(1− e−t1)(1− e−t2)

t1t2
= 1− t1 + t2

2
+

2t21 + 2t22 − 3t1t2
12

.

In this section we consider actions of correspondences on moduli stacks of coherent

sheaves on S induced by pointwise modifications. Such actions are best studied using Co-

HAs, as in [MMSV23], [Neg19]. However we will not need the full generality of loc.cit. and

thus only cite the relevant results. In particular, as we will consider correspondences over

smooth stacks only, we will freely pass between cohomology and Borel-Moore homology.

Fix a non-zero α0 ∈ Hev := H0 ⊕ H2 ⊕ H4. For any α = α0 + nδ with n ∈ N we fix

a smooth open substack Mα of the (classical) moduli stack of coherent sheaves on S of

Chern character α. We denote by Cohδ the stack of length 1 sheaves on S; it is explicitly

given by Cohδ = S ×BGm. We denote by Fα the universal coherent sheaf on Mα × S.

We make the following two running assumptions:

(A1) For any α, Mα parametrizes coherent sheaves on S with no finite length sub-

sheaves,

(A2) For any n > 0, a coherent sheaf F ∈ Mα0+nδ and a colength one subsheaf G ⊂ F
we have G ∈ Mα0+(n−1)δ.

Such assumptions are verified in several examples of interest, e.g. for stable Higgs bundles

over the elliptic locus, see Section 7.

4.2. Length one Hecke correspondences. By assumption (A1), the universal sheaf Fα

over Mα admits a length two resolution E1 → E0 → Fα by vector bundles. We may thus

consider the projectivization Zα := P(Fα), which may be explicitly realized as the zero set

of the canonical section of the vector bundle E∗
1 (1) on the projective bundle P(E0). The

stack Zα parameterizes colength 1 subsheaves of Fα, c.f. [Jia22, Sec. 8], or equivalently

flags F ′ ⊂ F of sheaves on S with chF = α, and quotient F/F ′ of length 1.
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By assumption (A2), we have a natural map Zα → Mα−δ. Consider the following Hecke

correspondence:

(4.1)

Zα

Cohδ×Mα−δ Mα

π1×π2 π3
π1 × π2 : (F

′ ⊂ F ) 7→ (F/F ′, F ′),

π3 : (F
′ ⊂ F ) 7→ F.

The map π3 is proper by construction. Therefore, as explained in Section 2, we obtain the

following map, which we denote by T :

H∗(Cohδ)⊗H∗(Mα−δ) → H∗(Mα),

ξ ⊗ c 7→ T (ξ)(η) = π3∗([Zα]
vir ∩ π∗

1(ξ) ∩ π∗
2(c)).

4.3. The tautological classes. Denote by Λ the Macdonald ring of symmetric functions

in infinitely many variables. We have Λ = C[p1, p2, . . .], where pk is the power sum function

of degree k. For each α there is a ring homomorphism Λ → H∗(Mα × S), which sends pk

to the element pk(Fα) ∈ H2k(Mα × S) defined via the generating series:

ch(Fα) = rkFα +
∞∑
n=1

pn(Fα)

n!
.

It is convenient to denote p0(Fα) = rkFα. For any symmetric function f of degree k and

any γ ∈ Hm we set

f(γ) = πMα∗ (f(Fα) ∪ π∗
Sγ) ∈ H2k+m−4(Mα),

where πMα : Mα × S → Mα, πS : Mα × S → S are the projections.

The classes f(γ) generate a subring H∗
taut(Mα) ⊂ H∗

pure(Mα), which we call the tauto-

logical ring.

Let us write ∆γ := ∆(γ⊗ 1) = ∆(1⊗ γ). The product of symmetric functions is related

to the product in H∗
taut(Mα) by

(4.2) (fg)(γ) = (f ⊗ g)(∆γ),

where the right hand side is defined via (f ⊗ g)(γ1 ⊗ γ2) = f(γ1)g(γ2).

Recall the tautological sheaf Fδ on Cohδ×S. We have Fδ = O∆(1), where O∆ is the

structure sheaf of the diagonal in S×S and (1) means tensoring with the weight 1 character

of Gm. The Chern character of O∆ is ∆Td−1
S , therefore

ch(Fδ) = ch(Oδ) ch(O(1)) = ∆Td−1
S eu,
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where u = c1(O(1)) is the equivariant parameter. We deduce that

pn(Fδ)(η) =
un − (u− t1)

n − (u− t2)
n + (u− t1 − t2)

n

t1t2
η.

4.4. The action of the Hecke operators on 1. Let us explicitly compute the action

of Hecke correspondences T (ξun) on the subspace
⊕

nH
∗
taut(Mα0+nδ). Consider the space

Zα×S equipped with the maps πi4 = πi×πS, (i = 1, 2, 3). The projection formula together

with the identity [π∗
14Fδ] + [π∗

24Fα−δ] = [π∗
34Fα] in K0(Zα×S) imply the following identity

of operators H∗(Mα−δ) → H∗(Mα):

(4.3) [pn(η), T (ξ)] = T

(
un − (u− t1)

n − (u− t2)
n + (u− t1 − t2)

n

t1t2
ηξ

)
for any η ∈ H, ξ ∈ H∗(Cohδ) and n ≥ 0. The commutator on the left hand side is graded,

i.e. if both η and ξ are odd we take the sum instead of the difference.

Thanks to the commutation relations (4.3), in order to fully determine the action of the

Hecke operators on the tautological ring H∗
taut(Mα) we only need to compute the action

of each Hecke operator on 1.

The map Zα → Mδ = S×BGm has two components. The component corresponding to

S comes from the projection P(E0) → S. The component corresponding to BGm is given

by the tautological line bundle L on P(E0). The class c1(L) thus gets identified with the

pullback of u. We will denote c1(L) = u by abuse of notation.

Recall that Zα is presented as the zero set of a section of the vector bundle E∗
1 (1) on

P(E0). The projection π3 factors as the composition of proper maps

Zα → P(E0) → Mα × S → Mα.

We have

H∗(P(E0)) = H∗(Mα × S)[u]/
(
um − c1(E0)um−1 + · · ·+ (−1)mcm(E0)

)
,

where m is the rank of E0. The Gysin map H∗(P(E0)) → H∗(Mα × S) applied to a

polynomial p(u) can be computed as follows: expand

p(u)

um − c1(E0)um−1 + · · · ± cm(E0)

as a power series in u−1, and take the coefficient of u−1. On the other hand, the Euler class

of the bundle E∗
1 (1) is given by the expression

um
′ − c1(E1)um

′−1 + · · ·+ (−1)mcm′(E1),
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where m′ is the rank of E1. So the result of taking an element un, multiplying it by the

Euler class of E∗
1 (1) and applying the Gysin map to H∗(Mα×S) is the coefficient of u−n−1

in the expansion of

um
′ − c1(E1)um

′−1 + · · · ± cm′(E1)
um − c1(E0)um−1 + · · · ± cm(E0)

=
∑
i

u− rkFα−isi(Fα),

which is the generating series of the Segre classes of Fα = E0/E11. In our notation, the

Segre classes correspond to the complete homogeneous symmetric functions hn. Hence we

obtain

(4.4) T (ξun)(1) = hn+1−rkFα(ξ), ξ ∈ H, n ≥ 0.

4.5. The action of the Hecke operators on tautological classes. Equations (4.3)

and (4.4) may be used to write the action of Hecke operators in a closed form. For this,

let us introduce the super-commutative ring

(4.5) ΛS := Q[pk(η) ; k ≥ 0, η ∈ H]/R

where deg(pk(η)) = 2k− 4+deg η, and the ideal R is generated by the following relations:

(4.6)
pk(η + λ) = pk(η) + pk(λ), pk(aη) = apk(η),

p0([pt]) = rkFα, pk(λ) = 0 if 2k + deg λ < 4

for any k ≥ 0, η, λ ∈ H and a ∈ Q. The ring ΛS may be interpreted as the universal

ring of tautological classes, that is, for any α there is a canonical evaluation morphism

ΛS → H∗(Mα) sending pk(λ) to pk(λ). Set VS =
⊕

α∈α0+NδH
∗(Mα) and consider the

linear map

Φ: ΛS ⊗H[u] → End(VS),

f ⊗ ξun → fT (ξun)

for f ∈ ΛS, ξ ∈ H, n ≥ 0. Note that Φ is not a ring homomorphism, but a morphism of

ΛS-modules for the action of ΛS on ΛS⊗H[u] by left by multiplication. Next, let us define

a ring homomorphism

R : ΛS → ΛS ⊗H[u],

pn(η) → pn(η)−
un − (u− t1)

n − (u− t2)
n + (u− t1 − t2)

n

t1t2
η,

1This also follows from the general theory of Segre classes, see [Ful98].
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and a linear map

Q : ΛS ⊗H[u] → ΛS, f ⊗ ξun 7→ fhn(ξ).

In view of (4.3) and (4.4), we have

(4.7) T (ξun)(f · 1) = Φ(ξun ·R(f))(1) = Q(ξun−rk Fα+1R(f))

for any f ∈ ΛS, ξ ∈ H and n ≥ 0. This completely describes the Hecke action on Vtaut
S :=⊕

α∈α0+NδH
∗
taut(Mα).

4.6. The case of an open surface. So far, we have only considered the case of a pro-

jective surface S. All of the results above naturally extend to the quasiprojective case, see

[MMSV23]. More precisely, let S0 ⊊ S be an open subset and assume that Mα parame-

terizes sheaves with (proper) support in S0. This automatically implies that such sheaves

are of rank zero. In this situation, one can still define Hecke correspondences

H∗(Coh(S0)δ)⊗H∗(Fα) → H∗(Fα+δ)

via the diagram (4.1), provided that the assumptions (A1), (A2) hold. The tautolog-

ical class f(γ) ∈ H∗(Mα) only depends the restriction of γ to H∗
pure(S0); indeed, if

γ ∈ Ker(H∗(S) → H∗(S0)) then the long exact sequence in Borel-Moore homology shows

that π∗
Sγ comes from H∗(Mα × (S \ S0)), on which the cap product by chFα vanishes.

This allows us to consider a ring of tautological classes ΛS0 defined as in (4.5) by replacing

H∗(S) with H∗
pure(S0), as well as a family of Hecke operators T (ξun) for ξ ∈ H∗

pure(S0)

and n ≥ 0 acting on VS. In that setting, the formula (4.7) remains valid by an identical

argument.

Remark 4.1. One caveat to keep in mind is that the value h0(γ) = 1(γ) is undefined, but

because rkFα = 0, the argument of Q in (4.7) has only strictly positive powers of u, so

that h0(γ) never occurs.

5. W-algebras and the Fock space representation

5.1. The Fock space. In order to study the relations between the Hecke operators T (ξun)

acting on VS, it is useful to recast the results of the previous section in a more general,

purely algebraic context. We do this by studying an algebra of operators defined by (4.4)

on a polynomial ring ΛS.

Let us summarize the data upon which our constructions depend.
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• A base ring k, which is graded super-commutative;2

• A graded super-commutative ring H over k;

• An augmentation map ϵ : H → k, which is a k-linear map of degree −4;

• An element ∆ ∈ H ⊗k H of degree 4 satisfying (ε⊗ Id)(∆) = (Id⊗ε)(∆) = 1 and

(ξ ⊗ 1)∆ = (1⊗ ξ)∆ for all ξ ∈ H;

• Fixed elements c1 ∈ H2, c2 ∈ H4, satisfying ∆2 = t1t2∆. We formally write

c1 = t1+t2 and c2 = t1t2 and identify symmetric functions in t1, t2 with polynomials

in c1, c2. Geometrically, they correspond to the Chern classes of the tangent bundle

of S.

In the above setting, we consider the graded super-commutative algebra ΛH =
⊕

n≥0 Λ
n
H

generated over k by elements pn(ξ), n ≥ 0, ξ ∈ H subject to the relations (4.6). The degree

of pn(ξ) is 2n− 4 + i for ξ ∈ H i. We extend the notation f(ξ) to any symmetric function

f by requiring

1(ξ) = ϵ(ξ), (fg)(ξ) = (f ⊗ g)(∆ξ).

