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Abstract. Given a smooth curve C , we de�ne and study analogues of KLR algebras and quiver Schur algebras,
where quiver representations are replaced by torsion sheaves on C . In particular, they provide a geometric real-
ization for certain a�nized symmetric algebras. When C = P1, a version of curve Schur algebra turns out to be
Morita equivalent to the imaginary semi-cuspidal category of the Kronecker quiver in any characteristic. As a
consequence, we argue that one should not expect to have a reasonable theory of parity sheaves for a�ne quivers.
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0. Introduction

0.1. Motivation. KLR algebras were introduced by Khovanov and Lauda [KL09] and Rouquier [Rou08] as
a tool for categori�cation of quantum groups. The geometric construction of this algebras was given by
Varagnolo and Vasserot [VV11] and Rouquier [Rou12]. The positive characteristic version of this construction
was done in [Mak15].

Let us recall this geometric construction. Let Γ be a quiver without loops and let � be the dimension vector.
To this data we can associate a complex variety Z� . Its points are parameterized by triples, consisting of a
representation of Γ having dimension � together with two full �ags of subrepresentations on it. Then the
algebra R(�) is isomorphic to the equivariant Borel-Moore homology HG�∗ (Z� ), where G� is a certain group of
gauge transformations. The union of categories of (graded, projective, �nitely generated) R(�)-modules can
be then equipped with induction and restriction functors. These functors categorify product and coproduct
in the quantum group U −

q (gΓ), where gΓ is the Kac-Moody Lie algebra associated to Γ.
One of our motivations was to generalize this construction to other objects. Namely, recall that by a the-

orem of Ringel-Green [Rin90, Gre95] the quantum group U −
q (gΓ) can be also realized as the spherical Hall

algebra of the category of representations of Γ. Another class of categories whose Hall algebras were actively
considered is categories CohC of coherent sheaves over smooth curves, see [Sch12] for an overview. In par-
ticular, starting with an elliptic curve, we get the elliptic Hall algebra, which was extensively studied under
many di�erent guises [MS17, BS12, Neg14, SV13]. Proceeding by analogy with quivers, we expect that KLR-
like algebras associated to the category CohC will provide an interesting categori�cation of the Hall algebra
of C .
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In the present paper, we are making �rst steps in this direction. Namely, given a smooth curve C we
consider the moduli stack TC = Tor C , which parameterizes torsion sheaves on C . Repeating the construction
of KLR algebras, we consider the moduli of triples, consisting of a torsion sheaf of length n together with two
full �ags of subsheaves. Its Borel-Moore homology gets equipped with a convolution product, and we call the
resulting algebra RC

n the curve KLR algebra. 1 Further, replacing full �ags by partial �ags, we de�ne and study
the curve Schur algebras SCn . We obtain the following explicit description of SCn , see Section 2 for notations.

Theorem A (Proposition 3.15). Let Pn = ⨁�∈Comp(n) PS�n . The algebra SCn can be identi�ed with the subalgebra

of End(Pn), generated by multiplication operators Pn ⊂ End(Pn), inclusions of invariants S�
′
� ∶ PS�n ↪ PS�′n

(split), and the merge operators

M�
�′ ∶ PS�′n → PS�n , M�

�′(P) = ∑
a∈S�/S�′

(y
�k
∏
i=1

�k+1
∏
j=1 (1 +

Δ�̃k−1+i,�̃k+j
x�̃k+j − x�̃k−1+i))

a

,

where �′ = (�1, … , �r ) is a composition of n, �̃k = ∑1≤i≤k �i , and � = (�1, … , �k−1, �k + �k+1, �k+2, … , �r ).
We also provide an explicit basis and a diagrammatic presentation for SCn , see Proposition 3.10.
It turns out that the integral version of SCn for C = P1 is intimately related to the representation theory of

KLR algebras in type ŝl2.

0.2. Semi-cuspidal categories. Let Γ be a quiver of a�ne type. It is known [McN17b, KM17b] (under some
conditions on the characteristic of the base �eld) that the KLR algebra R(�) is properly strati�ed, see [Kle15]
for the de�nition of this property. Informally speaking, this means that one can slice the category of R(�)-
modules into a collection of categories C(n� )−mod, where � is a positive root. The category C(n� )−mod is
the category of semi-cuspidal R(n� )-modules. It is easy to describe if � is a real root, but becomes much more
complicated when � = � is the imaginary root. In the present paper, we shed some light on this problem by
�nding an explicit diagrammatic algebra, which is Morita equivalent to C(n�) in any characteristic.

When working over k a �eld of characteristic zero, this was already done in [KM19]. In this case C(n�)
can be shown to be Morita equivalent to e0C(n�)e0 for some simple and explicit idempotent e0. For any Z≥0-
graded symmetric algebra F , Kleshchev and Muth introduce a�nized symmetric algebra Wn(F ) of rank n,
and then prove an isomorphism e0C(n�)e0 ≃ Wn(F ) for a speci�c choice of F . In particular, in type ŝl2 one
has F = k[c]/(c2).

In positive characteristic, the algebras C(n�) and e0C(n�)e0 are not Morita equivalent any more. It is possi-
ble to �nd a more complicated idempotent e such that the algebras C(n�) and eC(n�)e are Morita equivalent.
However, no explicit description of eC(n�)e is known in general.

The starting point of our contribution is the following observation:

Theorem B (Proposition 4.16, Section 5.4). We have an isomorphism of algebras RC
n ≃ Wn(H ∗(C,Q)). When

C = P1, this isomorphism holds over any �eld k.

This suggests that the curve Schur algebras SCn can be related to the imaginary semi-cuspidal categories.
In e�ect, let Γ be the Kronecker quiver, and C = P1. Using the well-known derived equivalence between
coherent sheaves on P1 and representations of Γ, we produce a homomorphism Φn ∶ eC(n�)e → SP1

n . It is
constructed in a geometric fashion, and is de�ned over any �eld, as well as k = Z. It turns out that Φn is
bijective if k is a �eld of characteristic zero and is injective for k = Z, with the image S̃P1

n ∶= ImΦn being a
sublattice of full rank in SP1

n . Note that Φn is not an isomorphism; this discrepancy is related to the fact that
the integral cohomology groups of the stack TC are not generated by tautological classes, see Example 5.7
and Proposition 7.37. In conclusion, we get the following result:

Theorem C (Theorem 7.39). Let Γ be the Kronecker quiver, and let � be the imaginary simple root. Denote
S̃

Fp
n = S̃P1

n ⊗Z Fp . For any n > 0 and p prime, we have an isomorphism eCFp (n�)e ≃ S̃
Fp
n .

1KLR algebras are often called “quiver Hecke algebras”, so we could call RC
n “curve Hecke algebra”. We opted to not use this

terminology, since Hecke algebras already appear in too many di�erent contexts
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Note that H ∗(P1,k) ≃ k[c]/(c2), so as a byproduct we obtain a new geometric proof of the isomorphism of
Kleshchev-Muth in type ŝl2.

The sublattice S̃P1
n can be described in terms of Theorem A. Namely, we give a certain explicit sublattice

P̃n ⊂ Pn which is preserved under the action of S̃P1
n . The algebra S̃P1

n is then generated by multiplication
operators in P̃n, together with split and merge operators S�′� , M�

�′ . This allows us to obtain a diagrammatic
description, an explicit basis and a polynomial representation P̃n ⊗Z Fp for S̃

Fp
n . We conjecture that this

representation is faithful, see Conjecture 7.40.
In Appendix A we discuss a consequence of the fact that the map Φn is not surjective over Fp . We show

that for the Kronecker quiver the �bers of the �ag version of Springer resolution have even cohomology
groups over Z. For a quiver of Dynkin type, this would be enough to exhibit a nice theory of parity sheaves
on the quiver variety [Mak15]. However, the existence of such theory for the Kronecker quiver would imply
surjectivity of Φn.

0.3. Futurework. We expect that applying our approach to curves with orbifold points will shed light on the
semi-cuspidal category C(n�)−mod in other types. It would be also interesting to deduce some combinatorics
of C(n�)−mod from our explicit description of eC(n�)e.

Concerning the categori�cation questions, the next logical steps would be to consider Schur algebras for
the whole category CohC , including sheaves of positive rank. We plan to investigate this in the future. For
C = P1, partial results in this direction were obtained in [SVV19]. For C = E an elliptic curve, we hope to
obtain a categori�cation of elliptic Hall algebra, compatible with the action of the braid group B3 onDb(Coh E).

0.4. Organization of paper. We start by recalling the theory of convolution algebras and their localization
in Section 1. Next, we introduce the moduli stack of (�ags of) torsion sheaves on a smooth curve and prove
some its properties in Section 2. In Section 3 we introduce curve Schur algebras SCn , and construct a basis and
a faithful representation for them. A certain simple subalgebra of SCn is described by generators and relations
in Section 4. In Section 5, we discuss in detail the integral version of SCn for C = P1. In Section 6, we recall
some properties of KLR algebras and their divided power version. In Section 7, we provide a description of
the semi-cuspidal category of the Kronecker quiver in positive characteristic in terms of SCn . Finally, these
results are used in Appendix A to show that there is no satisfactory theory of parity sheaves for the Kronecker
quiver.

Acknowledgments. A crucial role in the genesis of this paper was played by Alexander Kleshchev. We thank
him for numerous fruitful discussions, for sharing his insight into semi-cuspidal representations of KLR al-
gebras and particularly for pointing out to us that the map Φn should not be surjective over Z. The authors
would also like to thank Anton Mellit, Olivier Schi�mann, Éric Vasserot for stimulating discussions. This col-
laboration between the two authors started from a conversation at the workshop “Geometric representation
theory and low-dimensional topology” at ICMS, Edinburgh, and was in parts conducted during the thematic
trimester on representation theory at IHP, Paris.

Notations. All varieties we consider are de�ned over C, and dim(−) always means the complex dimension.
The coe�cient ring of H∗ is denoted by k. We always assume either that k is a �eld, or k = Z. In Sections 3
and 4 we additionally assume that k is a �eld of characteristic zero. We will almost always drop the coe�cient
ring from the notation.

For any G-variety X we de�ne H ∗
G(X ) ∶= HG

2 dimX−∗(X ) by abuse of notation. When X is smooth, we recover
the usual cohomology groups, while for general X this is usually not true. We introduce this notation solely
for the purpose of getting correct gradings later on, and will avoid it whenever possible. We will never consider
usual cohomology groups for singular varieties.

1. Localization of convolution algebras

1.1. Borel-Moore homology and re�nedpullbacks. Recall that for an algebraic varietyX , its Borel-Moore
homology is de�ned as relative homology with respect to some compacti�cation of X . In what follows, we
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will drop the superscript and write H∗(X ) = H BM
∗ (X ). For any proper map f ∶ X → Y , we have the direct

image f∗ ∶ H∗(X ) → H∗(Y ). For any lci2 morphism g ∶ X → Y , we have the pullback map

g∗ ∶ H∗(Y ) → H∗+2d (X ),
where d is the relative dimension of g. Further, let ℎ ∶ Y ′ → Y be an arbitrary morphism. Form a cartesian
square

(1)
Y ′ ×Y X Y ′

X Y

g′

ℎ′ ℎ
g

Then one can de�ne the re�ned pullback (g′)!g ∶ H∗(Y ′) → H∗+2d (Y ′ ×Y X). In particular, if X, Y ′ ⊂ Y are closed
subvarieties, and both X and Y are smooth, we get a restriction map H∗(Y ′) → H∗−2codimYX (Y ′ ∩ X).
Remark 1.1. As notation suggests, (g′)!g depends on the whole cartesian square (1), and not just the map g′.
However, we will often drop the subscript, when the choice of cartesian square is clear.

For a closed embedding of smooth varieties X ⊂ Y , we denote its normal bundle by NXY . We say that a
diagram is a �ber diagram if all squares in it are cartesian.

Proposition 1.2. (a) For any �ber diagram

Y ′ ×Y X2 Y ′ ×Y X1 Y ′

X2 X1 Y

g′2 g′1

g2 g1

we have (g′1◦g′2)!g1◦g2 = (g′2)!g2◦(g′1)!g1 , provided that g1 and g2 are lci;
(b) consider a �ber diagram

X ′′ Y ′′

X ′ Y ′

X Y

g′′

f ′ f
g′

g

with both g and g′ regular embeddings. Then (g′′)!g = e(ℎ′∗(NXY )/NX ′Y ′) ⋅ (g′′)!g′ ;
(c) consider a �ber diagram as in (b). If f is proper, then (g′)!g◦f∗ = f ′∗ ◦(g′′)!g ;
(d) consider a �ber diagram

X ′′ Y ′′ Z ′

X ′ Y ′ Z

X Y

g′′

ℎ′′ ℎ′ ℎ
g′

g

with g and ℎ lci morphisms. Then (g′′)!◦(ℎ′)! = (ℎ′′)!◦(g′)!;
(e) suppose g in (1) is a closed embedding. Then (g′)!◦(g′)∗(−) = e((ℎ′)∗NXY ) ⋅ −.