Finally, we define the Fock space

FH := ΛH [s] ≃
⊕
n≥0

ΛHs
n.

This is a N2-graded vector space with FH [a, b] = ΛaHs
b. We call the first, resp. second

grading the vertical, resp. horizontal grading.

5.2. The operators. Consider the ring morphism R : ΛH → ΛH ⊗k H[u] defined by

R(pn(η)) = pn(η)−
un − (u− t1)

n − (u− t2)
n + (u− t1 − t2)

n

t1t2
η, n ≥ 0, η ∈ H,

and a ΛH-linear map

Q : ΛH ⊗k H[u] → ΛH , 1⊗ ηun 7→ hn(η), n ≥ 0, η ∈ H.

For each ξ ∈ H, n ∈ N we define Tn(ξ) : ΛH → ΛH to be the operator

(5.1) Tn(ξ)(f) = Q (ξunR(f)) .

2In the classical setup we have k = Q, but when a group G acts on S preserving Mα we take k = H∗(BG).
Another possibility is a relative situation when S is replaced by a family of surfaces and k is the cohomology
ring of the base.
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Define also for each ξ ∈ H, n ≥ 0 an element ψn(ξ) ∈ ΛH by the relation

(5.2) ψn(ξ) =
∑

1≤m≤n+1

n!

m!
pm(Tdn+1−m ξ),

where Tdk ∈ H2k are the coefficients of the (abstract) Todd class:∑
k≥0

Tdk x
k =

t1t2x
2

(1− e−t1x)(1− e−t2x)
∈ H[[x]].

We will regard ψn(ξ) as an operator on ΛH by left multiplication.

Remark 5.1. When H = H∗(S), the ψn’s correspond to the coefficients of TdS ch(Fα), and

the generating series of ψ is∑
n≥0

xnψn
n!

=

(∑
n≥1

xnpn
n!

)
t1t2x

(1− e−t1x)(1− e−t2x)
,

Observe that any pn for n ≥ 1 is a linear combination of ψm’s. The remaining element p0

will not play a role in this work (but see [MMSV23, 1.6] for its geometric meaning).

We regard the operators Tn(ξ), ψm(ξ) as acting on FH in the following way:

Tn(ξ) : FH [a, b] → FH [a+ 2n+ ξ, b+ 1],

ψm(ξ) : FH [a, b] → FH [a+ 2m− 2 + ξ, b],

i.e. Tn(ξ), ψm(ξ) are of respective horizontal degrees 1 and 0.

Theorem 5.2. Set s2 = c21−c2. The action of the operators ψm(ξ), Tn(ξ), m,n ≥ 0, ξ ∈ H

on FH satisfies the following relations:

(5.3) [ψm(ξ), ψn(η)] = 0, ψm(aξ + bη) = aψm(ξ) + bψm(η),

(5.4) [ψm(η), Tn(ξ)] = mTm+n−1(ηξ),

(5.5) [Tm(ξξ
′), Tn(ξ

′′)] = [Tm(ξ), Tn(ξ
′ξ′′)],

(5.6) [Tm(ξ), Tn+3(ξ
′)]− 3[Tm+1(ξ), Tn+2(ξ

′)] + 3[Tm+2(ξ), Tn+1(ξ
′)]− [Tm+3(ξ), Tn(ξ

′)]

− [Tm(ξ), Tn+1(s2ξ
′)] + [Tm+1(ξ), Tn(s2ξ

′)] + {Tm, Tn}(c1∆ξξ′) = 0,

(5.7)
∑
π∈S3

π[Tm3(ξ3), [Tm2(ξ2), Tm1+1(ξ1)]] = 0.
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Proof. This results from a direct computation, which is performed in [MMSV23, Sec. 3] in

the case of H = H∗(S). The general case is identical. □

Remark 5.3. All the commutators above a super-commutators. In (5.6), {Tm, Tn}(c1∆ξξ′)
stands for the super-anticommutator of the operators Tm, Tn whose arguments are taken

from the tensor s1∆ξξ
′ ∈ H ⊗H. In (5.7), π permutes both the indices mi and elements

ξi. Moreover, when we permute ξi the sign changes according to the usual rules depending

on the parity of ξi.

5.3. Surface W -algebra. Let us now return to the setting of a smooth quasiprojective

surface S. Let H = H∗
pure(S), and write FS,ΛS, . . . instead of FH ,ΛH , . . .. Note that there

is a canonical evaluation morphism ev : FS → VS.

Definition 5.4. The surface W -algebra3 WS is the algebra generated by elements ψm(π),

Tm(π), where m ≥ 0 and π runs over a basis of H, modulo relations (5.3)–(5.7).

Note that WS is naturally N-graded, where we put ψm(ξ) and Tn(ξ) in degrees 0 and 1

respectively. From the results of Section 4, we have

Corollary 5.5. The canonical evaluation morphism ev : FS → VS, together with the as-

signment

ψn(ξ) 7→ ψn(ξ), Tm(ξ) 7→ T (ξum−1+rk Fα)

intertwines the action of WS on FS and of the corresponding tautological and Hecke oper-

ators on VS.

The setup of Section 5.1 only applies to projective surfaces, since otherwise we do not

have an augmentation map ϵ. However, in the quasiprojective case one may fix a compact-

ification of S and argue as in Section 4.6. As the relations (5.3)–(5.7) are invariant under

index shifts in the generators Tm, the assignment

ψn(ξ) 7→ ψn(ξ), Tm(ξ) 7→ T (ξum)

still yields a representation of WS on VS. From now on, we consider this renormalized

action. Beware that with this renormalization, formula (5.1) only holds up to an index

shift of (1− rk Fα).

3There is a notational clash with [MMSV23], where WS is denoted W+
S , as it corresponds to positive

punctual modifications.



P = W VIA H2 21

5.4. The structure of WS. Let us begin with the simpler case:

Theorem 5.6 ([MMSV23, Thm. 3.5]). Suppose S is such that both s2 ∈ H4(S) and s1∆ ∈
H6(S × S) vanish. Then WS is isomorphic to the universal enveloping algebra of the Lie

algebra with basis Dm,n(π), where m,n ∈ Z≥0 and π runs over a basis of H∗(S), and Lie

bracket given by

(5.8) [Dm,n(ξ), Dm′,n′(η)] = (nm′ −mn′)Dm+m′,n+n′−1(ξη).

The generators are related by D0,n(ξ) = ψn(ξ), D1,n(ξ) = Tn(ξ). More generally, for any

ξ ∈ H and n,m ≥ 0 we have

Dm,n(ξ) =
n!

(m+ n)!
(−AdT0(1))

mψm+n(ξ).

Remark 5.7. The assumptions of the theorem are satisfied in the following cases:

• S is an abelian surface,

• S is a K3 surface without a point,

• S is the total space of a line bundle over a curve.

The same description works for an arbitrary S, but only after passing to the associated

graded with respect to a suitable filtration. We write WS =
⊕

mWS[m] for the decompo-

sition into graded pieces for the horizontal grading. Let F• be the smallest filtration on

WS such that for all m,n ∈ Z and ξ ∈ H we have

ψn(ξ), Tn(ξ) ∈ Fn, FmFn ⊂ Fm+n, [Fm, Fn] ⊂ Fm+n−1.

Theorem 5.8 ([MMSV23, Sec. 3]). There exist elements Dm,n(ξ) ∈ WS[m], m,n ≥ 0, ξ ∈
H such that

(i) D0,n(ξ) = ψn(ξ), D1,n(ξ) = Tn(ξ);

(ii) F−1 = 0 and FN is spanned by products Dm1,n1(ξ1) · · ·Dm1,nk
(ξk) satisfying n1 +

· · ·+ nk ≤ N ;

(iii) [Dm,n(ξ), Dm′,n′(η)] = (nm′ −mn′)Dm+m′,n+n′−1(ξη) modulo Fn+n′−3.

The following elements will play an important role in the next section:

qm(ξ) := Dm,0(ξ), Lm(ξ) := Dm,1(ξ), d :=
1

2
ψ2(1); m ≥ 0, ξ ∈ H.

Although we will not be using this, we quote for completeness a simple corollary of The-

orem 5.6, which explains the link of WS with (a half of) the Virasoro algebra and the

element W3(0) of the Zamolodchikov algebra.
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Corollary 5.9. The elements qm(ξ), Lm(ξ), m ≥ 0, ξ ∈ H and d = 1
2
ψ2(1) satisfy relations

[qm(ξ), qn(η)] = 0, [Lm(ξ), qn(η)] = nqm+n(ξη), [Lm(ξ), Ln(η)] = (n−m)Lm+n(ξη),

[d, qm(ξ)] = mLm(ξ).

6. Degeneration and the sl2

We keep the geometric setup of Section 4; namely, a smooth quasiprojective surface S

with a smooth compactification S. We will write classes in Hev as α = α(0) + α(1) + α(2),

where α(i) ∈ H2i(S). Note that only α(2) changes when we replace α by α + δ. From now

on, we will fix some α0 = α
(1)
0 + α

(2)
0 and consider only classes α ∈ α0 + Zδ. In particular,

for any moduli space Mα we have rkFα = 0, and α(1) is a class of an effective divisor.

For any η ∈ H2 we have ψ0(η) = c1(Fα) · η = α(1) · η ∈ Q, and so there exists an effective

divisor class η ∈ H2 such that ψ0(η) > 0. We fix such η and set

r := ψ0(η) = α(1) · η > 0.

We make the following further assumptions:

(A3) For any α there is an isomorphism ϕ :Mα×BGm ≃ Mα for some smooth scheme

Mα.

(A4) Tensoring by O(η) induces isomorphisms Mα ≃ Mα+rδ.

It follows by [Hei10, Lemma 3.10] from assumption (A3) that there exists a sheaf Fα on

Mα × S such that (ϕ× IdS)
∗Fα

∼= Fα(1), where (1) denotes tensoring with the weight one

character of Gm. Note that Fα depends on the choice of isomorphism ϕ and is therefore

not canonical. We have an isomorphism

(6.1) ϕ∗ : H∗(Mα) → H∗(Mα ×BGm) = H∗(Mα)[v].

Using the sheaf Fα, we can define the tautological classes f(γ) ∈ H∗(Mα) for any sym-

metric function f and γ ∈ H as in Section 4.3. We denote the subring generated by these

classes by H∗
taut(Mα) ⊂ H∗(Mα).

Lemma 6.1. Under the assumption (A3), we have H∗
taut(Mα) ≃ H∗

taut(Mα)[v].

Proof. From the definition of Fα, we have ch(Fα) = ch(Fα)e
v; in particular, we have an

inclusion H∗
taut(Mα) ⊂ H∗

taut(Mα)[v]. For the opposite direction, note that

ψ0([pt]) =

∫
S

c1(Fα) · [pt] = v +

∫
S

c1(Fα) · [pt] = v.
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Thus v ∈ H∗
taut(Mα), and we conclude by the equality ch(Fα) = ch(Fα)e

−v. □

For the future use, we note the following expressions of some tautological classes of low

degree, in terms of the identification (6.1).

ψ0(η) = r, ψ1(η) =
1

2
p2(η) +

∫
S

c1(Fα) ∪ (t1 + t2) ∪ η,
1

2
p2(η) ∈ rv +H2(Mα).

6.1. Periodicity. Observe that by assumption (A4), tensoring with O(η) induces an iso-

morphism H∗(Mα) ∼= H∗(Mα+rδ) preserving the tautological rings. The following re-

sult provides a canonical identification between the cohomology spaces H∗
taut(Mα) for all

α ∈ α0 + Nδ.

Proposition 6.2. The Hecke operator T0(η) induces an isomorphism of vector spaces

H∗
taut(Mα) ∼= H∗

taut(Mα+δ).

Proof. Let us show that T0(η) is surjective; this will imply the chain of inequalities

dimH i
taut(Mα) ≥ dimH i

taut(Mα+δ) ≥ · · · ≥ dimH i
taut(Mα+rδ),

and we will deduce that T0(η) is an isomorphism from (A4).

Let f be a polynomial in the generators ψi(ξ). By Theorem 5.8 we know that some

power n of AdT0(η) annihilates f . We show by induction on n that f(1) is in the image of

T0(η). The induction base is not needed because the case f = 0 is trivial. Now suppose

that we have proven the claim for [T0(η), f ], so that we have

[T0(η), f ](1) = T0(η)(g)

for some g ∈ H∗
taut(Mα). Then we have

T0(η)(f(1)− g) = fT0(η)(1) = (η · α(1))f(1) = rf(1),

hence f(1) is in the image of T0(η). □

Combining Proposition 6.2, Lemma 6.1 and (6.1) we obtain an isomorphism Vtaut
S ≃

H∗
taut(Mα)[v, s], valid for any α ∈ α0+Nδ. Our next goal is to extract from the action ofWS

on Vtaut
S an action of a smaller algebraWM on H∗

taut(Mα). We will achieve this in two steps.

In Sections 6.2-6.4 we construct an algebra W̃M acting on H∗
taut(Mα) ≃ H∗

taut(Mα)[v]. The

construction of WM is then given in Section 6.5, by reduction with respect to a suitable

action of a Weyl algebra.

6.2. Polynomiality of ψk(ξ).
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Lemma 6.3. Let A =
⊕

i∈NAi be a graded connected finite dimensional Q-algebra, B =

A[v] with v of degree 2, and {bi ∈ B2i}i∈N a collection of elements. Write y = v+ a, where

a ∈ A is of degree 2. Then there exists a finite collection of elements {Qi ∈ A2i}i∈N such

that for all n

bn =
n∑
i=0

(
n

i

)
Qiy

n−i,

and Qi’s are polynomials in bi’s and a.

Proof. Consider the sum b =
∑

i∈N bi, and expand it in the powers of v. Consider also

the Laurent series P0(x) = 1/(1 − x), and let Pk = k−1 ∂
∂x
Pk−1 for k > 0. Define Qk ∈

A2k inductively to be the constant term of v−(k−1)
(
b−

∑k−1
i=0 QiPi(y)

)
. Since A is finite

dimensional, Qi = 0 for i > N big enough, and so∑
n

bn =
N∑
i=0

QiPi(y) =
∑
n

(
n∑
i=0

(
n

i

)
Qiy

n−i

)
. □

Let us set

y =
ψ1(η)

r
.

Using the above Lemma with A = H∗
taut(Mα × S) and applying (πMα)∗(− ∪ ξ) yields the

following result.

Corollary 6.4. There exists a family of elements Qi ∈ H2i
taut(Mα×S), i ≥ 0 such that for

any n ≥ 0, we have the following equality in H∗
taut(Mα):

ψn(ξ) =
n∑
i=0

(
n

i

)
Qi(ξ)y

n−i, Qi(ξ) := (πMα)∗(Qi ∪ ξ).

Moreover, Qn(ξ) is zero for n large enough.

6.3. Polynomiality of Dm,n(ξ). Let us now set

X =
T0(η)

r
=
q1(η)

r
.

By Proposition 6.2, the operator X identifies all the spaces H∗
taut(Mα) for α ∈ α0 + Zδ.

Let us furthermore define

Dm,n(ξ) :=
n!

(m+ n)!
(−Adq1(1))

mψm+n(ξ);

compare this with (5.6). These elements satisfy the properties listed in Theorem 5.8.
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Proposition 6.5. For any ξ ∈ H, n ≥ 0 and any α ∈ α0 + Zδ, the sequence of operators

X−mDm,n(ξ) ∈ End(H∗
taut(Mα)) depends polynomially on m. In the case n = 0 the non-

constant coefficients of the polynomial are nilpotent.

Proof. Using Corollary 6.4 we may write

ψm+n(ξ) =
N∑
i=0

(
m+ n

i

)
ym+n−iQi(ξ),

where N = dim(Mα) + 2. Let us denote A := −Adq1(1). Applying the Leibniz rule, we

obtain

(6.2) Dm,n(ξ) =
n!

(m+ n)!

∑
i,j

(
m+ n

i

)(
m

j

)(
Am−jym+n−i) (AjQi(ξ)

)
.

Observe that Qi(ξ), viewed as a tautological class and hence as an element of WS, belongs

to Fi. By Theorem 5.8, the summands of (6.2) vanish for j > i. The sum is therefore

finite, and we only need to check that for each fixed triple (i, j, n) the sequence

Xj−m n!

(m+ n)!

(
m+ n

i

)(
m

j

)
Am−jym+n−i

depends polynomially onm. Since X and q1(1) commute, and
(
m
j

)
is manifestly polynomial

in m, it is enough to show the polynomiality of

(6.3)
n!

(m+ n)!

(
m+ n

i

)(
X−1A

)m−j
ym+n−i.

Using Corollary 5.9, we have [y, q1(1)] = r−1[ψ1(η), q1(1)] = r−1q1(η) = X and similarly

[y,X] = r−2q1(η
2), which commutes with X and y. We deduce that for any k ≥ 0

−X−1Adq1(1) y
k = X−1

k−1∑
i=0

yiXyk−1−i = kyk−1 +

(
k

2

)
X−1[y,X]yk−2

=

(
∂

∂y
+

1

2
X−1[y,X]

∂2

∂2y

)
yk.

Write z = 1
2
X−1[y,X]. The binomial formula gives

(−X−1Adq1(1))
m−jym+n−i =

min(m−j,n−i+j)∑
k=0

(
m− j

k

)
zk

(m+ n− i)!

(n− i+ j − k)!
yn−i+j−k.

The upper bound of the summation can be replaced by n−i+j. As a result we obtain that

(6.3) is a linear combination of operators of the form zkyn−i+j−k, and each such operator



26 TAMÁS HAUSEL, ANTON MELLIT, ALEXANDRE MINETS, AND OLIVIER SCHIFFMANN

enters with a coefficient equal to

n!

(m+ n)!

(
m+ n

i

)(
m− j

k

)
(m+ n− i)!

(n− i+ j − k)!
=

n!

i!(n− i+ j − k)!

(
m− j

k

)
,

which is a polynomial in m.

Let us now consider the special case n = 0. The inequalities j ≤ i and 0 ≤ k ≤ n− i+ j

imply k = 0 and i = j. So the result is a linear combination of terms of the form

1

i!

(
m

i

)(
(−Adq1(1))

iQi(ξ)
)
.

Only the terms with i ≥ 1 contribute to the non-constant coefficients of the polynomial.

If Qi(ξ) has positive cohomological degree, then it is nilpotent, say Qi(ξ)
M = 0. Apply-

ing (−Adq1(1))
Mi and using (Adq1(1))

i+1Qi(ξ) = 0 we obtain
(
(−Adq1(1))

iQi(ξ)
)M

= 0.

If Qi(ξ) has cohomological degree zero (which only happens for i = 1, ξ ∈ H0), then

(−Adq1(1))
iQi(ξ) has negative cohomological degree as an operator and is therefore nilpo-

tent. □

6.4. Construction of D̃m,n(ξ) and relations. Proposition 6.5 gives rise to operators

on each individual H∗
taut(Mα), by taking the coefficients in the polynomial expansion of

X−mDm,n(ξ) in m. We will need a slight renormalization. Let θ be the linear term in the

polynomial expansion of X−kqk(η). By Proposition 6.5 θ is nilpotent, and thus ekθ, e−kθ

are polynomials in k. So Proposition 6.5 remains valid when X−k is replaced by u−k, where

u = Xeθ/q0(η) = Xeθ/r.

This choice of u ensures that the linear term in the expansion of u−kqk(η) vanishes. Let us

now define operators D̃i,n(ξ) for all n,m ∈ N and ξ ∈ H by

(6.4) Dm,n(ξ) = um
∑
i

mi

i!
D̃i,n(ξ).

In particular, note that ψn(ξ) = D0,n(ξ) = D̃0,n(ξ). As in Section 5.4, we set

q̃i(ξ) = D̃i,0(ξ), L̃i(ξ) = D̃i,1(ξ)

for i ≥ 0; observe that by construction q̃1(η) = 0 and q̃i(ξ) = L̃i(ξ) = 0 for i ≫ 0. Define

W̃M as the subalgebra of End(H∗
taut(Mα)) generated by all the operators D̃m,n(ξ). Finally,

denote by F̃n the filtration of W̃ obtained by placing D̃m,n(ξ) in weight n.
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Proposition 6.6. The following relation holds modulo F̃n+n′−3:

[D̃m,n(ξ), D̃m′,n′(ξ′)] = (nm′ −mn′)D̃m+m′−1,n+n′−1(ξξ
′)

− r−1nm′D̃m,n−1(ξη)D̃m′−1,n′(ξ′)± r−1mn′D̃m′,n′−1(ξ
′η)D̃m−1,n(ξ)

− 2r−2

(
n

2

)(
m′

2

)
D̃m,n−2(ξη

2)D̃m′−2,n′(ξ′)± 2r−2

(
m

2

)(
n′

2

)
D̃m′,n′−2(ξ

′η2)D̃m−2,n(ξ),

where the sign is − if both ξ and ξ′ are odd. When s2 = c1∆S = 0, the relations hold on

the nose.

Proof. Let us first find commutation relations involving u. From [ψ1(ξ), qk(η)] = kqk(ξη)

and (6.4) we obtain

kuk−1[ψ1(ξ), u]
∑
i

q̃i(η)
ki

i!
+ uk

∑
i

[ψ1(ξ), q̃i(η)]
ki

i!
= kuk

∑
i

q̃i(ξη)
ki

i!
.

Dividing by uk and taking the linear terms in k we obtain

q0(η)u
−1[ψ1(ξ), u] + [ψ1(ξ), q̃1(η)] = q0(ξη).

As q̃1(η) = 0, this yields

(6.5) [ψ1(ξ), u] = u
q0(ξη)

r
= u

ψ0(ξη)

r
.

Recall the operator d = D0,2(1)

2
. Since Adqi(ξ) lowers the F -filtration degree by 1, we have

Ad3
qi(ξ)

d = 0, and so in particular

[d, uk] = kuk−1[d, u] +

(
k

2

)
uk−2[[d, u], u].

Expanding q in terms of q̃ in [d, qk(η)] = kLk(η) and applying the equation above, we

obtain(
kuk−1[d, u] +

(
k

2

)
uk−2[[d, u], u]

)∑
i

q̃i(η)
ki

i!
+ uk

∑
i

[d, q̃i(η)]
ki

i!
= kuk

∑
i

L̃i(η)
ki

i!
.

Dividing by uk, using the relations q̃0(η) = r, L̃0(η) = L0(η) and collecting the coefficient

of k1 produces

u−1[d, u]− 1

2
u−2[[d, u], u] =

L0(η)

r
=
ψ1(η)

r
.

Applying −Adu and using (6.5) we thus obtain

u−2[[d, u], u] =
ψ0(η

2)

r2
⇒ u−1[d, u] =

ψ1(η)

r
+

1

2

ψ0(η
2)

r2
.
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Using [d, Dm,n(ξ)] = mDm,n+1(ξ) mod Fn−1 we obtain by induction on n

[Dm,n(ξ), u] = u

(
n
Dm,n−1(ξη)

r
+

(
n

2

)
Dm,n−2(ξη

2)

r2

)
mod Fn−3,

and then by induction on k

[Dm,n(ξ), u
k] = uk

(
kn
Dm,n−1(ξη)

r
+ k2

(
n

2

)
Dm,n−2(ξη

2)

r2

)
mod Fn−3.

Since this holds for all m ≥ 1, by linearity the same identity is true with D̃ in place of D.

Finally we expand the identity (5.8) modulo Fn+n′−3:

(m′n−mn′)um+m′∑
k

D̃k,n+n′−1(ξ)
(m+m′)k

k!
=
∑
i,j

mi

i!

m′j

j!