Proof. For (a-d), see [FM81] and [Ful98, Chapter 6]. The part (e) follows by setting Y ′′ = X ′ in (c), and further
Y ′ = Y ′′ = X ′ in (b). �

2that is, a composition of a regular embedding and a smooth map
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1.2. Localization theorem. Let T ⊂ G be a reductive group together with a �xed maximal torus, and denote
by W the corresponding Weyl group. In this paper, we will be chie�y considering equivariant Borel-Moore
homology groups. Proposition 1.2 extends to the equivariant case by the argument in [AHR15, Appendix B.9].
For brevity, we will always denote the G-equivariant cohomology of a point H ∗

G(pt) by HG .

Proposition 1.3 ([Hsi75, III.§1]). Let X be a G-variety, and k a �eld of characteristic 0. Then HG
∗ (X ,k) ≃

H T
∗ (X ,k)W .

Let X be a T -variety. The homology group H T
∗ (X ) is naturally an HT -module; we will write H T

∗ (X )loc for
its localization H T

∗ (X ) ⊗HT Frac(HT ).
Let X T be the subvariety of points in X �xed by T , and the inclusion iX ∶ X T ↪ X the natural embedding.

Proposition 1.4 (Localization theorem). Let T be an algebraic torus, and X a T -variety. Suppose that X T is
not empty. Then the Frac(HT )-linear map

iX∗ ∶ H T
∗ (X T )loc → H T

∗ (X )loc
is an isomorphism. Moreover, assume that k is a torsion-free Z-module. Then for any T -equivariant closed
embedding X ↪ Y into a smooth T -variety Y , the map

(iX )!iY ∶ H T
∗ (X )loc → H T

∗ (X T )loc
is an isomorphism as well.

Proof. First claim is proved in [Hsi75, III.§1]. Second claim is obtained by applying Proposition 1.2.(e). �

Remark 1.5. Note that we only need the assumption on k to assure that the Euler class in Proposition 1.2.(e)
is not a zero divisor. Thus the proposition will hold for other k, if we can check this condition separately.

Applying Proposition 1.2.(e), we get a useful corollary.

Lemma 1.6. Let f ∶ X ′ → Y ′ be a projective morphism of smooth T -varieties, Y ⊂ Y ′ is a closed T -stable
subvariety, and X = Y ×Y ′ X ′. Assume that �xed point sets X T , Y T are non-empty, and let fT ∶ X T → Y T be the
restriction of f . Then we have a base change formula in localized homology groups:

i!Y f∗(−) = e(N(Y ′)TY ′) ⋅ fT∗ (e(N(X ′)TX ′)−1 ⋅ i!X (−)) .
Corollary 1.7. Let X be a G-variety. Assume that HG

∗ (X ) is a torsion-free HG-module. Then the composition

HG
∗ (X ) ⊂ H T

∗ (X ) → H T
∗ (X )loc ≃ H T

∗ (X T )loc
is injective.

Proof. It’s enough to check that for any a ∈ HG
∗ (X ), its annihilator inside the HT -module H T

∗ (X ) is trivial.
Since HG

∗ (X ) is torsion free, we have Ann(a) ∩ HG = 0. If pa = 0 for p ∈ HT , then ∏�∈W �(p) lies in the above
intersection. Since HT is integral, we conclude that p = 0. �

Note that for aG-varietyX , its homologyH T
∗ (X T ) acquires aW -action, induced diagonally from the actions

on X T and T . We therefore obtain an embedding HG
∗ (X ) ⊂ (H T

∗ (X T )loc)
W .

1.3. Convolution algebras. Let � ∶ Y → X be a proper morphism between smooth varieties. For any
k ≥ 1, de�ne

Z (k) = Y ×X … ×X Y⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
k times

,

and let jk ∶ Z (k) ↪ Y k+1 be the natural embedding. We will write Z = Z (1), Z (0) = Y , and j = j1.
For any �nite set of indices I = {i1 < i2 < … < ik}, where ik ≤ n, consider the natural projections onto the

coordinates contained in I :
pI = pi1…ik ∶ Y n → Y k .

We will denote the corresponding restrictions Z (n−1) → Z (k−1) by the same letter. In particular, for any
1 ≤ i ≤ k + 1, we have a map pi ∶ Z (k) → Y . Since Y is smooth, the embedding (pi , idZ ) ∶ Z (k) ↪ Y × Z (k) is
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regular, so that the pullback along it provides us with an H −∗(Y )-module structure on H∗(Z (k)). We will denote
this action by 
 ⋅i x , where 
 ∈ H ∗(Y ), x ∈ H∗(Z (k)).

Consider the following diagram with cartesian square:

Z × Z Z (2) Z

Y 2 × Y 2 Y 3

(p12,p23) p13

For each 
 ∈ H ∗(Y ), we have the following convolution product on H∗(Z ):
∗
∶ H∗(Z ) ⊗ H∗(Z ) → H∗−2 dimY−deg 
 (Z ),
a ⊗ b ↦ (p13)∗ (
 ⋅2 (p12, p23)!(a ⊗ b)) ,

where the re�ned pullback (p12, p23)! is de�ned with respect to the regular embedding Y (3) ↪ Y (2) × Y (2).
Proposition 1.8. A
 = A
 (�) = (H∗(Z ), ∗
 ) is an associative algebra.

Proof. We have the following diagram with cartesian square:

Z (3) Z (2) Z

Y × Z (2) × Z Y × Z × Z

Y × Y × Z × Z × Z

(p3,p123,p34)

p134

(p2,p12,p23)

p13

idY ×(p2,p12,p23)×idZ

idY ×p13×idZ

Lemma A.12(2) in [Min20] shows that we can do base change along the square. In particular,
(a ∗
 b) ∗
 c = p14∗(p2 × p3 × p12 × p23 × p34)!(
 ⊗ 
 ⊗ a ⊗ b ⊗ c).

Using a similar diagram, we can prove the same equality for a ∗
 (b ∗
 c), so that the associativity follows. �

In the same fashion, we have a map

(2)
H∗(Z ) ⊗ H∗(Y ) → H∗− deg 
 (Y ),
a ⊗ x ↦ (p1)∗((
x) ⋅2 a).

The following statement is proved analogously to Proposition 1.8.

Proposition 1.9. The map (2) de�nes an A
 -module structure on H∗(Y ).
Notation. In what follows, we will call 
 the twist, and drop the subscript if 
 = 1.
Example 1.10. Consider the identity map Y → Y . The associated convolution algebra is simply H∗(Y ) to-
gether with intersection product. Moreover, the closed embedding Y ≃ Y ×Y Y ↪ Y ×X Y = Z de�nes a
homomorphism of algebras H∗(Y ) → A, and restriction of the action in Proposition 1.9 to H∗(Y ) coincides
with the left action of H∗(Y ) on itself.

Example 1.11. Suppose Y is proper, and consider the map Y → pt . The associated convolution algebra is the
matrix algebra End(H∗(Y )). Moreover, the closed embedding Z = Y ×X Y ↪ Y × Y de�nes a homomorphism
of algebras A → End(H∗(Y )), which coincides with the map induced by (2).

1.4. Localization of convolution algebras. Suppose now that T is an algebraic torus, X and Y are T -
varieties, and � is T -equivariant. Note that ZT = Y T ×X T Y T . Let us further assume that �Y T ∶ Y T → X T is a
submersion, so that Z (k)T is smooth for any k ≥ 1. Therefore, Proposition 1.8 produces algebra structures on
H T
∗ (Z ) and H T

∗ (ZT )loc. Let us call these algebras A∙ and AT
∙ respectively, where subscripts stand for the twist.

Let e(Y ) ∈ H ∗
T (Y T ) denote the equivariant Euler class of the normal bundle NY TY .

Proposition 1.12. The localization map i!Z induces an algebra homomorphism A → AT
e(Y )−1 .
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Proof. Consider the localization diagram:

Z × Z Z (2) Z

ZT × ZT Z (2)T ZT

p12×p23 p13

iZ ×iZ
pT qT

iZ(2) iZ

Note that the left square is cartesian, while the one on the right is only commutative. By Proposition 1.2.(d),
we have

(iZ (2))!iY4 ◦(p12 × p23)
! = (pT )!p12×p23◦(iZ×Z )!iY4 .

On the other hand, by Lemma 1.6 we have
i!Zp13∗(−) = qT∗(e(NY 4TY 4)−1f ∗T (e(NY 2TY 2)) ⋅ (iZ (2))!iY4 (−))

= qT∗ (e(Y )
−2 ⋅2 (iZ (2))!iY4 (−))

Finally, Proposition 1.2.(b) shows that
(pT )!p12×p23 = e(Y ) ⋅2 p∗T .

Putting everything together, we get

i!Z ◦p13∗◦(p12◦p23)!(−) = qT∗ (e(Y )
−2 ⋅2 (iZ (2))!iY4 ◦(p12◦p23)

!(−))
= qT∗ (e(Y )−2 ⋅2 (pT )!p12×p23◦i!Z 2(−))
= qT∗ (e(Y )−1 ⋅2 p∗T ◦i!Z 2(−)) ,

which proves that i!Z commutes with multiplication. �

Proposition 1.13. We have a commutative square

A ⊗ H∗(Y ) H∗(Y )

AT
e(Y )−1 ⊗ H T

∗ (Y T )loc H T
∗ (Y T )loc

i!Z ×i∗Y i∗Y

where the horizontal maps are de�ned by (2).

Proof. Analogously to Proposition 1.12, we have
i∗Y (p1)∗(p2 × id)∗ = (p1T )∗ (e(Y )−1 ⋅ i∗Z ◦(id ×p2)∗)

= (p1T )∗ (e(Y )−1 ⋅ (id ×p2T )∗ ⋅ (iZ × iY )∗) ,
which proves the statement. �

Remark 1.14. Suppose Y T is proper, and write 
 = e(Y ). Consider the following commutative square:

Z Y × Y

ZT Y T × Y T

j

jT

iZ iY2

Similarly to Proposition 1.12, the composition i∗Y 2◦j∗ ∶ H T
∗ (Z ) → H T

∗ ((Y T )2)loc de�nes a homomorphism

(3) A → Enddeg 
 H∗(Y T )loc,
where the product on the right is given by (a, b) = 
−1 ⋅ (a◦b). Lemma 1.6 applied to the square above shows
that (3) factors as

A
i!Z←←←←←←←←←←←←→ AT


−1 → Enddeg 
 H∗(Y T )loc,
where the second map is de�ned as in Example 1.11.
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1.5. Convolution from �nite group action. Let us conclude this section with an easy example, which will
become useful later. Namely, let Γ be a �nite group acting on a smooth variety X , and set Y = Γ × X , with
� ∶ Y → X being the projection. We clearly have Z = Γ2 × X , and

(4) H∗(Y ) ≃ k[Γ] ⊗ H∗(X ), H∗(Z ) ≃ k[Γ]⊗2 ⊗ H∗(X ).
Fix a class 
 ∈ H ∗(X ), and let


 ◦ = ∑
g∈Γ

g ⊗ 
 g ∈ H∗(Y ),

where xg denotes the image of x ∈ H∗(X ) under the action of g ∈ Γ. Consider the algebra A
 ◦ . As a vector
space, it is isomorphic to H∗(Z ), while the product is given by

(5) (g1 ⊗ g2 ⊗ x) ∗ (ℎ1 ⊗ ℎ2 ⊗ y) = �g2,ℎ1(g1 ⊗ ℎ2 ⊗ xy
 g2),
Note that if we equip Y = Γ × X with diagonal Γ-action, � becomes Γ-equivariant. Moreover, 
 ◦ ∈ H∗(Y ) is

a Γ-invariant class. Therefore, Γ acts on A
 ◦ via algebra automorphisms; under the isomorphism (4), it gets
identi�ed with the diagonal action on k[Γ]⊗2 ⊗H∗(X ). Consider the Γ-invariant subalgebra AΓ


 ◦ ⊂ A
 ◦ . Its basis
is given by elements

�(g,x) = ∑
ℎ∈Γ

ℎ ⊗ ℎg ⊗ xℎ.

Using the formula (5), we get

�(g,x) ∗ �(ℎ,y) = ∑
f1,f2∈Γ

�f1g,f2(f1 ⊗ f2ℎ ⊗ x f1(y
 )f2) = ∑
f ∈Γ

f ⊗ f gℎ ⊗ x f (y
 )f g(6)

= �(gℎ,x(y
 )g ).

In particular, assume that 
 is invertible and of even degree. Denote �̃(g,x) = �(g,x
−1). Then �̃(g,x) ∗ �̃(ℎ,y) =
�̃(gℎ,xyg ), so that AΓ

� ∗
 is isomorphic to the semi-direct tensor product H∗(X )o C[Γ].
In the same way, H∗(Y )Γ is an AΓ


 ◦-module. We have

H∗(X ) = H∗(Y )Γ ↪ H∗(Y ), x ↦ x ◦.
Under this identi�cation, the action is given by

(7) �(g,x).y = x(y
 )g ,

or equivalently �̃(g,x).y = xyg 

g


 . Setting  ̃y = y
−1, we get �̃(g,x). ̃y =  ̃xyg .

Remark 1.15. The action map a ∶ Y = Γ × X → X is Γ-equivariant, where Γ acts by multiplication on the
�rst coordinate of Y . It is easy to check that the map Y → Y , (g, x) ↦ (g, g.x) induces an isomorphism of
algebras AΓ

� ∗
 (a) ≃ AΓ

 ◦(�).

2. Torsion sheaves on curves

2.1. Flag varieties. In this subsection, we recall some standard facts about �ag varieties.
For each n, consider Cn together with its standard basis e1, … , en, and let Vk = ⨁k

i=1 Cei for any 1 ≤ k ≤ n.
Let Gn = GL(Cn), Sn the symmetric group on n symbols, and let Tn ⊂ Bn ⊂ Gn be the maximal torus and the
Borel subgroup, associated to the basis above. We call a tuple of positive integers � = (�1, … �k) a composition
of n, if ∑i �i = n (the length k is not �xed), and denote byComp(n) the set of thereof. We also set �̃i = �1+…+�i .
We introduce the following index subsets of Z2:

N� = ⋃
0≤i<j≤r−1

[�̃i + 1, �̃i+1] × [�̃j + 1, �̃j+1],

I� = N� ∪ (⋃
i
[�̃i + 1, �̃i+1]2) ⧵ {(i, i) ∶ 1 ≤ i ≤ n} .
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For each � ∈ Comp(n), denote

S� = S�1 × … ×S�k ⊂ Sn, G� = G�1 × … × G�k ⊂ Gn, P� = G�Bn.
The partial �ag variety Gn/P� will be denoted by F�; we will also write Fn ∶= F1n for the complete �ag
variety.

One can identify Sn/S� with the set of minimal length coset representatives, which we denote by S�:

S� =
{
� ∈ Sn ∣ �(i) < �(j) if �̃k < i < j ≤ �̃k+1 for some k

}
.

We have analogous identi�cations for right and double cosets:

S�⧵Sn ≃ S� ∶= (S�)−1 =
{
�−1 ∣ � ∈ S�} ,

S�⧵Sn/S� ≃ S� � ∶= S� ∩S�.
For any w ∈ Sn, let Fw ∈ F� be the �ag w.V�1 ⊂ w.V�1+�2 ⊂ … ⊂ Cn. Note that Fw depends only on wS�.

The �ags Fw are precisely the Tn-�xed points in F�. Moreover, they are in one-to-one correspondence with
left Bn-orbits in F�:

F� = ⨆
w∈S�

Bn.Fw .

Let us denote O�
w = Bn.Fw ⊂ F�; we will omit the superscript when the choice of parabolic subgroup is clear.

Each of these strata is an a�ne space.
The Bruhat order on Sn induces a partial order on S�. It coincides with the orbit closure order on F�:

∀w1, w2 ∈ S�, [w1] ≤ [w2] ⇔ Ow1 ⊆ Ow2 .
For any two composition �, � ∈ Comp(n), the orbits in F� ×F� with respect to the diagonal action of Gn

are parametrized by double cosets. Moreover, we have two strati�cations, the �rst one is compatible with the
Gn-action, the second one is a strati�cation by a�ne spaces:

(8) F� ×F� = ⨆
w∈ S� �

Ωw = ⨆
w∈ S� �

⎛
⎜
⎜
⎜
⎜
⎝

⨆
(w1,w2)∈S�×S�

w−1
1 w2∈S�wS�

Ow1,w2

⎞
⎟
⎟
⎟
⎟
⎠

.

where Ωw = Gn.(Fe , Fw ), and Ow1,w2 = O��
w1,w2 = Ωw ∩ (Ow1 ×F�). Note that each strata Ow1,w2 contains exactly

one Tn-�xed point (Fw1 , Fw2) ∈ Ow1,w2 .
For later use, we denote Pw�� ∶= P� ∩w.P� = StabGn (Fe , Fw ). It is clear that Pw�� retracts to the reductive group

Gw
�� ∶= G� ∩ w.G�, whose Weyl group is given by S� ∩ w.S�.
We will write H ∗

Tn (pt) = k[x1, … , xn], where xi is the �rst Chern class of the line bundle Cei , and deg xi = 2.
We will use xi and Cei interchangeably. In accordance with Proposition 1.3, we have

H ∗
Gn (pt) = k[x1, … , xn]Sn , H ∗

Gn (F�) = H ∗
P� (pt) = k[x1, … , xn]S� .

The Euler classes of tangent spaces at Tn-�xed points are expressed by the following formulae:

e(TFwF
 ) = ∏
(i,j)∈wN�

(xj − xi), e (T(Fw1 ,Fw2 )Gn.(Fw1 , Fw2)) = ∏
(i,j)∈w1N�∪w2N�

(xj − xi).

2.2. Torsion sheaves on a smooth curve. LetC be a smooth projective curve over C, and denote byO = OC
its structure sheaf. Let T = Tor C be the moduli stack of torsion sheaves on C . It has a decomposition into
connected components

T = ⨆
n∈Z≥0

Tn,

where Tn stands for the moduli stack of torsion sheaves of degree n.
The stack Tn possesses an explicit presentation as a quotient. Namely, let Quotn(Cn ⊗ O) be the Quot-

scheme for constant Hilbert polynomial PE = n. Recall (see [LP97] for details) that its C-points are given by
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quotients ' ∶ Cn ⊗ O � E, where E is a torsion sheaf of degree n. This Quot-scheme is smooth, and its
tangent space at ' is

(9) T'Quotn(Cn ⊗ O) ≃ Hom(Ker ',E).
Moreover,Quot-scheme has a naturalGn-action by automorphisms of Cn⊗O. De�neQn as its open subscheme,
consisting of quotients which induce isomorphism on global sections:

Qn =
{
' ∶ Cn ⊗ O� E ∣ H 0(') is an isomorphism

}
⊂ Quotn(Cn ⊗ O).

Note that Qn inherits Gn-action.

Lemma 2.1 ([LP97]). We have an isomorphism of stacks [Qn/Gn] ≃ Tn.

In particular, each Tn is smooth, since the lemma above provides it with a smooth atlas.
When n = 1, we have isomorphisms Quot1(O) ≃ Q1 ≃ C , and the action of G1 ≃ Gm is trivial. In view of

this, denote by pij ∶ Q1 × Q1 × C ≃ C × C × C → C × C the natural projections (as in Section 1.3).

Lemma 2.2 ([Min20, Lemma 3.2]). Let K,E ∈ Coh(Q1 × C) ≃ Coh(C × C) be the universal families of kernels
and images of quotients O → E respectively. Then

p12∗Hom(p∗13K, p∗23E) ≃
x2
x1
OC×C (Δ),

where Δ ⊂ C × C is the diagonal.

Notation. When working with Qn
1 , we will write Ki = p∗i,n+1K, Ei = p∗i,n+1E, and further denote the sheaf

p1…n∗Hom(Ki ,Ej) of global sections along C by Hom(Ki ,Ej).

By [Min20, Lemma 3.1], we have an identi�cation

QTnn = (Q1)n = Cn.
The normal bundle to the �xed point set NQn

1Qn is given by the following formula:

NQn
1Qn = (TQn)|Qn

1 /TQn
1 = ⨁

i≠j
Hom(Ki ,Ej) = ⨁

i≠j

xj
xi
O(Δij),(10)

where Δij ⊂ Cn is the preimage of Δ under the natural projection pij ∶ Cn → C2.
For any I ⊂ [1, n], write VI = ⨁i∈I Cei . Let S ∈ 2[1,n] be a collection of subsets of [1, n]. Let S ∈ 2[1,n] be

the smallest collection which contains S and is stable under taking intersections and complements. It gives
rise to a disjoint union [1, n] = ⨆j Ij , with subsets Ij being subsets in S, which are minimal under inclusion.
Consider the subset Q̃S ⊂ Qn consisting of quotients ' ∶ Cn � E, such that

(11) H 0(')|VI⊗O ∶ VI → H 0(Im '|VI⊗O)
is an isomorphism for any I ∈ S. Further, we denote QS ∶= ∏j QVIj ⊗O.

Lemma 2.3. Q̃S is a smooth closed subvariety of Qn. More speci�cally, Q̃S is a vector bundle over QS .

Proof. If S = {I} consists of one subset, then Q̃S is closed in Qn by [Min20, Proposition 1.8]. For general S, Q̃S
is closed as an intersection of closed subvarieties.

Let I ⊂ [1, n], and J its complement. Consider an action of C∗ on Cn, which has weight 1 on VI and is
trivial on VJ . This induces an action aI of C∗ on Qn. Moreover, analogously to [Min20, Lemma 3.1] we have
(Qn)C

∗ = QVI⊗O × QVJ⊗O, and the corresponding attracting set is Q̃{I}.
For a general S, consider an action of torus TS = ∏I ∈S(Gm)I on Qd , where for each I the action of (Gm)I is

given by aI . Taking intersections, we see that the �xed point set of this action is QS , and the attracting set is
Q̃S . Białynicki-Birula theorem [Bia73] then implies that Q̃S is a vector over QS , and as such is smooth. �
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Let � = (�1, … , �k) be a composition of n. Consider the stack of �ags of torsion sheaves of type �:

F� = {0 = E0 ⊂ E1 ⊂ … ⊂ Ek ∶ deg (Ei/Ei−1) = �i} .
The stack F� has a quotient presentation analogous to Lemma 2.1:

F� ≃ [Q̃�/P�].
Here, Q̃� = Q̃S for S = {[1, �̃i]}ki=1; we will also call this collection of intervals � by abuse of notation. Analo-
gously to (10), we have

(12) NQn
1 Q̃� = (T Q̃�)|Qn

1 /TQn
1 = ⨁

(i,j)∈[1,n]2⧵N�i≠j

Hom(Ki ,Ej) = ⨁
(i,j)∈I�

xi
xj
O(Δij).

We have maps
F�

T� Td

q� p� q�(E1 ⊂ E2 ⊂ … ⊂ Ek) = (E1,E2/E1, … ,Ek/Ek−1),
p�(E1 ⊂ E2 ⊂ … ⊂ Ek) = Ek ,

where T� ∶= T�1 ×… × T�k . Note that the map q� is not representable, since it is not faithful on automorphism
groups of points. However, it is a stack vector bundle, that is it comes from a two-term complex of vector
bundles on the base, see [GHS11, Corollary 3.2]. For instance, when k = 2, this complex is R HomC (E1,E2)[1],
where Ei is the universal sheaf on T�i × C . In particular, pulling back along q� induces an isomorphism
H ∗(F�) ≃ H ∗(T�).

On the other hand, p� is induced by the embedding Q̃� ↪ Qn:

p� ∶ F� ≃ [Q̃�/P�] ≃ [Gn ×P� Q̃�/Gn] → [Qn/Gn] ≃ Tn.
In particular, it is a projective morphism.

Denote Y� = Gn ×P� Q̃�. Then (Y�)Tn = Sn/S� × Cn, and the projection (Y�)Tn → QTnn gets identi�ed with
the projection Sn/S� × Cn → Cn.

Let us denote Pn = Pn(C) = H ∗(Cn)[x1, … , xn], where deg xi = 2.
Proposition 2.4 ([Hei12, Theorem 1]). We have H ∗(Tn) ≃ PSnn .

Since q� is a stack vector bundle, we also have

(13) H ∗(F�) ≃ H ∗(T�) ≃ ⨂
i

PS�i
�i = PS�n .

Lemma 2.5. Let co be the composition H ∗(Tn) ≃ H ∗
Gn (Qn) ↪ H ∗

Tn (Qn)
iQn←←←←←←←←←←←←←←←←←←→ H ∗

Tn (Cn) ≃ H ∗(Tn1 ). Then the
following square commutes:

H ∗(Tn) PSnn

H ∗(Tn1 ) Pn

∼

co

Proof. Consider the following diagram, where the vertical arrows are given by restriction to Tn-�xed points,
and a ∶ Sn × Cn → Cn is the natural action:

H ∗
Gn (Qn) H ∗

Gn (Y1n ) H ∗
Bn (Q̃1n ) H ∗

Tn (Q1n )

H ∗
Tn (Cn) H ∗

Tn (Sn × Cn) H ∗
Tn (Cn) H ∗

Tn (Cn)
co

∼
∼

a∗ a∗

All squares above are obviously commutative, except for the second one, which commutes by [Min20, Lemma
A.17]. The proof of Proposition 2.4 in [Hei12] shows that the composition of upper horizontal maps coincides



12 RUSLAN MAKSIMAU AND ALEXANDRE MINETS

with the inclusion H ∗(Tn) ≃ PSnn ⊂ Pn. On the other hand, lower horizontal row can be replaced with the
identity map without breaking commutativity. This concludes the proof. �

Corollary 2.6. Let � ∈ Comp(n). The following square commutes:

H ∗(F�) H ∗(T�)

H ∗
Tn (Sn/S� × Cn) H ∗

Tn (Cn)
co

∼

a∗

where a ∶ Sn/S� × Cn = S� × Cn → Cn is the natural action.