[
umD̃i,n(ξ), u

m′
D̃j,n′(ξ′)

]
.

The commutator expands as follows:

um+m′
(
[D̃i,n(ξ),D̃j,n′(ξ′)] +

(
m′n

r
D̃i,n−1(ξη) +

m′2

r2

(
n

2

)
D̃i,n−2(ξη

2)

)
D̃j,n′(ξ′)

∓
(
mn′

r
D̃j,n′−1(ξ

′η) +
m2

r2

(
n′

2

)
D̃j,n′−2(ξ

′η2)

)
D̃i,n(ξ)

)
,

where the sign is + if both ξ and ξ′ are odd. Collecting monomials in m, m′ yields the

first claim. Finally, if s2 = c1∆S = 0, the identity (5.8) holds on the nose by Theorem 5.6,

which proves the second claim. □

Corollary 6.7. The algebra W̃M is generated by {ψ2(1), q̃k(ξ) | k ≥ 0, ξ ∈ H}. □

6.5. Reduction with respect to a Weyl subalgebra. We now come to the second

reduction step. Observe that we have

[ψ1(η), q̃1(1)] = [D̃0,1(η), D̃1,0(1)] = D0,0(η)− r−1D0,0(η
2)D0,0(1) = r

(recall that D0,0(1) = ψ0(1) = 0 for degree reasons). Thus the pair of elements

y =
ψ1(η)

r
, ∂y := −q̃1(1)

generate a Weyl subalgebra of W̃M, i.e. we have [∂y, y] = 1.

Lemma 6.8. The operator ∂y acts locally nilpotently on H∗
taut(Mα). The operators Ady

and Ad∂y act locally nilpotently on W̃M.

Proof. The first statement is a consequence of the fact that ∂y is of cohomological degree

−2. Next, because ∂y ∈ F̃0, the operator Ad∂y acts locally nilpotently on W̃S. Finally,
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from the relations in Proposition 6.6 one sees that Ady acts nilpotently on F̃m/F̃m−2, and

hence locally nilpotently on W̃S. □

Consider the following general setup. Let A be an associative algebra defined over a

field K of characteristic 0, acting on a K-vector space V . Assume that the Weyl algebra

B = Ky⊕K⊕K∂y is a Lie subalgebra of A, that Ady and Ad∂y both act locally nilpotently

on A and ∂y acts locally nilpotently on V .

Lemma 6.9. Let A,B, V be as above. Then

(i) Multiplication induces an isomorphism of vector spaces m : K[y]⊗Ared ⊗K[∂y]
∼−→

A, where Ared is the subalgebra of A of elements commuting with both y and ∂y,

(ii) The action map defines an isomorphism of vector spaces Vred[y]
∼−→ V , where Vred =

Ker(∂y),

(iii) The action of A on V restricts to an action of Ared on Vred.

(iv) The natural projections A → Ared, f =
∑

i,j fi,jy
i∂jy 7→ fred := f0,0 and V →

Vred, v =
∑

i y
ivi 7→ vred := v0 are given by the following formulas

(6.6) fred =
∑
i,j

1

i!j!
yi
(
Adjy(−Ad∂y)

if
)
∂jy, vred =

∑
i

yi(−∂y)i

i!
v .

Proof. We will first show that the map m : K[y]⊗ Ared ⊗K[∂y] → A is both injective and

surjective. To begin, a standard argument via applying Ady shows that the multiplication

map m1 : Ared ⊗K[∂y] → Ker(Ad∂y) is injective. To see that it is also surjective we argue

by induction on n to prove that Ker(Ad∂y) ∩ Ker(Adny ) ⊂ Im(m1), using the observation

that for f ∈ Ker(Adny )\Ker(Adn−1
y ) and u = 1

(n−1)!
Adn−1

y f we have Adn−1
y (u∂n−1

y −f) = 0.

We conclude using the fact that Ady is locally nilpotent. The same argument with y and

∂y swapped implies that m is an isomorphism. Statement (ii) is classical, and shown in the

same fashion; statement (iii) immediately follows. For v = yau with u ∈ Vred, we compute∑
i

yi(−∂y)i

i!
v =

a∑
i=0

(−1)i
a!

(a− i)!i!
yau =

a∑
i=0

(−1)i
(
a

i

)
yau = δa,0u,

proving the second formula of (iv). The first equality of (iv) is shown by a double applica-

tion of the second one. □

In our situation, Lemma 6.9 yield canonical decompositions

(6.7) H∗
taut(Mα) = H∗

taut(Mα)red[y], W̃M = WM [y][∂y]
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where H∗
taut(Mα)red = Ker ∂y, and WM consists of operators commuting with y and ∂y.

Moreover, WM preserves H∗
taut(Mα)red. Observe that because y−v ∈ H2(Mα) is nilpotent,

there are identifications

H∗
taut(Mα)red ≃ H∗

taut(Mα)/yH
∗
taut(Mα) ≃ H∗

taut(Mα)/vH
∗
taut(Mα) ≃ H∗

taut(Mα).

We have thus obtained an action of WM on H∗
taut(Mα).

Remark 6.10. There are two ways of viewing H∗
taut(Mα)red ≃ H∗

taut(Mα): as the subspace

H∗
taut(Mα)red = Ker ∂y or as the quotient space H∗

taut(Mα)red = Coker y. Since ψm(ξ)

commutes with y, we have

ψm(ξ)red =
∑
i

yi(−Ad∂y)
i

i!
ψm(ξ),

and the action of ψm(ξ)red is compatible with that of ψm(ξ) via the quotient identification.

Because of this, we will omit subscript red for the tautological classes in H∗(Mα). On the

other hand, q̃m(ξ) commutes with ∂y, and so we have

q̃m(ξ)red =
∑
i

(
Adiy q̃m(ξ)

) ∂iy
i!
.

Since ∂y annihilates H∗
taut(Mα)red, the action coincides with the induced action of q̃m(ξ)

with respect to the subspace identification. In general, for any operator f the induced

action from Ker ∂y to Coker y coincides with fred.

6.6. sl2-triple. Let us extract an sl2-triple in End(H∗
taut(Mα)), which will play a key role

later, out of the algebra WM . Set h to be the operator −D̃1,1(1)red. Explicitly, by (6.6) we

have

h = −D̃1,1(1)− (y − r−2ψ0(η
2)ψ1(1))∂y.

Taking into account that D̃1,0(η) = q̃1(η) = 0, we obtain by Proposition 6.6 that

[D̃1,1(1), D̃m,n(ξ)] = (m− n)D̃m,n(ξ) + r−1nD̃m,n−1(ηξ)ψ1(1) mod F̃n−2.

In particular, using commutation relations between ψ1(1) and q̃k(ξ) we get

[h,−q̃m(ξ)] = −mq̃m(ξ)− [y, q̃m(ξ)]∂y,

and taking the constant terms

(6.8) [h, q̃m(ξ)red] = −mq̃m(ξ)red.

As a consequence, the following holds.
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Proposition 6.11. The operator Adh restricted to F̃0 ∩ Wred is diagonalizable and its

eigenvalues are non-positive integers. □

Consider

dred =
D̃0,2(1)red

2
=
ψ2(1)

2
− yψ1(1).

As ψ1(1) ∈ H0(Mα) is a scalar, it commutes with all operators. Since dred commutes with

both y and ∂y we have

[h, dred] = −
[
D̃1,1(1),

ψ2(1)

2
− yψ1(1)

]
= ψ2(1)−2yψ1(1)−r−2ψ0(η

2)ψ1(1)
2 = 2dred mod F̃0.

Write

[h, dred] = 2dred +
∑
i≥0

fi,

where each fi ∈ F̃0 ∩WM is an eigenvector of Adh of eigenvalue (−i), and set

(6.9) e = dred +
∑
i

fi
i+ 2

.

Then we have

[h, e] = 2dred +
∑
i≥0

(
1− i

i+ 2

)
fi = 2e.

Finally, set f = − q̃2(1)red
2

. From Proposition 6.6, we have

[e, q̃2(1)] = [dred, q̃2(1)] = 2D̃1,1(1)− 2r−1D̃0,1(η)D̃1,0(1) + 2r−2ψ0(η)
2D̃1,0(1)ψ1(1).

Taking the constant terms we obtain [e, q̃2(1)red] = −2h, and hence we have

[e, f] = h.

We summarize the above discussion:

Theorem 6.12. (i) The operators (e, h, f) form a sl2-triple in End(H∗
taut(Mα)), for

any α ∈ α0 + Zδ.
(ii) Define a filtration P• of H∗

taut(Mα) by setting Pi to be the sum of the h-eigenspaces

with eigenvalues ≤ i. Then:

(a) the tautological classes satisfy ψk(ξ)Pi ⊂ Pi+k,

(b) the Hecke operators satisfy q̃k(ξ)redPi ⊂ Pi−k,

(c) on the associated graded, the operator ψ2(1) coincides with 2e and therefore

satisfies the Hard Lefschetz property, that is ψ2(1)
k : P−k/P−k−1 → Pk/Pk−1

is an isomorphism.
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(iii) For any sequence of open subspaces M′
α0+Zδ ⊂ Mα0+Zδ preserved by the Hecke

correspondences the restriction maps commute with the sl2-action and are therefore

strictly compatible with the filtrations P ′
•, P•.

Proof. All statements save for (ii.a-b) follow from our construction. The statement (ii.b)

follows from the commutation relation (6.8). Finally, for (ii.a) we use Proposition 6.6.

Since the relation [D1,1(1), ψk(ξ)] holds on the nose in WS, the corresponding relation in

W̃M holds on the nose as well:

[D̃1,1(1), ψk(ξ)] = −kψk(ξ) + r−1kψk−1(ξη)ψ1(1).

Let f be an eigenvector of h with eigenvalue i. We have

h(ψk(ξ)f) = ψk(ξ)hf + [h, ψk(ξ)]f = i(ψk(ξ)f)− [D̃1,1(1), ψk(ξ)]f

= (i+ k)ψk(ξ)f − (r−1kψ1(1))ψk−1(ξη)f.

Reasoning by induction on k, the second term belongs to Pi+k−1, and so we conclude that

ψk(ξ)f ∈ Pi+k. □

For any sl2-triple acting on H∗(Mα) we will refer to the filtration P• defined in (ii) as

the h-degree filtration.

7. Higgs bundles

From now on and until the end of the paper, we restrict to the following situation. Let C

be a smooth projective curve of genus g ≥ 0, and let D be a (possibly zero) effective simple

divisor. We denote by S = P(Ω(D) ⊕ O) the projective completion of the line bundle

Ω(D) over C, and let πC : S → C be the projection. We also let S◦ ⊂ S be the total

space of Ω(D). Recall that a D-twisted Higgs bundle on C consists of a pair (E , θ) where
E is a vector bundle on C and θ : E → E ⊗ Ω(D). By the BNR correspondence one may

equivalently view (E , θ) as a purely one-dimensional coherent sheaf F on S whose support

is disjoint from the boundary divisor ∂S = S\S◦; the equivalence is given by E = π∗(F).

The support of F is called the spectral curve of (E , θ).
Let us fix a basis

Π = {1, γ1, . . . , γ2g, ω},

of the cohomology ring H = H∗(C) in which the product is given by

1 · x = x · 1 = x (x ∈ Π), γiγi+g = −γi+gγi = ω (1 ≤ i ≤ g),
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and all other products of generators vanish. Note that we have canonical isomorphisms

H∗
pure(S

◦) ≃ H∗(S◦) ≃ H∗(C) = H.

Remark 7.1. We have H∗(S) = H∗(C)[ξ]/⟨ξ2 + (|D| + 2g − 2)ωξ⟩, where ξ = c1(O(∂S)).

If F corresponds to a Higgs bundle (E , θ) of rank r and degree d, then

c1(F) = r(ξ + (|D|+ 2g − 2)ω), c2(F) = (r(r + 1)(1− g)− d)ωξ.

It will be more convenient to work with (r, d), so we will not use these formulas.

In this section, we specialize the results of Section 6 to twisted Higgs bundles and their

parabolic versions.

7.1. Algebras in the twisted case. We apply the construction of Section 4 to the follow-

ing moduli space. Fix r > 0. For each d ∈ Z, let Mell
r,d,D be the moduli stack of D-twisted

Higgs bundles of rank r and degree d whose spectral curve is reduced and irreducible. We

call it the elliptic moduli stack.

It is well-known that Mell
r,d,D is of finite type and is a Gm-gerbe over its coarse moduli

space M ell
r,d,D, which is smooth; more precisely, it is the relative Jacobian over the family of

spectral curves. Note that Hecke modifications and tensoring by line bundles change the

degree d but not the support of purely one-dimensional sheaves, hence assumptions (A1)

and (A2) of Section 4.1 as well as (A3), (A4) of Section 6 are satisfied. By Theorems 5.2

and 5.6 we have

Corollary 7.2. For fixed r and D, there is an action of the (super) Lie algebra with basis

Dm,n(π), m,n ≥ 0, π ∈ Π and Lie bracket

[Dm,n(π), Dm′,n′(π′)] = (m′n−mn′)Dm+m′,n+n′−1(ππ
′)

on the direct sum ⊕
d∈Z

H∗
taut(Mell

r,d,D).

For π ∈ H i, D0,n(π) is the operator of cup product by the tautological class ψn(π) ∈
H2n−2+i(Mell

r,d,D) and

D1,n(π) = Tn(π) : H
j(Mell

r,d−1,D) → Hj+2n−2+i(Mell
r,d,D)

is the Hecke operator.

Next, we make explicit the results of Section 6. Set η = ω so that α(1) · η = r, i.e. the

number r in Section 6 is precisely the rank of Higgs bundles under consideration. The
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relations of the algebra W̃M, which are given in Proposition 6.6, hold not only modulo

Fn+n′−3, but on the nose by Remark 5.7.

Corollary 7.3. For fixed r, d and D, there is an action of the algebra generated by D̃m,n(π),

m,n ≥ 0, π ∈ Π modulo relations

[D̃m,n(π), D̃m′,n′(π′)] = (nm′ −mn′)D̃m+m′−1,n+n′−1(ππ
′)

−r−1nm′D̃m,n−1(πω)D̃m′−1,n′(π′) + r−1mn′D̃m′,n′−1(π
′ω)D̃m−1,n(π)

on H∗
taut(Mell

r,d,D), where for any π ∈ H i, D̃0,n(π) = D0,n(π) is the operator of cup product

ψn(π). □

We next move on to the reduced versionWM of W̃M. Recall that the elements y = ψ1(ω)
r

,

∂y = −D̃1,0(1) generate a Weyl algebra and induce a canonical decomposition

H∗
taut(Mell

r,d,D) = H∗
taut(Mell

r,d,D)red[y],

where H∗
taut(Mell

r,d,D)red is the subring annihilated by ∂y. From the relation

[∂y, ψn(π)] = [D̃0,n(π), D̃1,0(1)] = nD̃0,n−1(π) = nψn−1(π)

it follows that coefficients of the generating series

∞∑
n=0

ψn(π)red
n!

= e−y
∞∑
n=0

ψn(π)

n!

generate H∗
taut(Mell

r,d,D)red. Recall the identification

H∗
taut(Mell

r,d,D)red = H∗
taut(M

ell
r,d,D)

(see (6.7)). The subspace H∗
taut(Mell

r,d,D)red is preserved by the operators D̃m,n(π)red which

commute with both ∂y and y; see Section 6.5.

Proposition 7.4. For fixed r, d and D, the algebra generated by D̃m,n(π)red, m,n ≥ 0,

π ∈ Π modulo relations

[D̃m,n(π)red, D̃m′,n′(π′)red] = (nm′ −mn′)D̃m+m′−1,n+n′−1(ππ
′)red

− r−1nm′
(
D̃m,n−1(πω)redD̃m′−1,n′(π′)red + D̃m′−1,n′(π′ω)redD̃m,n−1(π)red

)
+ r−1mn′

(
D̃m−1,n(πω)redD̃m′,n′−1(π

′)red + D̃m′,n′−1(π
′ω)redD̃m−1,n(π)red

)
.

(7.1)

acts on H∗
taut(M

ell
r,d,D), where D̃0,n(π) = ψn(π)red for π ∈ H i is the operator of cup product

by ψn(π)red ∈ H2n−2+i(M ell
r,d,D).
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Proof. Let f be an operator. We have the unique decomposition

f =
∑
i,j

yifi,j∂
j
y,

where fi,j commutes with both y and ∂y. Recall that fred = f0,0. Applying Ady, Ad∂y to

the above identity we obtain

fi,j =

(
1

i!j!
Adi∂y(−Ady)

jf

)
red

.

For any two operators f, g we write

fg =
∑
i,j

yifi,j∂
j
y

∑
i′,j′

yi
′
gi′,j′∂

j′

y .

The terms with i > 0, j′ > 0 or i′ ̸= j do not contribute to the constant term. The

remaining terms with i = j′ = 0 and i′ = j contribute j!f0,jgj,0. Thus we have

(fg)red =
∑
i

i!f0,igi,0 =
∑
i

1

i!

(
(−Ady)

if
)
red

(Adi∂y g)red.

Applying this identity to each term in Corollary 7.3 and using

[∂y, D̃m,n(π)] = nD̃m,n−1(π), [y, D̃m,n(π)] =
m

r
D̃m−1,n(πω)

we obtain the required identities. □

We finish this section by relating the algebraWM with cumbersome relations of Proposi-

tion 7.4 to the simpler algebra H2 of Hamiltonian vector fields on the plane. Although not

directly used in the rest of the paper, it was one of our main motivations to study Hecke

operators and their relation with tautological classes. The symmetry between m and n is

evident in the relations (7.1) of WM . Let us introduce a formal variable x and define the

“unreduced” operators D̃m,n(π)unred by

D̃m,n(π)unred =
∑
i,j

xi
(
m

i

)(
n

j

)
(−r)−jD̃m−i,n−j(πω

j)∂jx.

This produces an action of the Lie algebra with bracket

[D̃m,n(π)unred, D̃m′,n′(π′)unred] = (m′n−mn′)D̃m+m′−1,n+n′−1(ππ
′)unred

on the space H∗
taut(Mell

r,d,D)[x]. By direct computation, the subalgebra spanned by elements

Dm,n(1) is isomorphic to the Lie algebra H2 of polynomial Hamiltonian vector fields on

the plane.
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Corollary 7.5. The Lie algebra H2 acts on

H∗
taut(Mell

r,d,D)[x] = H∗
taut(M

ell
r,d,D)[x, y]

in such a way that ψn(1) corresponds to the operator with Hamiltonian yn. □

7.2. Algebras in the parabolic case. Our argument to prove the P = W conjecture

treats simultaneously the classical and parabolic cases. Let us explain how to extend the

constructions of Sections 4-6 to the parabolic setup. Let Mparell
r,d,D resp. Mparell

r,d,D be the

moduli stack resp. coarse moduli space parameterizing D-twisted Higgs bundles of rank

r and degree d such that the spectral curve is reduced and irreducible, the residue of the

Higgs field over each point of D has distinct eigenvalues, together with an ordering of

the eigenvalues at each point. Equivalently, one can view this as a purely 1-dimensional

sheaf F on S◦ whose support supp(F) is proper, reduced, irreducible, and intersects the

fibers π−1(p) transversally for every p ∈ D at r points, together with an ordering of

π−1(p) ∩ supp(F) for every p ∈ D. We call it the parabolic elliptic stack. There is an

obvious forgetful map

For : Mparell
r,d,D → Mell

r,d,D,

which is an unramified covering of degree (r!)|D| over its image. As Hecke operators do not

change the support, the results of the previous section apply to these moduli spaces by

base change; in particular we obtain actions of the respective algebras on H∗
taut(M

parell
r,d,D ),

H∗
taut(M

parell
r,d,D ), which are the subrings generated by the tautological classes of the form

ψk(π), ψk(π)red respectively, for ψ ∈ Π. However, due to the presence of marked points we

can introduce additional tautological classes and Hecke operators.

The tautological sheaf Fparell
r,d,D is isomorphic to the pullback For∗(Fr,d,D) of the tautological

sheaf on Mr,d,D, so we will omit the superscript for simplicity. For each p ∈ D, i = 1, . . . , r,

denote by qp,i : Mparell
r,d,D → S◦ ⊂ S the map sending a parabolic Higgs bundle to the i-th

point of supp(F) ∩ π−1(p). We have a tautological sheaf

Ud
p,i := (Id×qp,i)∗(Id×qp,i)∗Fparell

r,d,D ,

whose restriction to {F} × S, F ∈ Mparell
r,d,D is the skyscraper sheaf δqp,i . Note that

(Id×qp,i)∗Fparell
r,d,D is a line bundle. In particular, we have

Hom(Fparell
r,d,D ,U

d
p,i) = Hom((Id×qp,i)∗Fparell

r,d,D , (Id×qp,i)
∗Fparell

r,d,D ) = C.

As a consequence, there is a canonical subsheaf G ⊂ Fparell
r,d,D with Fparell

r,d,D /G ≃ Ud
p,i. This

gives rise to an isomorphism of stacks Modp,i : Mparell
r,d,D → Mparell

r,d−1,D and a canonical short
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exact sequence

(7.2) 0 −→ Mod∗
p,i(Fr,d−1,D) −→ Fr,d,D −→ HomS(Fr,d,D,Ud

p,i)
∨ ⊗ Ud

p,i −→ 0.

Observe that Mod∗
p,i(Ud−1

p,i ) ≃ Ud
p,i. We set

Xp,i := Mod∗
p,i : H

∗(Mparell
r,d−1,D)

∼−→ H∗(Mparell
r,d,D ).

Further, set Ldp,i := HomS(Fr,d,D,Ud
p,i)

∨, which is a line bundle on Mparell
r,d,D . In terms of

Higgs bundles, the fiber of Ldp,i at a pair (E , θ) is the i-th eigenspace of the residue of the

Higgs field θ at p. We set

yp,i = c1(L
d
p,i) ∈ H2(Mparell

r,d,D )

and denote by the same symbol the operator of cup product with c1(L
d
p,i).

Proposition 7.6. For each p ∈ D, 1 ≤ i, i′ ≤ r, n ≥ 0, π ∈ H>0 we have

[Xp,i, yp′,i′ ] = 0, [ψn(1), Xp,i] = nyn−1
p,i Xp,i, [ψn(π), Xp,i] = 0, [yp,i, T0(1)] = Xp,i.

Proof. The first three relations follow easily from (7.2). The last relation is less straight-

forward. Recall that T0(1) is given by the Hecke correspondence Z which parametrizes

colength one inclusions F ′ ⊂ F with F ∈ Mparell
r,d,D , F ′ ∈ Mparell

r,d−1,D. Denoting by πd, πd−1

the maps to Mparell
r,d,D ,M

parell
r,d−1,D we have

T0(1)(c) = πd∗
(
[Z]vir ∩ π∗

d−1(c)
)
.

It follows that

[yp,i, T0(1)](c) = πd∗
(
c1(π

∗
d(L

d
p,i)− π∗

d−1(L
d−1
p,i )) ∩ π∗

d−1(c) ∩ [Z]vir
)
.

By construction, there is a canonical inclusion π∗
d−1(L

d−1
p,i ) → π∗

d(L
d
p,i) whose cokernel is

supported on the closed substack

Zp,i := {F ′ ⊂ F | supp(F/F ′) = {qp,i}} ⊂ Z.