Proof. Consider the following diagram:

H ∗
Gn (Y�) H ∗

P� (Q̃�) H ∗
G� (Q�) PS�n

H ∗
Tn (Sn/S� × Cn) H ∗

Tn (Cn) H ∗
Tn (Cn) Pn

∼ ∼

co

∼

a∗
∼

The �rst square commutes by [Min20, Lemma A.17], and the last one does by Lemma 2.5. We are done. �

Remark 2.7. Recall that Tn1 ≃ Cn × BTn. In particular, its cohomology has pure weight �ltration, and therefore
so do H ∗(Tn) and H ∗(F�).
2.3. Steinberg varieties.

De�nition 2.8. The �ber product
Z�,� ∶= Y� ×Qn Y� ⊂ Y� × Y�

is called the partial Steinberg variety of type (�, �).
For each � ∈ Comp(n), there is a natural map

Y� = Gn ×P� Q̃� → F� = Gn/P�, (g, q) ↦ gP�.
Then the ambient variety Y� × Y� comes equipped with a projection to the product of partial �ag varieties:

f�,� ∶ Y� × Y� → F� ×F�.
Strati�cation (8) induces the following strati�cation on Z�,�:

Z�,� = ⨆
w∈ S� �

Zw
�,� ∶= ⨆

w∈ S� �
f −1�,�(Ωw ).

Let us compute the �ber f −1(Fe , Fw ). By de�nition, we have

f −1(Fe , Fw ) = Q̃� ∩ w.Q̃� ⊂ Qn,
where elements ofSd are identi�ed with permutation matrices inGn. This subvariety is smooth by Lemma 2.3;
therefore, each strata Zw

�,� is smooth as well.

Lemma 2.9. Let k be a �eld of characteristic 0. Homology groups HGn∗ (Z�,�,k) are torsion-free as HGn -modules.

Proof. Without loss of generality, we can assume that k = Q. For each stratum Zw
�,�, we have

HGn∗ (Zw
�,�) = HGn∗ (Gn ×Pw�� (Q̃� ∩ w.Q̃�)) = H

Pw��
∗ (Q̃� ∩ w.Q̃�) = H

Gw
��

∗ (Q�∪w.�) = H∗(T�∪w.�).
Here, we have used Lemma 2.3. The homology H∗(TS) sits inside Pn by Proposition 2.4, and is therefore a
torsion-free HGn -module. Moreover, it has pure weight �ltration by Remark 2.7.

Let us choose a total order ≺ on S� � compatible with the orbit closure order, and de�ne

Z≺w
�,� = ⨆

w′≺w
Zw′
�,� , Z4w�,� = Z≺w

�,� ⊔ Zw
�,�.
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Since each strata Zw
�,� has pure Borel-Moore homology, the associated open-closed long exact sequences split

into short exact sequences:

0 → HGn∗ (Z≺w
�,� ) → HGn∗ (Z4w�,� ) → HGn∗ (Zw

�,�) → 0,

see e.g. [Min20, Lemma 4.9]. In particular, HGn∗ (Z�,�) has a �ltration with associated graded ⨁w HGn∗ (Zw
�,�).

Since HGn∗ (Zw
�,�) is a torsion-free HGn -module for all w , the same holds for HGn∗ (Z�,�). �

3. Schur algebra of a smooth curve

In this section, as well as Section 4, we assume that k is a �eld of characteristic 0.

3.1. Schur algebras of curves. Let Yn = ⨆� Y�, and consider the projection � ∶ Yn → Qn. Denote Zn =
Yn ×Qn Yn; we have decomposition into connected components Zn = ⨆�,� Z�,�. Let us apply the general
construction from Section 1 to � .

De�nition 3.1. The (torsion) Schur algebra of C , denoted by Sn = SCn , is the convolution algebra A(�) =
H ∗
Gn (Zn).

One can easily check that the map � is small, so that dimZ�,� = dimY� = dimQn = n2 for any �, �. Thanks
to our conventions in Section 2.1, SCn is a graded algebra.

Remark 3.2. Since we’re only concerned with torsion sheaves in this article, we will omit the quali�er “torsion”
from now on. We still mention it in the de�nition, because one would like to eventually consider a similar
algebra for coherent sheaves of positive rank.

We denote S�,� = H ∗
Gn (Z�,�). By de�nition Sn = ⨁�,� S�,�, and the product in Sn decomposes into a direct

sum of maps S�,� ⊗ S�,� → S�,�. Moreover, Sn acts on the space

(14) Pn = ⨁
�
H ∗
Gn (Y�) = ⨁

�
PS�n

by Proposition 1.9. We call Pn the polynomial representation of Sn. This action decomposes into a direct sum
of maps S�,� ⊗ H ∗

Gn (Y�) → H ∗
Gn (Y�).

3.2. Localized Schur algebra. Let us apply equivariant localization to the algebra Sn. Under identi�cations
in Section 2, the restriction of � to Tn-�xed points (Y�)Tn → (Qn)Tn equals to the projection Sn/S�×Cn → Cn;
denote it �T . Let us also denote by a� ∶ Sn/S� × Cn = S� × Cn → Cn the natural map induced by action. We
also have

(Zn)Tn = ⨆
�,�
(Z�,�)Tn = ⨆

�,�
Sn/S� ×Sn/S� × Cn.

For each connected component of (Y�)Tn , its normal bundle splits into the direct sum ofNCn Q̃� and the tangent
space to F�. We identify (Y�)Tn ≃ ∐w∈Sn/S�{w} × Cn as above. Denote by 
� ∈ H ∗

Tn (Cn) the Euler class of the
normal bundle to {Id} × Cn ⊂ Y�.

The formula (12) implies that e(NCn Q̃�) = ∏(i,j)∈I� (xi − xj + Δij). Therefore,

(15) 
� = e(NCn Q̃�)e(TFIdF�) = ∏
(i,j)∈I�

(xi − xj + Δij) ∏
(i,j)∈N�

(xj − xi).

Proposition 1.12 provides us with an algebra homomorphism

Ξn ∶ Sn → (ATn

−1)Sn =∶ Sloc

n ,

where 
 = ⨁� a∗�(
�). Furthermore, Ξn is injective by Lemma 2.9. As a vector space, Sloc
n is isomorphic to

Sloc
n = ⨁

�,�
Sloc
�,� = ⨁

�,�
(k[Sn/S�] ⊗ k[Sn/S�] ⊗ (H ∗(Cn)[x1, … , xn])loc)

Sn .
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Let us describe the multiplication in Sloc
n explicitly. Pulling back along the quotient map r�� ∶ S2

n →
Sn/S� ×Sn/S�, we obtain the natural inclusion

(16) Sloc
�,� ⊂ (k[Sn]⊗2 ⊗ (H ∗(Cn)[x1, … , xn])loc)

Sn .
We use the notations from Section 1.5 with X = Cn and Γ = Sn for the right-hand side. The image of the
inclusion above can be obtained by partial symmetrization. Namely, for any g ∈ Sn consider the element
(S� , gS�) ∈ Sn/S� ×Sn/S�. Denote its stabilizer under the diagonal Sn-action by Γ��g ∶= S� ∩gS�g−1. Note
that Γ��g ≃ S� for some � ∈ Comp(n), and depends only on the image of g in S�⧵Sn/S�. We have an inclusion

Γ��g ↪ S� ×S�, f ↦ (f , g−1f g).
The algebra Sloc

�,� is spanned by the elements

� ��(g,x) = ∑
ℎ∈Sn/Γ��g

ℎS� ⊗ ℎgS� ⊗ xℎ,

where g ∈ Sn and x ∈ (H ∗(Cn)[x1, … , xn])Γ
��
g
loc . Moreover, it is clear that � ��(gg′,x) = � ��(g,x) for g′ ∈ S� and

� ��(g′g,g′x) = �
��
(g,x) for g′ ∈ S� . Thus it is enough to consider � ��(g,x) with g ∈ S� �. Let us compute its image under

the inclusion (16):

� ��(g,x) = ∑
ℎ∈Sn/Γ��g

ℎS� ⊗ ℎgS� ⊗ xℎ ↦
1

|Γ��g |
∑

(ℎ,ℎ1,ℎ2)∈Sn×S�×S�

ℎℎ1 ⊗ ℎgℎ2 ⊗ xℎ

= 1
|Γ��g |

∑
(ℎ1,ℎ2)∈S�×S�

�(ℎ−11 gℎ2,xℎ−11 ) = ∑
(ℎ1,ℎ2)∈(S�×S�)/Γ��g

�(ℎ1gℎ2,xℎ1 ).

In what follows, we will abuse the notations and identify � ��(g,x) with its image under (16).
Consider the following commutative diagram:

S2
n ×S2

n S3
n S2

n

(Sn/S� ×Sn/S�) × (Sn/S� ×Sn/S� ) Sn/S� ×Sn/S� ×Sn/S� Sn/S� ×Sn/S�

r

p q

r r
p q

We have p∗r ∗ = r ∗p∗, and q∗r ∗ = |S� |r ∗q∗. Therefore, up to the factor |S� |, pullbacks along r�� �t in the following
commutative square, where horizontal maps are given by multiplication in the corresponding algebra:

Sloc
�,� ⊗ Sloc

�,� Sloc
�,�

ASn
(
−1� )◦ ⊗ASn

(
−1� )◦ ASn
(
−1� )◦

r��⊗r�� r��

In particular, using (6) we see that

(17)

|Γ��g ||Γ��ℎ |� ��(g,x) ∗ �
��
(ℎ,y) =

1
|S� | (

∑
(a1,a2)∈S�×S�

�(a1ga2,xa1 )) ∗ ( ∑
(b1,b2)∈S�×S�

�(b1ℎb2,yb1 ))

= ∑
(a,b,c)∈S�×S�×S�

�(agbℎc,xa(y
−1� )agb)

= ∑
b∈S�

|Γ��gbℎ|� ��(gbℎ,x(yb
−1� )g ).

3.3. Generators. Let us introduce some elements in Sn, and compute their images under localization.
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Polynomials. Let � ∈ Comp(n). Example 1.10 provides us with a homomorphism of algebras �� ∶ H ∗
Gn (Y�) →

S�,� ⊂ Sn. For any P ∈ PS�n ≃ H ∗
Gn (Y�), we will identify P with its image under �� by abuse of notation.

Lemma 3.3. For any P ∈ PS�n , we have Ξn(P) = � ��(1,
�P).

Proof. We have inclusions of �xed point sets:

Sn/S� × Cn (Sn/S�)2 × Cn

Y� Z�,�

Δ

iY� iZ�,�

where the upper horizontal arrow is given by the diagonal embedding Sn/S� → (Sn/S�)2. Let p1, p2 ∶
(Sn/S�)2 × Cn → Sn/S� × Cn be the two natural projections. Applying Lemma 1.6, we get:

Ξn(P) = (p∗1a∗�(
�) ⋅ p∗2a∗�(
�)) ⋅ Δ∗ (a∗�(
�)−1 ⋅ i∗Y� (P))
= Δ∗ (a∗�(
�) ⋅ a∗�(P)) = � ��(1,
�P),

where we have used Corollary 2.6 to replace i∗Y� by a∗�. �

Splits and merges. For �, �′ ∈ Comp(n), we say that �′ subdivides � if S�′ ⊂ S�, and write �′ ⊂ �. In other
words, �′ is obtained from � by replacing each �i with �(1)i , … , �(ki )i , which sum up to �i . For such pair of
compositions, the closed embedding Q̃�′ ⊂ Q̃� induces a proper map Y�′ → Y�. We therefore have closed
embeddings

��′,� ∶ Y�′ = Y�′ ×Y� Y� ↪ Y�′ ×Qn Y� = Z�′,�,
��,�′ ∶ Y�′ = Y� ×Y� Y�′ ↪ Y� ×Qn Y�′ = Z�,�′ .

In particular, let us de�ne

S�′� = (��′,�)∗[Y�′] ∈ S�′,�, M�
�′ = (��,�′)∗[Y�′] ∈ S�,�′ .

De�nition 3.4. We call S�′� split, and M�
�′ merge.

Lemma 3.5. The images of splits and merges under localization are given by

Ξn(S�
′
� ) = � �

′�
(1,
�), Ξn(M�

�′) = � ��
′

(1,
�).

Proof. Consider the inclusions of �xed points sets:

Sn/S�′ × Cn Sn/S�′ ×Sn/S� × Cn

Y�′ Z�′,�

Δ

iY�′ iZ�′,�
��′,�

where the upper horizontal arrow sends (gS�′ , x) to (gS�′ , gS�, x). Let p♮ ∶ Sn/S�′ × Sn/S� × Cn →
Sn/S♮ × Cn, ♮ ∈ {�, �′} be the two natural projections. Applying Lemma 1.6, we get:

Ξn(S�
′
� ) = (p∗�′a∗�′(
�′) ⋅ p∗�a∗�(
�)) ⋅ Δ∗ (a

∗
�′(
�′)−1 ⋅ i∗Y�′ [Y�′])

= Δ∗ (a∗�′(
�′) ⋅ a∗�′[Y�′]) = � �
′�

(1,
�),

where we have used Corollary 2.6 to replace i∗Y�′ by a∗�′ . The expression forΞn(M�
�′) is obtained in an analogous

fashion. �

Lemma 3.6. Let �, �′, �′′ ∈ Comp(n) such that �′′ ⊂ �′ ⊂ �. Then S�′′�′ S�
′
� = S�′′� ,M�

�′M�′
�′′ = M�

�′′ .
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Proof. We will only prove the �rst equality, second being completely analogous. Consider the following
commutative diagram:

Y�′′ × Y�′ Y�′′ Y�′′

(Y�′′ ×Qn Y�′) × (Y�′ ×Qn Y�) Y�′′ ×Qn Y�′ ×Qn Y� Y�′′ ×Qn Y�

Y�′′ × Y�′ × Y�′ × Y� Y�′′ × Y�′ × Y�

i i

Δ

i
p′ q

p

We have Δ∗ = Δ!p by Proposition 1.2.(b), and i∗Δ!p = (p′)!pi∗ by Proposition 1.2.(c). As a consequence,

S�′′�′ S�
′
� = q∗(p′)!pi∗ ([Y�′′]� [Y�′]) = i∗Δ∗ ([Y�′′]� [Y�′]) = i∗[Y�′′] = S�

′′
� ,

and we may conclude. �

3.4. Diagrammatic presentation of Sn. Let us identify compositions of operators de�ned above with cer-
tain cord diagrams. Our strands are allowed to have multiplicities (i.e. non-negative integer labels), and we
always read diagrams from bottom to top.
Polynomials. We depict the polynomial operators as boxes on strands. Namely, let

P = P(1) ⊗ … ⊗ P(r) ∈ PS�n = ⨂
i

PS�i
�i .

Then we draw P as follows:

P = P(1)

�1

�1

… P(r)

�r

�r

.

Splits and merges. Take � = (�1, … , �r ) ∈ Comp(n), and let �′ = (�1, … , �k−1, �(1)k , �(2)k , �k+1… , �r ) for some
1 ≤ k ≤ r , where �(1)k + �(2)k = �k . For such pair of compositions, we draw the corresponding split and merge
as follows:

(18) S�′� =

�1

�1

…

�k

�(1)k �(2)k

…

�r

�r

, M�
�′ =

�1

�1

…

�k

�(1)k �(2)k

…

�r

�r

.

We call such splits and merges elementary. Lemma 3.6 tells us that splits and merges are associative:

a b c

a + b + c

=

a b c

a + b + c

,

a b c

a + b + c

=

a b c

a + b + c

.

Moreover, for any � ⊂ � the corresponding split S�� and merge M�
� can be written as a product of elementary

ones.
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Crossings. Let �, �′ be as above, and let �′′ = (�1, … , �k−1, �(2)k , �(1)k , �k+1… , �r ) be obtained from �′ by permut-
ing �(1)k with �(2)k . Consider the element R�′′�′ ∶= S�

′′
� ⋅M�

�′ ∈ S�′,�′′ , which we will call an elementary permutation.
Diagrammatically, we will depict it as a crossing:

a b

b a

∶=

a b

b a

.

More generally, let �, � ∈ Comp(n), and assume that � can be obtained from � by a permutation of components.
Let us pick such an element w ∈ Sr , where r is the number of components in �; note that it is not necessarily
unique. Fix a presentation w = si1 … sil , where si ∈ Sr are transpositions, and l is the length of w . We then
de�ne R��(w) as the corresponding product of elementary permutations.

Remark 3.7. Note that braid relations do not hold for elementary permutations R�′′�′ . In particular, the general
de�nition of R��(w) heavily depends on the choice of presentation of w . One could de�ne these elements in a
more canonical way using twisted bialgebra relations, but do not need this for our purposes. However, this
can be easily done for strands of multiplicity 1, see Proposition 4.16. There, the elements �r of Wn(H ∗(C)) are
the “canonical crossings”, which di�er from the naive split-merge crossings above by a constant.

3.5. Basis of Sn. Let �, � ∈ Comp(n), and consider S�,� = HGn∗ (Z�,�). Recall from the proof of Lemma 2.9 that
we have a strati�cation

Z�,� = ⨆
w∈ S� �

Zw
�,�,

which induces a �ltration {Sw�,�} on S�,� with associated graded ⨁w HGn∗ (Zw
�,�). We have HGn∗ (Zw

�,�) = PS�′n ,
where �′ ∈ Comp(n) is such that wS�′w−1 = Γ��w . Since Zw

�,� ≃ Gn ×Pw�� (Q̃� ∩ w.Q̃�), the Tn-�xed points

(Zw
�,�)

Tn
are given by Sn/S�′ × Cn. Note that

e(N{1}×CnZw
�,�) = e(T(Fe ,Fw )Ωw )e (NCn(Q̃� ∩ w.Q̃�)) = ∏

(i,j)∈N�∪gN�
(xj − xi) ∏

(i,j)∈I�∩gI�
(xi − xj + Δij).

Let us denote �w = e(N{1}×CnZw
�,�)−1
w� 
� . Further, for each � ∈ Comp(n) pick a basis B� of PS�n .

Lemma 3.8. Let {bw,P ∶ w ∈ S� �, P ∈ B�′} be a collection of elements in S�,�. Assume that

Ξn(bw,P ) = � ��(w,�wP) + ∑
w′≺w

�(w′,aw′ )

for all w , P . Then {bw,P} is a k-basis of S�,�.
Proof. It is enough to show that these elements form a basis after passing to the associated graded⨁w HGn∗ (Zw

�,�).
An argument analogous to Lemma 2.5 shows that the composition HGn∗ (Zw

�,�) → H Tn∗ ((Zw
�,�)Tn ) ⊂ Sloc�,� is given

by P ↦ � ��(w,P). The assumption on bw,P then implies that it is contained in HGn∗ (Zw
�,�). Consider the following

diagram:
HGn∗ (Zw

�,�) HGn∗ (Zw
�,�) HGn∗ (Z�,�)

H Tn∗ ((Zw
�,�)Tn )loc H Tn∗ ((Zw

�,�)Tn )loc Sloc�,�

Ξwn

j∗ i∗

Ξ4w
n Ξn

ℎ

We have bw,P = i∗b′ for some b′ ∈ HGn∗ (Zw
�,�), and the image of bw,P in the associated graded is given by

j∗(b′). On the other hand, the left square in the diagram above commutes, and by Lemma 1.6 the right square
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commutes up to Euler class, which equals precisely to � ��1,�−1w . In e�ect, the closed embedding Ξwn contributes
e(N{1}×CnZw

�,�), while Ξn contributes

e(N{1}×CnY�)−1e(N{w}×CnY�)−1 = (
�
w� )
−1 .

Thus

Ξwn ◦j∗(b′) = ℎ◦Ξ4wn (b′) = � ��1,�−1w ℎ◦Ξn◦i∗(b
′) = � ��(w,�−1w �wP) = �

��
(w,P).

Since the localization map Ξn is injective, we conclude that the image of bw,P in the associated graded is P .
Running over all w ∈ S� �, P ∈ B�′ we obtain a basis of S�,�. �

Let g ∈ S� �. As before, let �′ ∈ Comp(n) be such that Γ��g ≃ S�′ , and let �′ be such that S�′ = g−1S�′g =
S� ∩ gS�g−1. Note that g induces a permutation w on the set of components of �′, which transforms �′ into
�′. Pick P ∈ PS�′n . For each such pair (g, P), we construct the following elements of S�,�:

(19) ΨPg = M�
�′R

�′
�′(w)PS�

′
� , Ψg = Ψ1g = M�

�′R
�′
�′(w)S�

′
� .

Example 3.9. Let � = (3, 1), � = (2, 2), g = (1, 3, 4, 2), and P = x21x2x3. Then �′ = (1, 2, 1), �′ = (1, 1, 2),
w = (1, 3, 2), and we have

ΨP
g =

3 1
S�′�

x21 x2x3 P

R�
′

�′(w)

M�
�′

2 2

Proposition 3.10. The following set is a basis for S�,�:
{
ΨPg ∶ g ∈ S� �, P ∈ B�′

}
.

Remark 3.11. Note that when � = (n) is the trivial composition, we have Z = Y�, and this statement follows
from the isomorphism (13).

Proof. In order to simplify the notation, we will write Z = Z�,� throughout the proof. In light of Lemma 3.8,
we need to compute highest terms of Ξn(ΨPg ). From now on, we will denote the presence of lower terms by
ellipsis.

We begin by computing elementary permutations. Let �, �′, �′′ be as in the de�nition of R�′′�′ ; we write
� instead of � to avoid con�ict of notation. Note that the longest element in S�′′⧵S� /S�′ ⊂ S�′′ �′ is the
permutation that exchanges the components � (1)k and � (2)k ; denote it by s. Using formula (17) and Lemma 3.5,
we obtain:

R�′′�′ = S�
′′
� ⋅ M�

�′ = � �
′′�

(1,
� ) ∗ �
��′
(1,
� ) =

1
|S�′′ ||S�′ |

∑
b∈S�

|Γ�′′�′b |� �′′�′(b,
� ) =
|Γ�′′�′s |

|S�′′ ||S�′ | (
∑
b∈S�′

� �′′�′(sb,
� )) + …

= � �′′�′(s,
� ) + …
Next, consider general permutations. Letw ∈ Sr be the permutation of components of �′ de�ned by g, and

�x a reduced presentation w = sl … s13. We write wi ∶= si … s1 ∈ Sr . Let �i = wi(�′), and � i the intermediate
composition between �i−1 and �i , i.e. � i is such that we have R�i�i−1 = S�

i
� i ⋅ M� i

�i−1 ). Note that �l = �′. Let us write

3here, si does not stand for the transposition (i, i + 1), but rather for some simple transposition (j, j + 1), 1 ≤ j ≤ r − 1
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M i
j = [�̃ij−1+1, �̃ij ], andM i

jk = M i
j ×M i

k . We also denote by si the corresponding longest element in S�i ⧵S� i /S�i−1
as before.

Lemma 3.12. Assume s′l bl−1s′l−1…b1s′1 ∈ S�′gS�′ , where s′i ∈ S�i ⧵S� i /S�i−1 , and bi ∈ S�i . Then s′i = si for all
i.
Proof. The condition on s′i ’s can be rewritten as g = bls′l …b1s′1. Suppose the equality s′i = si does not always
hold. Let i ∈ [1, r] be the minimal index such that for some k we have wk(i) ≠ wk−1(i) and sk ≠ s′k . Consider
the smallest such k, and denote � = wk(i). There exists an index m ∈ Mk−1

wk−1(i) such that s′k(m) lies in Mk
wk−1(i);

note that wk−1(i) = � − 1. Let p0 = (bk−1s′k−1…b1s′1)−1(m), and consider the sequence pj = bjs′j (pj−1). Let aj be
such that pj ∈ M j

wj (aj ).
Pictorially, we draw the presentation w = sl … s1 as a diagram on r strands, going from bottom to top and

numbered 1 to r . Since this presentation is reduced, each pair of strands intersects at most once. Then aj tells
us on which strand the image of p0 is located after j-th crossing. Depending of s′j , at each crossing we either
swap the strand or not. The condition g = bls′l …b1s′1 tells us that as we traverse the diagram from bottom to
top, we should end up on the i-th strand. The minimality of i implies that we can only change the strand on
intersections with strands i, … , r . However, for i0 > i the i0-th strand has to intersect i-th strand �rst before
intersecting ak-th strand. Therefore even if we change strands, the new strand cannot intersect i-th strand
again, so that g(p0) = pr ∉ g(M0

i ). We have arrived at a contradiction. �

In particular, the highest term of R�
′

�′(w) must be contained in the product of highest terms of elementary
permutations. By de�nition, conjugation by si sends S�i−1 to S�i . As a consequence si+1bsi de�nes the same
class in S�i+1⧵Sn/S�i−1 for any b ∈ S�i . Moreover, we have |Γ�i+1�isi+1 | = |Γ�i+1�i−1si+1bsi | = |S�i+1 |, so that all coe�cients
in (17) cancel out. We get

R�
′

�′(w) = R
�′
�l−1 …R

�1
�′ = �

�′�l−1
(sl ,
�l )

∗ … ∗ � �1�′(s1,
�1 ) + … = � �
′�′

(g,E) + … ;
E = 
� l (
� l−1
−1�l−1)sl … (
�1
−1�1 )sl…s2 .

Denote �0 = 
�′ , and �i = (
−1� i 
�i )�
si
i−1 for i > 0. Recall that r is the number of components in �′ and let A�

be the subset of [1, r]2 such that we have N� = ⨆(j,k)∈A� M l
jk . By analogy, we de�ne N�,i = ⨆(j,k)∈A� M i

jk , and
I�,i = N�,i ∪ (⨆j M i

jj ⧵ {(j, j) ∶ 1 ≤ j ≤ n}).