Observe that πd restricts to an isomorphism Zp,i ≃ Mparell
r,d,D under which πd−1 gets identified

with Modp,i. Put cp,i = [yp,i, T0(1)](1) ∈ H0(Mparell
r,d,D ) = C. By the projection formula we

have [yp,i, T0(1)] = cp,iXp,i, hence it only remains to determine the constant cp,i. Note that

cp,i is independent of i by Sr-symmetry relabeling the points {qp,i}i. To determine this

constant we note that
∑r

i=1 yp,i is the first Chern class of the rank r bundle

(7.3) Fr,d,D/Fr,d,D(−ω) =
⊕
i

Ldp,i
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i.e.
∑r

i=1 yp,i = ψ1(ω). It follows that

(7.4)

p∑
i=1

cp,iXp,i = [ψ1(ω), T0(1)] = T0(ω).

Evaluating this at 1, we obtain
∑

i cp,i = r and thus cp,i = 1 as desired. □

Definition 7.7. Let Hr,D be the ring extension of H obtained by adding generators τp,i of

degree 2 where p ∈ D, i = 1, . . . , r modulo the following relations:∑
i

τp,i = ω, τp,iH
>0 = 0, τp,iτq,j = 0 (p, q ∈ D, 1 ≤ i, j ≤ r).

Set for each n ≥ 0

ψn(τp,i) = ynp,i, Tn(τp,i) = ynp,iXp,i.

This assignment is compatible with the relations
∑

i τp,i = ω because by (7.3)

r∑
i=1

ynp,i = ψn(ω),

and
r∑
i=1

ynp,iXp,i =
r∑
i=1

1

n+ 1
[yn+1
p,i , T0(1)] =

1

n+ 1
[ψn+1(ω), T0(1)] = Tn(ω).

Now we have, for π ∈ H,

(7.5) [ynp,i, Tn′(π)] =
1

n′ + 1
[ynp,i, [ψn′+1(π), T0(1)]] =

n

n′ + 1
yn−1
p,i [ψn′+1(π), Xp,i].

The r.h.s. of (7.5) is equal to nyn+n
′−1

p,i Xp,i = nTn+n′−1(τp,i) for π = 1 and vanishes for

π ∈ H>0. In addition, we have

[ψn(1), y
n′

p,iXp,i] = nyn+n
′−1

p,i Xp,i = nTn+n′−1(τp,i).

All together, we see that the commutation relations

[ψn(π), Tn′(π′)] = nTn+n′−1(ππ
′)

hold for all π, π′ ∈ Hr,D. Finally, from the definition of Tn(τp,i) we have

Tn(τp,i)(1) = ynp,i.

This is compatible with the computation carried out in Section 4.4. Note that the diagonal

class, coming from the surface S◦ equals ω⊗ω, and therefore annihilates τp,i. This implies
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that for any two symmetric functions f , g of positive degree we have (fg)(τp,i) = 0. Hence

hn+1(τp,i) =
pn+1(τp,i)

n+ 1
= ψn(τp,i) = ynp,i.

We have shown that the action of T on the polynomial ring generated by ψn(π), π ∈ Hr,D

fits into the framework of Section 5. In particular, the results of that section apply, such

as the commutation relations between operators T ’s, and Theorems 5.2 and 5.6. We

summarize this as follows.

Theorem 7.8. Corollaries 7.2, 7.3, 7.5 and Proposition 7.4 extend verbatim to the spaces

Mparell
r,d,D and Mparell

r,d,D when H is replaced by Hr,D and the tautological ring is enlarged by

adding the classes yp,i.

From now on, we denote by H∗
taut(M

parell
r,d,D ) ⊂ H∗(Mparell

r,d,D ), H
∗
taut(M

parell
r,d,D ) ⊂ H∗(Mparell

r,d,D )

the subrings generated by ψn(π), π ∈ Hr,D.

7.3. sl2-triples. In Section 6.6 we explicitly constructed an sl2-triple acting on H∗
taut(Mα)

from the algebra WM . As explained in Remark 5.7, the situation simplifies in the case

of Higgs bundles on a curve. Let us spell out the form of the sl2-triple in our case. As

this applies both to the parabolic and the classical cases, we write M, resp. M for either

Mparell
r,d,D or Mr,d, resp. M

parell
r,d,D or Mr,d.

Recall that by construction D̃1,0(η) = D̃1,0(ω) vanishes. Hence D̃1,0(ω)red = 0. Likewise,

we have yred = 0 and (∂y)red = 0. The element D0,1(1) = ψ1(1) ∈ H0(M) being the Euler

characteristic of a vector bundle of rank r and degree d, we may fix D0,1(1) = 0 by choosing

d appropriately4. Thus,

D̃0,1(1)red = D̃1,0(1)red = D̃0,1(ω)red = D̃1,0(ω)red = 0

and D̃0,2(1) = ψ2(1). This implies that all the extra terms in Proposition 7.4 vanish for

the operators D̃1,1(1)red, D̃0,2(1)red, D̃2,0(1)red, so that we have

[D̃2,0(1)red, D̃m,n(π)red] = −2nD̃m+1,n−1(π)red,

[D̃1,1(1)red, D̃m,n(π)red] = (m− n)D̃m,n(π)red,

[D̃0,2(1)red, D̃m,n(π)red] = 2mD̃m−1,n+1(π)red.

4Recall that the operators D̃m,n(ξ)red act on the cohomology H∗(Mα) for each α ∈ α0 + Zδ, and that
these have all been identified; in particular, we may freely choose the degree d. By Remark 7.1, our choice
of d is a multiple of r.
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Proposition 7.9. The operators e = 1
2
D̃0,2(1)red, h = −D̃1,1(1)red, f = −1

2
D̃2,0(1)red form

an sl2-triple acting on H∗
taut(M). □

We will need a slightly more general statement. The sl2-triple constructed above will be

called the original sl2-triple. The space H2
taut(M) is spanned by ψ2(1), ψ1(π) for π ∈ H2

r,D

and the products ψ1(γi)ψ1(γj) for 1 ≤ i, j ≤ 2g (recall that γi’s form a basis of H1).

Proposition 7.10. Fix α ∈ H2
taut(M) and write

(7.6) α = A

(
ψ2(1) +

1

r

g∑
i=1

ψ1(γi)ψ1(γi+g)

)
+
∑
i<j

Bi,jψ1(γi)ψ1(γj) +
∑
p,i

Cp,iψ1(τp,i),

for some A,Bi,j, Cp,i ∈ C, where the third term only occurs in the parabolic case. If A ̸= 0

and the antisymmetric matrix with off-diagonal entries Bi,j is non-degenerate, then there

exists an sl2-triple (e′, h′, f′) acting on H∗
taut(M) with e′ = α, whose associated h′-degree

filtration coincides with the h-degree filtration of the original sl2-triple.

Proof. Consider the operators y(π) = ψ1(π) and x(π) = D̃1,0(π)red for π ∈ H>0
r,D. By

Theorem 6.12, the operators y(π) increase the h-degree by 1, and the operators x(π)

decrease it by 1. In particular, they are both nilpotent as H∗(M) is finite-dimensional.

Proposition 7.4 yields

(7.7) [y(π), x(π′)] = ψ0(ππ
′).

Note that ψ0(ππ
′) = rπ · π′ if both π, π′ are in H1 (and the intersection product is taken

in H∗(C)) while ψ0(ππ
′) = 0 if one of π, π′ belongs to H>1

r,D. In addition we have

[e, x(π)] = y(π).

For π ∈ H2
r,D let X(π) = ex(π). By the equation above it satisfies [e, X(π)] = y(π)X(π),

and so

X(π)−1eX(π) = e+ y(π).

Starting from the original sl2 triple and conjugating by a product of complex powers of

X(τp,i) (as x(τp,i) is nilpotent, the complex powers ofX(τp,i) are well-defined) we can obtain

a new sl2-triple (e′, h′, f′) in which e′ = e +
∑

p,iCp,iψ1(τp,i) for any given complex values

of the coefficients Cp,i. Moreover, since x(π) has negative h-degree, the operators X(τp,i)

preserve the h-degree filtration, i.e. the h-degree and h′-degree filtrations coincide.

In order to obtain the general form, we again argue in a similar fashion, this time using

operators of the form x(γ)y(γ′) for γ, γ′ ∈ H1. Notice that these operators preserve the
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h-degree and hence the h-degree (and h′-degree) filtration. A direct computation yields

[e, x(γ)y(γ′)] = y(γ)y(γ′),

[∑
i

y(γi)y(γi+g), x(γ)y(γ
′)

]
= −ry(γ)y(γ′).

As [x(γ)y(γ′), y(τp,i)] = 0 for any γ, γ′, p, i, the element e′+ 1
r

∑
i y(γi)y(γi+g) commutes with

any element of the form x(γ)y(γ′). Equation (7.7) implies that the elements of the form

x(γ)y(γ′) generate a Lie algebra isomorphic to gl2g. The adjoint action by this Lie algebra

can be integrated to an action of GL2g(C) on H2
taut(M) which fixes elements of the form e′+

1
r

∑
i y(γi)y(γi+g) and transforms elements of the form y(γ)y(γ′) according to the exterior

square of the standard representation. Since any two non-degenerate antisymmetric forms

are GL2g(C)-equivalent, the orbit of −
∑

i≤g y(γi)y(γi+g) contains all the nondegenerate

elements. Writing e′′ = (e′ + 1
r

∑
i y(γi)y(γi+g)) −

1
r

∑
i y(γi)y(γi+g) we see that we can

transform the sl2-triple (e′, h′, f′) into another sl2-triple of the desired form. We conclude

by noting that the GL2g(C)-action preserves the h-degree. □

Remark 7.11. It is clear from the proof that the symplectic group Sp2g(C) ⊂ GL2g(C) acts
on H∗

taut(M) respecting the sl2-action, preserving the cohomological degree, and acting via

the standard representation on the span of classes ψ1(γi).

Corollary 7.12. For any α ∈ H2
taut(M) and for all but finitely many values λ ∈ C there

exists an sl2-triple (e, h, f) with e = α + λψ2(1) for which the h-degree filtration coincides

with the h-degree filtration of the original sl2-triple. □

8. Proof of the P=W conjectures

Throughout this section, we fix a smooth complex projective curve C of genus g > 1

and a positive integer r. We will consider Higgs bundles on C of rank r and degree d; the

latter will be allowed to vary. We also fix a (nontrivial) simple effective divisor D which

we specialize in Section 8.5 to a divisor of degree one.

8.1. Strategy of the proof. Let us briefly explain the steps of our proof of the P = W

conjectures, in both classical and parabolic settings. First of all, thanks to a classical

result of Markman ([Mar02], see [LL24] for the parabolic case), the cohomology of the

moduli spaces of stable Higgs bundles is generated by the tautological classes. The P = W

conjectures then reduce, by work of Shende [She16] (see [Mel19] for the parabolic case)

to the P = C conjecture, see Introduction for the statement. Our proof of the P = C
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conjecture proceeds in four steps, each one establishing a version of P = C in a different

setup.

Recall that aD-parabolic Higgs bundle5 is a triple (E , θ, (Fp)p) where E is a vector bundle

on C, θ : E → E ⊗Ω(D) and for each p ∈ D, Fp : Fp,1 ⊂ Fp,2 ⊂ · · · ⊂ Fp,r = E|p is a full flag

in the fiber of E at p which is preserved by resp(θ). A nilpotent D-parabolic Higgs bundle6

is a triple (E , θ, (Fp)p) as above, for which resp(Fp,i) ⊆ Fp,i−1 for all i. Finally, note that a

parabolic Higgs bundle (E , θ, (Fp)p) with resp = 0 for all p is simply a Higgs bundle (E , θ)
together with a collection of full flags in each of the fibers E|p.
We proceed as follows:

(i) Identify the h-degree filtration on H∗(Mparell
r,d,D ) from Section 7.3 with the perverse

filtration P , and deduce P = C for the parabolic elliptic moduli Mparell
r,d,D from

commutation relations in WM (Section 8.2);

(ii) Check that the restriction map H∗(Mpar
r,d,D) → H∗(Mparell

r,d,D ) is injective and compat-

ible with P , deducing P = C for stable parabolic Higgs bundles (Section 8.3);

(iii) Check that the restriction map H∗(Mpar
r,d,D) → H∗(Mpar,0

r,d,D) to the nilpotent para-

bolic Higgs bundles is an isomorphism compatible with P , hence P = C forMpar,0
r,d,D

(Section 8.4);

(iv) Finally, for the classical moduli of Higgs bundles Mr,d, gcd(r, d) = 1 we realize

H∗(Mr,d) as a direct summand of H∗(Mpar,0
r,d,D), deducing P = C by another com-

patibility check (Section 8.5).