Lemma 3.13. Let gi = si … s1 ∈ Sn. We have

�i = ∏
(p,q)∈giN�∪N�,i

(xq − xp) ∏
(p,q)∈gi I�∩I�,i

(xp − xq + Δpq).

Proof. For i = 0, the claim follows from the de�nition of 
�′ . Let i > 0 and proceed by induction. Suppose
si = (t, t + 1); then we have

I� i = I�i ⊔ M i
t+1,t , N�i = N� i ⊔ M i

t,t+1.
Looking at the formula for �i , we thus need to prove the following equalities between subsets in [1, n] × [1, n]:

giI� ∩ siI�,i−1 = (giI� ∩ I�,i) ⊔ M i
t+1,t ,

giN� ∪ N�,i = (giN� ∪ siN�,i−1) ⊔ M i
t,t+1.

We will only prove the second identity; the �rst one can be obtained analogously by passing to complementary
index sets and substituting (i, j) ↦ (j, i).

It is easy to check that N�,i ⧵ siN�,i−1 = M i
t,t+1, and conversely siN�,i−1 ⧵ N�,i = M i

t+1,t . Therefore

(20) giN� ∪ N�,i = giN� ∪ ((siN�,i−1 ⧵ M i
t+1,t ) ⊔ M i

t,t+1) .
Assume that t = gi−1(k1), t + 1 = gi−1(k2); note that we automatically have k1 < k2. We cannot have crossings
between the strands which split o� the same thick strand. Thus k1 and k2 lie in di�erent components of �,
and N� ⊃ M0

k1,k2 , N� ∩ M
0
k2,k1 = ∅ by de�nition of N�. Applying gi , we get M i

t+1,t ⊂ giN� and M i
t,t+1 ∩ giN� = ∅,

which together with (20) implies the desired identity. �
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An immediate consequence of the lemma above is that

−1�′ E(
−1�′ )g = � −1l = �g(
�
�)−1.

This formula allows us to compute the highest term of ΨPg :

Ξn(ΨPg ) = Ξn(M�
�′R

�′
�′(w)PS�

′
� ) = � ��

′

(1,
� ) ∗ (�
�′�′
(g,E) + …) ∗ � �

′�
(1,P
�)

= � ��
′

(1,
� ) ∗ (
|Γ�

′�
g ||S�′ |

|Γ�′�1 ||Γ�′�′g |
� �

′�
(g,E(P
�
−1�′ )g )

+ …) = |Γ��g ||S�′ |
|Γ��′1 ||Γ�′�g |

� ��(g,Pg
�
−1�′ E(
�
−1�′ )g ) + …

= � ��(g,Pg�g ) + …

Substituting P  Pg−1 , we may conclude by Lemma 3.8. �

Corollary 3.14. The Schur algebra Sn is generated by polynomials and elementary splits and merges.

3.6. Polynomial representation. The localized Schur algebra Slocn admits an action on

P locn ∶= ⨁
�

(H ∗(C)⊗n(x1, … , xn))
S�

by Proposition 1.9. Similarly to (17), using formula (7) one shows that

(21) � ��(g,x).y =
1

|Γ��g |
∑
a∈S�

(x(y
−1� )g)
a .

By Proposition 1.13, we have a commutative square

(22)
Sn End Pn

Slocn End P locn

Proposition 3.15. Let �, �′ be as in the de�nition of elementary splits and merges. The algebra Sn has a faithful
representation on Pn such that

∙ polynomials P ∈ PS�n act by multiplication on H ∗
Gn (Y�) ≃ PS�n ,

∙ the split S�′� acts by the natural inclusion of rings PS�n → PS�′n ,
∙ the mergeM�

�′ acts by the following operator:

P ↦ ∑
a∈S�/S�′

⎛
⎜
⎜
⎝
y ∏
(i,j)∈N �

�′
(1 +

Δij
xj − xi)

⎞
⎟
⎟
⎠

a

, N �
�′ = [�̃k−1 + 1, �̃k−1 + �(1)k ] × [�̃k−1 + �

(1)
k + 1, �̃k].

Proof. The vertical maps in diagram (22) are injective by Lemma 2.9 and Thom isomorphism. Moreover, the
restriction of Slocn → End P locn to Sloc�,� is nothing else than the pullback r ∗�� , and is therefore injective as well.
The faithfulness of the polynomial representation Sn → End Pn follows.

Let us compute the action of generators by applying Ξn, and using formula (21):

P.y = � ��(1,P
�).y =
1

|S� |
∑
a∈S�

(P
�y
−1� )
a = Py;

S�′� .y = � �
′�

(1,
�).y =
1

|S�′ |
∑
a∈S�′

(
�y
−1� )
a = y;

M�
�′ .y = � ��

′
(1,
�).y =

1
|S�′ |

∑
a∈S�

(
�y
−1�′ )
a = ∑

a∈S�/S�′
(

∏(i,j)∈I�⧵I�′ (xi − xj + Δij)
∏(i,j)∈N�′ ⧵N� (xj − xi)

.y)

a

.

We conclude by observing that N�′ ⧵ N� = N �
�′ , and (i, j) ∈ I� ⧵ I�′ if and only if (j, i) ∈ N �

�′ . �
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Remark 3.16. As in [Prz19], this polynomial representation can be realized inside a tensor power of cohomo-
logical Hall algebra of torsion sheaves on C . We do not pursue this point of view here.

Example 3.17. Consider the case n = 2. Denote the inclusion PS2
2 ⊂ P2 by f2. We have only one possible split

and merge respectively; we write S = S(1,1)2 ,M = M2
(1,1), and omit labels on strands. Using Proposition 3.10, one

can check that S2 is generated by S, M and polynomial subalgebras PS2
2 , P2, subject to the following relations:

Q = Q + s1(Q) − Δ12(Q−s1(Q))
x1−x2 ,

P
=

f2(P)
,

P
=

f2(P)
, P ∈ PS2

2 , Q ∈ P2.

Remark 3.18. When C = P1, we have Pn = k[x1, … , xn, c1, … , cn]/(c21 , … , c2n) and Δij = ci + cj . For instance,
M ∈ SP1

2 acts on the polynomial representation by (1 + s1) − (c1+c2)(1−s1)
x1−x2 .

4. KLR algebra of a smooth curve

In this section we study a subalgebra of Sn, which admits a simpler description.

4.1. Demazure operators. Let us recall the de�nition and basic properties of Demazure operators.

De�nition 4.1. For r ∈ [1, n − 1], denote by )r the Demazure operator

)r ∶ k[x1, … , xn] → k[x1, … , xn], P ↦ (P − sr (P))/(xr − xr+1).
Note that we have )r (P) = 0 if and only if sr (P) = P . In particular, a polynomial P is symmetric if and only

if it is annihilated by all )r for r ∈ [1, n − 1].
The following relations are well-known.

Lemma 4.2. We have

)2r = 0 for r ∈ [1, n − 1],
)r)t = )t)r for r , t ∈ [1, n − 1], |r − t| > 1,

)r)r+1)r = )r+1)r)r+1 for r ∈ [1, n − 2].
For eachw ∈ Sn, �x a reduced expressionw = sk1 … skr and de�ne )w = )k1 …)kr . Since Demazure operators

satisfy braid relations, this de�nition is independent of the choice of a reduced expression. Moreover, the
square-zero relation implies that we have )k1 …)kr = 0 if sk1 … skr is not a reduced expression.

Let w0,n be the longest element in Sn.

Lemma 4.3. For any P ∈ k[x1, … , xn], the polynomial )w0,n (P) is symmetric.

Proof. Since we have � (srw0,n) < � (w0,n) for each r ∈ [1, n −1], we get )r)w0,n = 0. Then the polynomial )w0,n (P)
is symmetric because for each r ∈ [1, n − 1] we have )r ()w0,n (P)) = 0. �

Remark 4.4. The lemma above shows that the image of )w0,n is contained in symmetric polynomials. This
inclusion is in fact an equality. Indeed, take an arbitrary polynomial Q ∈ k[x1, … , xn] such that )w0,n (Q) = 1,
for example Q = xn−11 xn−22 …x2n−2xn−1. Since Demazure operators commute with multiplication by symmetric
polynomials, we have )w0,n (PQ) = P)w0,n (Q) = P for any symmetric polynomial P ∈ k[x1, … , xn]Sn .

De�nition 4.5. For positive integers a, b with a + b = n consider the permutation w0,a,b ∈ Sn given by

w0,a,b(i) =
{
i + b if 1 ≤ i ≤ a,
i − a if a < i ≤ n.

Lemma 4.6. For any P ∈ k[x1, … , xn]Sa×Sb , we have )w0,a,b (P) ∈ k[x1, … , xn]Sn .
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Proof. Abusing the notation, let us write w0,a and w0,b for the images of w0,a ∈ Sa and w0,b ∈ Sb under the
inclusion Sa ×Sb ⊂ Sn. We have w0,n = w0,a,bw0,aw0,b .

It is enough to prove the statement for P of the form P = QR, where Q is a symmetric polynomial
on x1, … , xa and R is a symmetric polynomial on xa+1, … , xn. Moreover, by Remark 4.4 we can �nd Q0 ∈
k[x1, … , xa] and R0 ∈ k[xa+1, … , xn] such that Q = )w0,a (Q0) and R = )w0,b (R0). Then we have

)w0,a,b (P) = )w0,a,b [)w0,a (Q0))w0,b (R0)] = )w0,n (Q0R0).
This polynomial is symmetric by Lemma 4.3. �

Lemma 4.7. For any P ∈ k[x1, … , xn]Sa×Sb , we have

)w0,a,b (P) = ∑
w∈Sn/(Sa×Sb)

w (
P

∏1≤i≤a ∏a+1≤j≤n(xi − xj))

Proof. Let us consider )w0,a,b as a linear map

)w0,a,b ∶ k(x1, … , xn)Sa×Sb → k(x1, … , xn)Sn .
We can write it as a sum

)w0,a,b = ∑
w∈Sn/(Sa×Sb)

Qww,

where Qw ∈ k(x1, … , xn). We need to show that for each w ∈ Sn/(Sa ×Sb), we have

Qw = w (
1

∏1≤i≤a ∏a+1≤j≤n(xi − xj))
.

By Lemma 4.6, we have QId ∈ k[x1, … , xn]Sa×Sb and Qw = w(QId). So, to complete the proof it remains to
show that

Qw0,a,b = w0,a,b (
1

∏1≤i≤a ∏a+1≤j≤n(xi − xj))
= 1

∏b+1≤i≤n ∏1≤j≤b(xi − xj)
.

Take a reduced decomposition w0,a,b = sk1 … skab , and write

)w0,a,b = (
1

xk1 − xk1+1
− sk1
xk1 − xk1+1)

…(
1

xkab − xkab+1
− skab
xkab − xkab+1)

.

The only way to get a term with permutation belonging to the class w0,a,b(Sa ×Sb) in this product is to take
the second term in each bracket. More precisely, when we write

(
sk1

xk1+1 − xk1 )
…(

skab
xkab+1 − xkab )

and move all si’s to the right, we get
r

∏
t=1 (

1
xit − xjt )

⋅ w0,a,b ,

where
it = sk1sk2 … skt−1(kt + 1), jt = sk1sk2 … skt−1(kt ).

Furthermore, for each (i, j) ∈ [b + 1, n] × [1, b] there exists a unique index t ∈ [1, ab] such that

skt−1 … sk2sk1(i) > skt−1 … sk2sk1(j), skt … sk2sk1(i) < skt … sk2sk1(j).
For this t we have i = it and j = jt , since the decomposition of w0,a,b is reduced. Therefore

r
∏
t=1 (

1
xit − xjt )

= 1
∏b+1≤i≤n ∏1≤j≤b(xi − xj)

,

and we may conclude. �
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Remark 4.8. Applying Lemma 4.7, we can rewrite the action of merge operator M�
�′ ∈ Sn on the polynomial

representation (see Proposition 3.15) as follows:

P ↦ )w0,a,b
⎛
⎜
⎜
⎝
P ∏
(i,j)∈N �

�′

(xi − xj − Δij)
⎞
⎟
⎟
⎠
,

where a = �(1)k , b = �(2)k and the Demazure operator )w0,a,b is applied to the variables in positions �k−1 +1, �k−1 +
2,… , �k .

4.2. A�nized symmetric algebras. Let F = ⨁i Fi be a Z≥0-graded unital �nite dimensional k-algebra.
Further, let � ∶ F ⊗ F → k be a non-degenerate graded pairing, such that �(f g, ℎ) = �(f , gℎ) and �(f , g) =
�(g, f ) for any f , g, ℎ ∈ F . This makes (F , �) into a symmetric Frobenius algebra. An example of such algebra
is given by the cohomology ring H ∗(X ,k) of any smooth projective variety X .

Let m∶ F ⊗F → F be the product in F , and Δ ∶ F → F ⊗F be its dual with respect to � . The tensor product
F⊗n has a natural Sn-action. For any 1 ≤ i < j ≤ n, consider the k-linear map

�i,j ∶ F⊗2 → F⊗n, f ⊗ g ↦ 1 ⊗ … ⊗ 1 ⊗ f ⊗ 1 ⊗ … ⊗ 1 ⊗ g ⊗ 1 ⊗ … ⊗ 1,
where f and g appears at the i-th and j-th position respectively. Set Δi,j ∶= �i,j(Δ(1)) ∈ F⊗n.

Let si = (i, i + 1), 1 ≤ i < n be elementary transpositions in Sn. We will denote the image of si in the group
algebra kSn by �i , and more generally for any w ∈ Sn we denote its image by �w . The following algebra is
de�ned in [KM19, De�nition 3.2] (see also [Sav18, De�nition 3.1] for a version with non-symmetric F ).

De�nition 4.9. The a�nized symmetric algebra Wn =Wn(F ) of rank n is the quotient of the free product

k[x1, … , xn] ⋆ F⊗n ⋆ kSn

by the following relations:

xif = f xi , �if = si(f )�i for all f ∈ F⊗n,
�ixj = xsi (j)�i − (�i,j − �i+1,j)Δi,i+1,

where �i,j is the Kronecker symbol.

Remark 4.10. The algebra in the de�nition above di�ers from the algebra in [KM19, De�nition 3.2] by the sign
in the last relation. However, we could eliminate this di�erence if we replace xi by −xi .

For any f ∈ F and 1 ≤ r ≤ n, denote by fr the image of 1⊗r−1 ⊗ f ⊗ 1⊗n−r ∈ F⊗n in Wn. While it is not obvious
that the natural map F⊗n → Wn is injective, this follows from the lemma below.

Lemma 4.11 ([KM19, Theorem 3.8]). Let BF be a basis of F . The a�nized symmetric algebra Wn has the
following basis: {

�wxa11 xa22 …xann (f (1))1(f (2))2… (f (n))n ∶ w ∈ Sn, ar ∈ N, f (i) ∈ BF
}
.

Let us introduce a grading on Wn by setting

deg � = 0, deg xi = 2, deg f = degF f .
This makes Wn into a graded algebra. We write Wn = ⨁i Wn[i], where Wn[i] is the subspace of degree i.

Corollary 4.12. We have the following formula for the graded dimension of Wn:

∑
i
t i dimWn[i] = n!(

Pt (F )
1 − t2)

n
,

where Pt (F ) = ∑i t i dim Fi is the graded dimension of F .
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Let us describe a faithful representation of Wn. The vector space Pn(F ) ∶= k[x1, … , xn]⊗F⊗n admits several
natural Sn-actions. First, there is an action permuting xi’s and leaving F⊗n intact; denote the operators on
Pn(F ) induced by the elementary transpositions by sX1 , … , sXn−1 . Conversely, there is an action permuting com-
ponents of F⊗n without touching x ’s; denote the operators on Pn(F ) induced by the elementary transpositions
by sf1 , … , sfn−1. Set also sk = sXk s

f
k , the operators s1, ⋯ , sn−1 correspond to the diagonal Sn-action, exchanging

simultaneously xi’s and the components of F⊗n.

Lemma 4.13. The algebraWn has a faithful representation in Pn(F ) such that
∙ xi acts by multiplication by xi ∈ Pn(F );
∙ f ∈ F⊗n acts by multiplication by f ∈ Pn(F );
∙ �i acts by si − Δi,i+1)Xi , where )Xi ∶= 1−sXi

xi−xi+1 is the Demazure operator on k[x1, … , xn].
Proof. The formulas above yield a representation of Wn by [KM19, Lemma 3.7]. The faithfulness follows from
the proof of [KM19, Theorem 3.8]. Indeed, it is shown there that the basis of Wn in Lemma 4.11 act on Pn(F )
by linearly independent operators. �

4.3. KLR algebras of curves. Let n ∈ N+, and let 1n be the partition of n into 1’s. Then S1n ,1n ⊂ Sn is
a subalgebra; we denote it by Rn = RC

n and refer to it as the (torsion) KLR algebra of C of degree n. More
explicitly, Rn is the convolution algebra A(� ′) = H ∗

Gn (Zn), where � ′ ∶ Y1n → Qn is the restriction of � (see
Section 3) to Y1n .
Notation. In order to unclutter the notation, we will write Zn instead of Z1n ,1n for the correspondence Y1n×QnY1n
throughout this section.

For any 1 ≤ i ≤ n − 1, let us consider the ordered partition �i of n with i-th term equal to 2, and other terms
equal to 1:

�i = (1, … , 2⏟⏟⏟
i-th

, … , 1).

We have a natural map Y1n → Y�i , induced by the Bn-equivariant embedding Q̃1n ⊂ Q̃�i . Consider the follow-
ing correspondences:

Z i
n ∶= Y1n ×Y�i Y1n , Z �in ∶= Z in ⧵ Y1n ⊂ Zn.

Let us denote �i ∶= [Z �in ] ∈ RC
n . Unlike for the full Schur algebra, we can use the notations from Section 1.5

without any adjustments for Rn. We set X = Cn, Γ = Sn, and 
 = 
1n . Lemma 3.3 then implies that Ξn(P) =
�̃(1,P) for any P ∈ Pn ≃ H ∗

Gn (Y1n ).
Proposition 4.14. We have

Ξn(�i) = �̃1, Δi,i+1xi+1−xi
+ �̃si ,1+ Δi,i+1

xi+1−xi
.

Proof. By de�nition of Z �in , we have Z i
n = Y1n ∪ Z �in . In particular,

Ξn(�i) = Ξn([Z i
n]) − Ξn([Y1n ]) = Ξn([Z i

n]) − �̃(1,1).
Since Z i

n = Y1n ×Y�i Y1n , we have [Z i
n] = S1

n
�iM

�i
1n inside Sn. Using Lemma 3.5 and formula (17), we obtain

Ξn([Z i
n]) = � 1

n ,�i
(1,
�i )

∗ � �i ,1n(1,
�i )
= �(1,
�i ) + �(si ,
�i ).

Since 
�i /
1n = (xi+1 − xi + Δi,i+1)/(xi+1 − xi), we conclude that

Ξn(�i) = �̃(1,
�i /
1n−1) + �̃(si ,
�i /
1n ) = �̃1, Δi,i+1xi+1−xi
+ �̃si ,1+ Δi,i+1

xi+1−xi
.

�

Remark 4.15. It is possible to make this computation directly, without appealing to the results of Section 3.
For this, one can �rst show that Z �in is smooth (in e�ect, it is isomorphic to a certain blowup of Y1n ), and then
use Lemma 1.6.
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The algebra Rn acts on Pn = HG
∗ (Y1n ) by Proposition 1.9. This is a subrepresentation of Sn y Pn, restricted

to Rn ⊂ Sn. Pn can be identi�ed with a subspace in (Pn)loc, on which Rloc
n acts as in Section 1.5. Under this

identi�cation, we have

Ξn(P).ℎ = �̃(1,P).ℎ = Pℎ
/
 = Pℎ;

Ξn(�i).ℎ = (�̃1, Δi,i+1xi+1−xi
+ �̃si ,1+ Δi,i+1

xi+1−xi )
.ℎ = Δi,i+1

xi+1 − xi
ℎ + (1 +

Δi,i+1
xi+1 − xi)

ℎsi (
xi − xi+1 + Δi,i+1
xi − xi+1 − Δi,i+1)

= Δi,i+1
xi+1 − xi

ℎ + (1 −
Δi,i+1

xi+1 − xi)
ℎsi = ℎsi + Δi,i+1

xi+1 − xi
(ℎ − ℎsi )

= (si − Δi,i+1)i)ℎ,

where we have used the fact that

1n

 si1n

= 
1n /
�i
(
1n /
�i )si

= −xi − xi+1 + Δi,i+1xi+1 − xi + Δi,i+1
.

Proposition 4.16. We have an isomorphism of algebras RC
n ≃Wn(H ∗(C)).

Proof. It follows from the proof of Proposition 4.14 that �i = R1
n
1n (si)−1 in notations of Section 3.4. In particular,

Proposition 3.10 implies that the algebra Rn is generated by polynomial operators together with �i , 1 ≤ i ≤
n − 1. Both RC

n and Wn(H ∗(C)) act on Pn(F ), and the action of polynomial operators and �i’s is given by the
same formulas. Since the polynomial representation Pn(F ) is faithful for both algebras by Lemma 4.13 and
Proposition 3.15, we deduce the desired isomorphism. �

4.4. A�ne zigzag algebra. Let us write out RC
n for C = P1. In this case H ∗(C) ≃ k[c]/c2, and Δi,j = ci + cj .

De�nition 4.17. The a�ne zigzag algebra Zn is the k-algebra generated by elements xr , cr , 1 ≤ r ≤ n and �k ,
1 ≤ k < n modulo the following relations:

xrxt = xtxr , xrct = ctxr , crct = ctcr , c2r = 0;
� 2k = 1, �k�k+1�k = �k+1�k�k+1, �k�l = �l�k if |l − k| > 1;

�kck = ck+1�k , �kcr = cr�k if r ≠ k, k + 1;
�kxk − xk+1�k = −ck − ck+1 = xk�k − �kxk+1, �kxr = xr�k if r ≠ k, k + 1.

Corollary 4.18. We have an isomorphism of algebras RP1
n ≃ Zn.

Consider the following truncated polynomial ring:

Pn = k[x1, … , xn, c1, … , cn]/(c21 , … , c2n).

The following lemma is a special case of Lemmas 4.11 and 4.13.

Lemma 4.19. The a�ne zigzag algebra Zn has the following basis:
{
�wxa11 xa22 …xann cb11 cb22 …cbnn ; w ∈ Sn, ar ∈ N, br ∈ {0, 1}

}
.

Furthermore, the algebra Zn has a faithful representation in Pn such that

∙ xr ∈ Zn acts by multiplication by xr ∈ Pn,
∙ cr ∈ Zn acts by multiplication by cr ∈ Pn,
∙ �k acts by sk − (ck + ck+1))k , where )k = 1−sk

xk−xk+1 is the Demazure operator.

Remark 4.20. While the operator )k is not well-de�ned on Pn, the operator (ck +ck+1))k is. We could also write
)Xk instead of )k as in Lemma 4.13.
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4.5. Other examples. For C = C or C∗, we have Qn ≃ gln and Qn ≃ GLn respectively, equipped with the
adjoint action of GLn. We therefore recover Grothendieck-Springer resolution and its multiplicative version.
Furthermore, let C = E be an elliptic curve, and Bun0,ssGLn the stack of semistable GLn-bundles of degree 0
on E. We have an equivalence of stacks Tn ≃ Bun0,ssGLn essentially due to Atiyah [Ati57, FMW98]. Since it is
compatible with embeddings of sheaves4, our map Fn → Tn produces the same Steinberg variety that appears
in the context of elliptic Springer theory [BN15] (for G = GLn).

5. Integral version for P1

In this section we adapt some of the considerations above to homology with integral coe�cients, when
C = P1 is the projective line.

5.1. Equivariant homology and localization. The following analogue of Proposition 1.3 holds for coho-
mology with integer coe�cients.

Proposition 5.1 ([HS09, Theorem 2.10]). Let G = GLn, T ⊂ G a maximal torus and X a G-variety. If H ∗
T (X ,Z)

is torsion-free as an HT -module, then we have an isomorphism H ∗
G(X ,Z) ≃ H ∗

T (X ,Z)Sn .

In particular, we have H ∗
G(pt) = Z[x1, … , xn]Sn . As for localization, Proposition 1.4 holds over any coe�-

cient ring k without Z-torsion, in particular for k = Z.

5.2. Integral homology of Tn(P1). The proof of Proposition 2.4 uses the decomposition theorem for per-
verse sheaves in an essential way, therefore only works for cohomology with coe�cients in Q. We expect
that it remains true if we replace Q by Z. Here, we prove an analogous claim for the projective line. Let us
denote the base curve of Tn by superscript; thus, here we study TP1

n . We also denote by Txn ⊂ TCn the substack
of sheaves supported on x ∈ C . Note that we have

TC
n ≃ [gln/GLn], Txn ≃ [Nn/GLn],

where Nn ⊂ GLn is the nilpotent cone.

Proposition 5.2. Let C = P1. We have

H ∗(Tn,Z) ≃ Symn (H ∗(P1,Z)[x]) = (Z[x1, … , xn, c1, … , cn]/(c21 , … , c2n))
Sn ,

where deg xi = deg ci = 2.
Proof. We will drop the coe�cient ring from notations, and write H ∗(−) = H ∗(−,Z) throughout the proof for
brevity. Let us decompose P1 = C ⊔ {∞}, where ∞ ∈ P1 is the point at in�nity (or any other point). This
induces a strati�cation SnP1 = ⨆Si , where Si ≃ Sn−iC is the locally closed subvariety, consisting of tuples
with i occurrences of ∞. Taking preimages under the support map, we get

(23) Tn = ⨆
i
Ti∞n , Ti∞n = supp−1(Si).