Remark 8.1. Note that we only use the WS-action and its consequences in the first step.

The reason is that our construction a priori does not give an action of WS on H∗(Mpar
r,d,D)

and other moduli spaces.

8.2. Elliptic case. In an effort to unburden the notation, we will suppress the subscript

D. Fix a generic stability parameter and letMpar
r,d be the moduli space of stableD-parabolic

Higgs bundles. Let χpar : Mpar
r,d → Apar be the Hitchin map; here Apar is an affine space

which only depends on r,D and C. There is a cartesian square

Mparell
r,d Mpar

r,d

Aparell Apar

i

χparell χpar

i′

5this is sometimes referred to as a twisted parabolic Higgs bundle.
6this is sometimes simply called a parabolic or a strongly parabolic Higgs bundle.
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where i′ : Aparell → Apar and i are open immersions (Aparell is the parabolic elliptic locus).

The map χparell is projective and hence yields a perverse filtration P• on H∗(Mparell
r,d ).

By [LL24, Thm. 1.2, Cor. 1.3], we have the following parabolic version of Markman’s

theorem:

(8.1) H∗
taut(M

par
r,d ) = H∗

pure(M
par
r,d ),

from which we deduce the same result for Mparell
r,d by restricting along i.

As Hecke correspondences do not change the support of purely 1-dimensional sheaves,

the convolution diagram (4.1) is defined over Apar. Applying Propositions 3.7 and 3.8 we

deduce that for ξ ∈ H i(S) and m ≥ 0

• ψm(ξ)Pj ⊆ Pj+2m−2+i;

• Tm(ξ)Pj ⊆ Pj+2m−2+i;

• More generally, the operator Dm,n(ξ) (of vertical degree 2n − 2 + i) satisfies

Dm,n(ξ)Pj ⊆ Pj+2n−2+i.

In particular, the operator q1(ω), which was used to identify the cohomologies of Mparell
r,d

for different values of d respects the filtration, i.e. q1(ω)PiH
∗(Mparell

r,d ) ⊆ PiH
∗(Mparell

r,d+1).

Tensoring by a line bundle of degree one yields an isomorphism Mparell
r,d ≃ Mparell

r,d+r which

is compatible with the Hitchin map; it follows that H∗(Mparell
r,d ) and H∗(Mparell

r,d+r ) have the

same perverse filtrations; applying q1(ω)
r, we easily deduce that q1(ω)PiH

∗(Mparell
r,d ) =

PiH
∗(Mparell

r,d+1) for any d (hence the same holds for q1(ω)
−1). Since the operators D̃m,n(ξ)red

have the same vertical degree as Dm,n(ξ), we obtain the following:

Proposition 8.2. The operators e, h, f of the original sl2-triple (see Proposition 7.9, as

well as any of the triples constructed in Proposition 7.10 change perversity by 2, 0,−2

respectively.

This completely pins down the perverse filtration:

Proposition 8.3. The perverse filtration on H∗
pure(M

parell
r,d ) coincides with the h-degree

filtration induced by the original sl2-triple.

Proof. Choose a relatively ample class α ∈ H2(Mparell
r,d ) and replace it by some linear

combination α′ = α + λψ2(1) with λ ∈ Q which is relatively ample and for which the

operator e of cup product with α′ is a part of an sl2-triple (e, h′, f′) (see Corollary 7.12).

By Proposition 8.2, (e, h′, f′) descends to an sl2-triple of operators on GrP•H
∗(Mparell

r,d ), for

which h′ is of degree zero. By Theorem 3.6, one can complete the operator e to an sl2-triple
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(e, h, f) acting on GrP•H
∗(Mparell

r,d ) for which h|GrPi
= i IdGrPi

. In particular, [h, h′] = 0. The

elementary lemma below allows us to conclude that h = h′, from which Proposition 8.3

readily follows. □

Lemma 8.4. Let V be a finite-dimensional vector space and let (e, h, f), (e, h′, f′) be two

sl2-triples in End(V ). Assume that [h, h′] = 0. Then h = h′.

Proof. By the Jacobson-Morozov theorem, there exists g ∈ StabGL(V )(e) such that Adg h =

h′. Write V =
⊕

i V [i] for the h-weight decomposition and V f =
⊕

i V
f[i] for the space of

lowest weight vectors. Then g is determined by its action on each V f[i] and we have

g(V f[i]) ⊆ (U(e) · V f[> i])⊕ V f[i].

This reflects the decomposition StabGL(V )(e) ≃
∏

iGL(V
f[i]) × Rad(StabGL(V )(e)). As

[h, h′] = 0, h′ preserves each V [i]. But this is only possible if g ∈
∏

iGL(V
f[i]), which

implies that g commutes with h and thus h′ = h. □

The following statement is the version of P = C for the parabolic elliptic locus:

Theorem 8.5. The subspace PmH
∗
pure(M

parell
r,d ) is the span of products

∏
i ψmi

(ξi) satisfying∑
imi ≤ m+N , where N = (g − 1)r2 + |D|

(
r
2

)
+ 1.

Proof. Observe that 1 ∈ H0
pure(M

parell
r,d ) is of perverse degree equal to the dimension of the

Hitchin map, which is equal to (g − 1)r2 + |D|
(
r
2

)
+ 1. The statement is now an obvious

consequence of the relation [h, ψm(ξ)] = mψm(ξ). □

8.3. Parabolic case. Next, we consider the entire space Mpar
r,d . As the stability param-

eter considered is primitive, there are no strictly semistables and the Hitchin map χpar

is projective. The group C∗ acts on Mpar
r,d by scaling the Higgs field, turning it into a

semi-projective variety, see [HRV15]. The cohomology of Mpar
r,d is pure by [HRV15, Corol-

lary 1.3.2], hence (8.1) yields

H∗
taut(M

par
r,d ) = H∗(Mpar

r,d ).

There is a decomposition Apar = AD×Apar,0, and correspondingly χpar = χD×χ′, where

Apar,0 is the Hitchin base for the D-twisted Higgs bundles, AD := Cr|D|−1 and

χD :Mpar
r,d → AD

is the map sending (E , θ, F ) to the ordered collection of the eigenvalues of resp θ for all

p ∈ D. Note that the sum of all the eigenvalues is always zero, hence the rank of AD.
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The map χD is smooth, i.e. it is a surjective submersion. In fact, Mpar
r,d is known to be

a Poisson variety and the fibers of χD are precisely the symplectic leaves. Moreover, the

image of the tangent map at every point is dual to the kernel of the Poisson tensor, so the

dimension of the image of the tangent map is constant. From Corollary 1.3.3 in [HRV15]

we deduce

Proposition 8.6. For each µµµ ∈ AD the restriction map H∗(Mpar
r,d ) → H∗(χ−1

D (µµµ)) is an

isomorphism.

In particular, the cohomology of all the fibers of χD are pure.

Proposition 8.7. The restriction map i∗ : H∗(Mpar
r,d ) → H∗(Mparell

r,d ) is injective, i.e.

H∗(Mpar
r,d ) = H∗

pure(M
parell
r,d ).

Proof. For a generic (in the sense of [HLRV11, Def. 2.1.1]) µµµ ∈ AD, the identity∑
p

respTr(θ) = 0

implies that any parabolic Higgs bundle in (E , θ, (Fp)p) ∈ χ−1
D (µµµ) is simple, which in turn

implies that the spectral curve of (E , θ) is reduced and irreducible, hence χ−1
D (µµµ) ⊂Mparell

r,d .

The composition

H∗(Mpar
r,d )

i∗−→ H∗(Mparell
r,d ) → H∗(χ−1

D (µµµ))

is an isomorphism by Proposition 8.6, and so i∗ is injective. □

We deduce from (8.1) that i∗ induces an isomorphism of tautological rings H∗(Mpar
r,d ) ≃

H∗
taut(M

parell
r,d ). By Theorem 3.6, i∗ preserves the perverse filtrations and becomes a map

of Lefschetz structures once a relatively ample class α ∈ H2(Mpar
r,d ) has been chosen. It

therefore has to be an isomorphism of Lefschetz structures on H∗(Mpar
r,d ) ≃ H∗

taut(M
parell
r,d ).

Theorem 8.5 implies

Corollary 8.8. The P = C conjecture holds for H∗(Mpar
r,d ), i.e. PmH

∗(Mpar
r,d ) is the span

of products of tautological classes
∏

i ψmi
(ξi) satisfying

∑
imi ≤ m + N , where N = (g −

1)r2 + |D|
(
r
2

)
+ 1.

8.4. Nilpotent parabolic case. Let us now denote by Mpar,0
r,d := χ−1

D (0) ⊂ Mpar
r,d the

moduli space parameterizing stable nilpotent parabolic Higgs bundles. The restriction of

the Hitchin morphism to Mpar,0
r,d induces the perverse filtration on H∗(Mpar,0

r,d ). Recall that

by Proposition 8.6, the restriction map H∗(Mpar
r,d ) → H∗(Mpar,0

r,d ) is an isomorphism.
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Proposition 8.9. The restriction isomorphism H∗(Mpar
r,d )

∼−→ H∗(Mpar,0
r,d ) identifies the

perverse filtrations on two sides.

Proof. For simplicity, let us write X =Mpar
r,d , X0 =Mpar,0

r,d , N = dimX, N0 = dimX0, and

n = N − N0. We have X0 = χ−1(A0) for A0 = {0} × Apar,0 ⊂ Apar a linear subspace of

codimension n.

Let X be the projectivization with respect to the C∗-action on X (see [Hau98]):

X =
(
X × C \ χ−1(0)× {0}

)
/C∗,

and let ∂X = X \ X. The spaces X and ∂X are projective. They are not necessar-

ily smooth, but the singularities are finite quotient singularities, so they are rationally

smooth. In particular, their cohomology is pure, and may be identified with their Borel-

Moore homology. We define X0 in an analogous fashion. The Hitchin map extends to

a projective morphism χ : X → A, where A := (A× C \ {0}) /C∗ is the corresponding

weighted projective space. This map restricts to χ0 : X0 → A0, where A0 ⊂ A is the

projective subspace associated to A0. Let L ∈ H2(X), resp. L0 ∈ H2(X0), be the pullback

of the hyperplane class from A.

Lemma 8.10. We have

H∗(X) = H∗(X)/LH∗(X), H∗(X0) = H∗(X0)/L0H
∗(X0)

Proof. Let U = X \ χ−1(0). Since U is the total space of a line bundle over ∂X, its

cohomology is pure, so the restriction map

H∗(X) → H∗(U) = H∗(∂X)

is surjective. The kernel of this map is identified with the homology of χ−1(0), and

therefore H∗(χ
−1(0)). Since χ is proper, H∗(χ−1(0)) is pure by duality. The restric-

tion map H∗(X) → H∗(χ−1(0)) is an isomorphism because the C∗-action retracts X

onto χ−1(0). Hence H∗(X) is pure, which implies the surjectivity of the restriction map

H∗(X) → H∗(X). By purity, the long exact sequence in Borel-Moore homology for X ⊂ X

yields the collection of short exact sequences

0 → H∗−2(∂X) → H∗(X) → H∗(X) → 0.

The composition H∗(X) → H∗(∂X) → H∗+2(X) is the multiplication by the fundamental

class [∂X] = L. We obtain a short exact sequence

H∗−2(X)
L−→ H∗(X) → H∗(X) → 0,
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as claimed. By dualizing this sequence and using the Poincaré duality we get a longer

exact sequence:

0 → H2N−∗+2(X) → H∗−2(X)
L−→ H∗(X) → H∗(X) → 0.

Finally, the same arguments apply for X0, X0. □

Let ι : X0 → X be the closed embedding. The operators ι∗, ι
∗ both commute with the

multiplication by L, i.e. ι∗L = L0ι
∗ and ι∗L0 = Lι∗. The composition ι∗ι

∗ is the operator

of multiplication by [X0] ∈ H2n(X). On the other hand, since X0 = χ−1(A0) and A0 is a

projective subspace, we have Ln = c[X0] where c > 0 is the multiplicity. So we have

ι∗ι
∗ = c−1Ln.

We claim that Im ι∗ ⊂ ImLn. To see this, let α = ι∗β, where β ∈ H∗(X0). Using the

isomorphism

ι∗ : H∗(X)/LH∗(X) → H∗(X0)/L0H
∗(X0),

we can lift β and write β = ι∗β′ + L0β
′′. This implies

α = c−1Lnβ′ + Lι∗β
′′.

Let α′ = ι∗β
′′. Repeating the argument for α′ and continuing in this fashion n times we

obtain α ∈ LnH∗(X).

Next, we claim that for any i ≥ 0 we have (ι∗)−1(KerLi0 + ImL0) ⊂ KerLi+n + ImL.

Indeed, suppose α ∈ H∗(X) is such that

ι∗α = β + L0β
′, Li0β = 0.

Applying ι∗ and using the previous statement we obtain c−1Lnα = ι∗β + Lι∗β
′ hence

c−1Lnα = ι∗β + Ln+1β′′ and

Li+n(α− cLβ′′) = cι∗L
iβ = 0,

which shows that α ∈ KerLi+n + ImL.

Now suppose α ∈ PiH
j(X0). By Theorem 3.6 this means that α can be represented in

H∗(X0) by an element of Wi+N0−j ⊂ KerLi+N0−j+1 + ImL. By the above, inside H∗(X)

the same element α can be represented by an element of KerLi+N−j+1, which implies

α ∈ PiH
j(X). Thus, the inverse of the pullback map ι∗ : H∗(X0) → H∗(X) preserves the

perverse filtration. Choosing a relatively ample line class ω ∈ H2(X), we obtain a map of
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Lefschetz structures, which is an isomorphism of vector spaces, hence also an isomorphism

of Lefschetz structures. □

Corollary 8.11. The P = C conjecture holds for H∗(Mpar,0
r,d ), i.e. PmH

∗(Mpar,0
r,d ) is the

span of products of tautological classes
∏

i ψmi
(ξi) satisfying

∑
imi ≤ m +N , where N =

(g − 1)r2 + |D|
(
r
2

)
+ 1.

Remark 8.12. From H∗(X) ∼= H∗(χ−1(0)) ∼= H∗(X0) we obtain another proof of the fact

that the restriction H∗(Mpar
r,d ) → H∗(Mpar,0

r,d ) is an isomorphism.

8.5. The classical case. We now make the assumption that gcd(r, d) = 1. Let Mr,d be

the moduli space of stable Higgs bundles of rank r and degree d. Choose a point p ∈ C

and let D = (p). Let Mpar,0
r,d be the moduli space of stable nilpotent D-parabolic Higgs

bundles (E , θ, (Fp)), with respect to a generic stability parameter. Let ι : M̃par,0
r,d ↪→Mpar,0

r,d

be the closed subvariety defined by the condition resp θ = 0. Then we have the forgetful

morphism π : M̃par,0
r,d → Mr,d, which turns M̃par,0

r,d into a relative flag variety over Mr,d

(indeed, a parabolic bundle (E , θ, (Fp)) satisfying resp(θ) = 0 is stable if and only if the

pair (E , θ) is stable in the usual sense). The codimension of M̃par,0
r,d in Mpar

r,d equals to
(
r
2

)
.

The relative dimension of M̃par,0
r,d over Mr,d is also

(
r
2

)
. Thus we have maps

A = π∗ι
∗ : H∗(Mpar,0

r,d ) → H∗−2(r2)(Mr,d), B = ι∗π
∗ : H∗(Mr,d) → H∗+2(r2)(Mpar,0

r,d ).

Let χ : Mr,d → A, χpar : Mpar,0
r,d → Apar,0 be the corresponding Hitchin maps, which are

both projective. The space A is identified with a linear subspace of Apar,0 so we may view

both Hitchin morphisms as taking values in Apar,0. Applying Proposition 3.8, we see that

both A and B preserve the perverse filtrations. Let

∆ :=
∏

1≤i<j≤r

(yp,i − yp,j) ∈ H2(r2)(Mpar,0
r,d ).

We have π∗(∆) = ±r! because the class ∆ is, up to a sign, the Euler class of the relative

tangent bundle of M̃par,0
r,d → Mr,d. The composition ι∗ι∗ is the multiplication by the Euler

class of the normal bundle of M̃par,0
r,d in Mpar,0

r,d , which is also given by ∆ up to a sign. So

we obtain

AB = π∗ι
∗ι∗π

∗ = π∗∆π
∗ = ±r!.

As M̃par,0
r,d ⊂ Mpar,0

r,d is the zero set of a vector bundle with Euler class ±∆, ∆ has to be a

multiple of the fundamental class [M̃par,0
r,d ] ∈ H2(r2)(Mpar,0

r,d ), and from ι∗ι∗ = ±∆ we obtain

[M̃par,0
r,d ] = ±∆.
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Theorem 8.13. P = C holds forMr,d, i.e the subspace PmH
∗(Mr,d) is the span of products∏

i ψmi
(ξi) satisfying

∑
imi ≤ m+N , where N = (g − 1)r2 + 1.

Proof. Let−N ′ be the perversity of 1 ∈ H0(Mpar,0
r,d ). We have±r! = A(∆) ∈ P−N ′+(r2)

H0(Mr,d),

so −N ≤ −N ′ +
(
r
2

)
. Conversely, ∆ = B(1) ∈ P−N . If −N < −N ′ +

(
r
2

)
, since ∆ is a

non-zero h-homogeneous element of weight −N ′ +
(
r
2

)
, we have

N ′ = N +

(
r

2

)
.

Consider a product of the form f =
∏

i ψmi
(ξi) ∈ H∗(Mr,d). Then

B(f) = ±∆f ∈ P∑
imi−N ′+(n2)

= P∑
imi−N ⇒ f = ± 1

r!
ABf ∈ P∑

imi−N ,

so that C ⊂ P . Conversely, let f ∈ PmH
∗(Mr,d). By Markman’s theorem, f can be

explicitly written as a polynomial in tautological classes. Write

B(f) = ∆f ∈ PmH
∗(Mpar,0

r,d ).

By P = C for Mpar,0
r,d we can write

∆f =
∑
k

λkgk (λk ∈ C),

where each gk is a monomial in tautological classes of the form
∏

i ψmi
(ξi) with

∑
imi ≤

N ′+m. Using the identification of H∗(Mpar,0
r,d ) with the pure part of the cohomology of the

corresponding moduli spaceMparell
r,d we see that the symmetric group Sr acts on H

∗(Mpar,0
r,d )

permuting the generators yp,r = ψ1(τp,r). Let ASym : H∗(Mpar,0
r,d ) → H∗(Mpar,0

r,d ) be the

corresponding antisymmetrization operator,

ASym =
1

r!

∑
σ∈Sr

(−1)|σ|σ.

We obtain

∆f =
∑
k

λk ASym(gk).

Each ASym(gk) is explicitly a product of ∆ and a linear combination of monomials of the

form
∏

i ψmi
(ξi) with

∑
imi ≤ N +m not containing the generators yp,i. Therefore we can

lift each of these and write

B(f) = ∆f = B

(∑
k

λ′kg
′
k

)
, λ′k ∈ C,
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where each gk is a monomial in tautological classes of the form
∏

i ψmi
(ξi) with

∑
imi ≤

N +m. Applying A we see that

f =
∑
k

λ′kg
′
k,

so the converse inclusion P ⊂ C is proved. □

Remark 8.14. The numberN , i.e. the negative of the perversity of 1 in the above statements

is always the dimension of the fibers of the Hitchin map.

Remark 8.15. It is clear from the above proof that H∗(Mr,d) is the anti-invariant part of

H∗(M̃par,0
r,d ). The corresponding statement on the Betti side was established in [Mel19]. The

anti-invariant part is clearly preserved by the operators D̃m,n(ξ)red for ξ ∈ H; in particular,

we have an action of H2 on H∗(Mr,d)[x, y] as in Corollary 7.5.

8.6. The weight filtration. Finally, let Xr,d be the Betti moduli space, i.e. the char-

acter variety for a compact or non-compact curve C with generic local monodromies, see

[HLRV11]. There is a decomposition turning H∗(Xr,d) into a graded ring

H∗(Xr,d) =
⊕
i

W2iH
∗(Xr,d) ∩ F iH∗(Xr,d),

whereW is the weight filtration and F is the Hodge filtration. The classes f ∈ W2iH
∗(Xr,d)∩

F iH∗(Xr,d) are said to be of pure weight i. In the case of a compact curve it is ex-

plained in [She16] that the standard tautological classes are of pure weight. More pre-

cisely, let E be the universal (topological) vector bundle on Xr,d × C; then the Chern

classes e′k(ξ) :=
∫
C
ck(E) ∪ γ are of pure weight k for all γ ∈ H∗(C). The non-abelian

Hodge theory provides a homeomorphism Xr,d ≃ Mr,d which is compatible with the uni-

versal (topological) vector bundle. In particular, the tautological classes above can be seen

as Chern characters of the universal vector bundle E on Mr,d × C instead.

Lemma 8.16. We have ψn(γ) =
p′n(γ)
n+1

+ ϵ, where ϵ is a linear combination of p′i(γ
′) with

i < n, γ′ ∈ H∗(C).

Proof. Let S = PC(Ω(D) ⊕ O), and π : S → C the natural projection. Recall that

the tautological sheaf F on Mr,d × S, is related to the tautological vector bundle E via

π∗(F ) = E. The relative Todd class of π is given by Tdπ = 1+(ξ+(g−1)ω), see Remark 7.1

for the notations. In particular, by Grothendieck-Riemann-Roch and projection formula
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we have

p′k(γ) =

∫
C

chk(E) ∪ γ =

∫
S

chk+1(F ) ∪ π∗γ +

∫
S

chk(F ) ∪ (ξ + (g − 1)ω) ∪ π∗γ

= pk+1(π
∗γ) + pk((ξ + (g − 1)ω) ∪ π∗γ).

On the other hand, by the definition (5.2) of ψn(γ) we have

ψn(γ) =
pn+1(γ)

n+ 1
+
∑

1≤i≤n

n!

i!
pi(Tdn+1−i γ) =

p′n(γ)

n+ 1
+ . . . ,

where dots stand for a linear combination of terms p′i(γ
′) with i < n, γ′ ∈ H∗(C). □

Shende’s result was extended to the parabolic character varieties in [Mel19]. Since the

parabolic tautological classes are already expressed in terms of the vector bundle E, see

Definition 7.7 and the discussion afterwards, the analogue of Lemma 8.16 (without the

factor 1
n+1

) holds for γ ∈ Hr,D. Thanks to relations between Chern classes and Chern

characters induced by (4.2), we see that

Span

{∏
i

e′ni
(γi) :

∑
i

ni ≤ n

}
= Span

{∏
i

p′ni
(γi) :

∑
i

ni ≤ n

}

= Span

{∏
i

ψni
(γi) :

∑
i

ni ≤ n

}
.

Altogether, we obtain

Proposition 8.17. The subspace W2mH
∗(Xr,d) is the span of products

∏
i ψmi

(ξi) satisfy-

ing
∑

imi ≤ m. □

Therefore the P = C statements in Corollary 8.11 and Theorem 8.13 are equivalent to

the claim Pi = W2(i+N).

Corollary 8.18. The P = W conjecture holds both in classical and parabolic setup. □
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