Note that we have isomorphisms of moduli spaces Ti∞n ≃ T∞i × TC
n−i . In particular, Ti∞n ≃ [(Ni × gln−i)/G(i)

n ] ≃
[Q(i)

n /Gn], where G(i)
n = GLi × GLn−i ⊂ Gn, and Q(i)

n can be seen either as Gn ×G(i)n (Ni × gln−i), or a locally closed
subvariety of Qn with prescribed supports.

Recall that QTnn = (P1)n. We have QTnn ∩ Q(i)
n = Sn ×S(i,n−i) ({∞}i × Cn−i), where Sn acts on (P1)n by

permuting the factors. Note that Ni ×gln−i retracts to {∞}i ×Cn−i . Since equivariant cohomology is homotopy
invariant, the pullback map H ∗

Tn (Ni × gln−i) → H ∗
Tn ({∞}i ×Cn−i) is an isomorphism. In particular, we see that

H ∗(Ti∞n ) = H ∗
Gn (Q

(i)
n ) = H ∗

G(i)n
(Ni × gln−i) is even. Therefore the strati�cation (23) de�nes a �ltration on H ∗

Gn (Qn)
with associated graded ⨁i H ∗

Gn (Q
(i)
n ); the same holds if we replace Gn by Tn.

4that is, it is an equivalence of stacks, and not just of associated (algebraic) stacks in groupoids
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Let us introduce an auxillary grading Pn = ⨁k P(k)n by the degree of polynomials in ci’s. Since c2i = 0 for
any i, we see that P(k)n = 0 for k > n. Moreover, it is clear that

P(k)n = ⨁
1≤i1<…<ik≤n

Z[x1, … , xn]ci1 …cik .

We write P≤kn = ⨁k
i=1 P(i)n ; in particular, P≤nn = Pn.

Consider the intersection Xi = QTnn ∩Q(i)
n . By the computations above, we have Xi = Sn ×S(k,n−k) ({∞}k ×Cn−k)

and X i = ⋃�∈Sn �({∞}k × (P1)n−k). Therefore H ∗
Tn (X k) = P≤kn for any k, and an easy induction argument

identi�es the short exact sequence H ∗
Tn (X k) → H ∗

Tn (X k−1) → H ∗
Tn (Xk) with P≤kn → P≤k−1n → P(k)n . With this

substitution, localization to Tn-�xed points gives us the following commutative diagrams:

H ∗
Tn (Q

(k)
n ) H ∗

Tn (Q
(k−1)
n ) H ∗

Tn (Q
(k)
n )

P≤kn P≤k−1n P(k)n
By an iterated application of 5-lemma for k descending from n to 1, pullback along the inclusion (P1)n ↪ Qn
induces an identi�cation

H ∗
Tn (Qn) = Pn = Z[x1, … , xn, c1, … , cn]/(c21 , … , c2n).

Applying Proposition 1.3, we get H ∗(Tn) = H ∗
Tn (Qn)Sn , and so we may conclude. �

Remark 5.3. Note that the retractions in the proof above do not come from the global Gm-action on P1, since
for any such action either 0 or ∞ ∈ P1 is a repellent point.

Applying universal coe�cients, we obtain the following corollary.

Corollary 5.4. For any ring k, we have

H ∗(Tn,k) ≃ (k[x1, … , xn, c1, … , cn])Sn .
Let � ∈ Comp(n). Since F� → T� is a stack vector bundle, formula (13) shows that

H ∗(F�,Z) ≃ (Z[x1, … , xn, c1, … , cn]/(c21 , … , c2n))
S� .

Consider the composition
[(P1)n/Tn] → [Qn/Tn] → [Qn/Gn],

where the �rst map is obtained from closed embedding (P1)n ↪ Qn, and the second map is given by restricting
Gn-action on Qn to Tn. This composition can be identi�ed with the direct sum map

⨁ ∶ (T1)n → Tn, (F1, … ,Fn) ↦ F1 ⊕ … ⊕ Fn.
Therefore, the isomorphism in Proposition 5.2 can be regarded as being induced from pullback along ⨁.

5.3. Tautological subring. Recall that we have the universal sheaf E over Tn × P1. Applying Künneth
decomposition to the Chern classes of E, we write

ci(E) = ci,0 ⊗ 1 + ci,1 ⊗ p,
where ci,j ∈ H 2(i−j)(Tn,Z), and p ∈ H 2(P1,Z) is the class of a point.

Example 5.5. For n = 1, we have H ∗(T1,Z) = Z[x, c]/c2 and E = xOΔ. Note that under our identi�cations,
Δ = c + p. The total Chern class of E is given by

(24) c(E) = c(x)/c(xO(−Δ)) = 1 + x
1 + x − Δ = 1 + (c + p) +∑

i≥1
(−x)i−1((2ic − x)p − xc).

This allows us to express the Künneth components as follows:
ci,0 = (−x)i−1c, ci,1 = (−x)i−2(2(i − 1)c − x).
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In particular, c = c1,0 and x = 2c1,0 − c2,1.
De�nition 5.6. The tautological ring TH ∗(Tn,Z) is the subring of H ∗(Tn,Z) generated by classes ci,0, ci,1,
i ∈ Z>0.

If we work with Q-coe�cients, this de�nition is super�uous, since Künneth-Chern classes generateH ∗(Tn,Q)
as a ring; see [Hei12]. The following example shows that this is not the case over Z.

Example 5.7. Let n = 2. By the universal property of E, its pullback under ⨁ is isomorphic to the direct sum of
universal sheaves E1 ⊕E2. Since the total Chern class is functorial under pullbacks, we have c(E) = c(E1)c(E2).
Using the formula (24), we obtain

c(E) = (1 + (c1 + p) + (2c1p − x1(c1 + p)) + ((c1 + p)x21 − 4c1px1) + ⋯)
× (1 + (c2 + p) + (2c2p − x2(c2 + p)) + ((c2 + p)x22 − 4c2px2) + ⋯)

= (1 + (c1 + c2) + (c1c2 − c1x1 − c2x2) + …)
+ p (2 + (3c1 + 3c2 − x1 − x2) + (x21 + x22 + 4(c1c2 − c1x1 − c2x2) − (c1 + c2)(x1 + x2)) + …) .

As a consequence, we get the following expressions for the �rst few Künneth-Chern classes:

c1,0 = c1 + c2, c2,0 = c1c2 − c1x1 − c2x2,
c2,1 = 3c1,0 − (x1 + x2), c3,1 = x21 + x22 − (x1 + x2)c1,0 + 4c2,0.

By de�nition, TH 4(T2,Z) is spanned as a Z-module by c21,0, c22,1, c1,0c2,1, c2,0, c3,1. Using the formulae above, it
is easy to check that this sublattice does not contain either c1c2 or x1x2; however, we have

2c1c2 = c21,0, 2x1x2 = 6c21,0 − 5c1,0c2,1 + c22,1 − c3,1 + 4c2,0.

A similar computation shows that Künneth-Chern classes fail to generate H ∗(TCn ,Z) for any smooth pro-
jective curve C , assuming that an analogue of Proposition 5.2 holds.

5.4. Homology of Steinberg is torsion-free. The proof of Lemma 2.9 works verbatim for C = P1 over
any ring k, except we need to replace purity considerations for splitting long exact sequences by parity of
homology groups. The localization theorem can still be applied by Remark 1.5, since classes 
� are not zero
divisors over any k by formula (15). In particular, the localization map Ξn remains injective.

The rest of Sections 3 and 4, notably the proof of Proposition 3.10, goes through for any kwithout changes.
Note that even though some denominators appear in intermediate computations (essentially because of co-
e�cients in (17)), all modules under consideration are free, so one can perform computations over Z ⊂ Q,
obtain a result valid over Z, and then change the base ring. One could get rid of denominators altogether, but
it would render the notations even more cumbersome.

In particular, we obtain that Corollary 4.18 holds over any k.

6. KLR algebras of qivers

6.1. KLR algebra. Let Γ = (I , H ) be a quiver without loops, where I stands for the set of vertices, and H for
the set of arrows. It comes equipped with source and target maps s, t ∶ H → I . For any i, j ∈ I , let ℎij be the
number of arrows from i to j, and de�ne

Qij(u, v) =
{
0 if i = j,
(u − v)ℎij (v − u)ℎji otherwise.

Let � = (ni)i∈I ∈ ZI
≥0 be a dimension vector. It can be alternatively written as a sum � = ∑i∈I ni�i , where

�i = (�ij)j∈I , i ∈ I . For a dimension vector � , we de�ne |� | ∶= ∑i∈I ni and

I � =
{
i = (i1, i2, … , i|� |) ∈ I |� | ∶

|� |
∑
r=1

�ir = �
}
.
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We will also make use of the following re�nement of I � :

I (�) =
{
i = (i(a1)1 , i(a2)2 , … , i(ak )k ) ∶ ar ∈ Z>0,

|� |
∑
r=1

ar�ir = �
}
,

where we treat i(a) as a formal symbol corresponding to divided powers (see Section 6.4). To any i ∈ I (a) we can
associate i = (ia11 , ia22 , … , iakk ) ∈ I � , obtained by replacing each divided power i(ar )r with ar consecutive copies of
ir . For each i = (i(a1)1 , i(a2)2 , … , i(ak )k ) ∈ I (�), let Si be the subgroup of S|� | associated to (a1, … , ak) ∈ Comp(|�|):

Si = Sa1 ×Sa2 × … ×Sak ⊂ S|� |.
De�nition 6.1. A KLR diagram of weight � is a planar diagram containing |� | strands such that:

∙ the strands connect |� | points on one horizontal line with |� | points on another horizontal line, each
strand goes from bottom to top;

∙ each strand is labeled by an element of I ;
∙ for each i ∈ I , there are ni strands with label i;
∙ two strands are allowed to cross, and there are no triple-crossings;
∙ a piece of a strand is allowed to carry a dot, a dot cannot collide with a crossing.

We consider KLR diagrams modulo isotopies. In particular, a dot is allowed to move freely along the strand,
as long as it doesn’t slide past a crossing.

De�nition 6.2. The KLR algebra R(�) is the k-algebra generated by KLR diagrams of weight � modulo the
local relations below:

(25)
i j

=

i j

if i ≠ j,

(26)
i i

=

i i

−

i i

,

i i

=

i i

−

i i

,

(27)
i j

=

ji

Qij(y1, y2) if i ≠ j,

i i

= 0,

(28)
ki j

=

ki j

unless i = k ≠ j,

(29)
ii j

=

ii j

−

ii j

Qij(y3, y2) − Qij(y1, y2)
y3 − y1 if i ≠ j.

The multiplication is given by vertical concatenation; we impose the concatenation of strands with di�erent
labels to be zero.
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Remark 6.3. We will be chie�y interested in KLR algebras for the Kronecker quiver Γ = (1 ⇒ 0). In this case
we have

Q01(u, v) = Q10(u, v) = (u − v)2,
Q01(y3, y2) − Q01(y1, y2)

y3 − y1
= y1 − 2y2 + y3.

For each i ∈ I � we have an idempotent 1i, given by a diagram consisting of |� | vertical strands, with r-th
strand labeled by ir for any r . The algebra R(�) is clearly generated by these idempotents, together with single
crossings and dots. In what follows, we will denote the crossing between r-th and (r + 1)-th strand by  r , and
the diagram with a single dot on r-th strand by yr . More precisely, we have

yr1i =

i1

…

ir

…

i|� |

,  r1i =

i1

…

ir ir+1

…

i|� |

,

and
yr = ∑

i∈I �
yr1i,  r = ∑

i∈I �
 r1i.

For example, relations (25-26) take the following form:

yr r =  ryr+1 − ∑
i∈I � , ir=ir+1

1i,  ryr = yr+1 r − ∑
i∈I � , ir=ir+1

1i.

6.2. Polynomial representation of R(�). Let m = |�|, and de�ne Polm = k[y1, … , ym]. Let further Pol�
be the direct sum of I � -worth copies of Polm. We write Pol� = ⨁i∈I � Polm 1i, where 1i is the idempotent
projecting to the i-th copy.

Lemma 6.4 ([Rou08, §3.2.2]). The algebra R(�) has a faithful representation on the vector space Pol� , such that
1i ∈ R(�) acts by the projector 1i, yr ∈ R(�) acts by multiplication by yr , and for any f ∈ Polm we have

(30)  r ⋅ f 1i =
{
−)r (f )1i if ir = ir+1,
Pir ,ir+1(yr , yr+1)sr (f )1sr (i) else.

Here Pij(u, v) = (u − v)ℎij , and )r = 1−sr
yr−yr+1 is the Demazure operator.

6.3. Geometric construction of KLR algebras. Fix a dimension vector � = ∑i∈I ni�i with |� | = m. Let
V be an I -graded complex vector space of dimension � , that is a complex vector space with decomposition
V = ⨁i∈I Vi , such that dimVi = ni . Consider the variety E� = ⨁ℎ∈H Hom(Vs(ℎ), Vt(ℎ)), on which we have a
natural action of G� = ∏i∈I GL(Vi). For i = (i(a1)1 , i(a2)2 , … , i(ak )k ) ∈ I (�), let Fi be the variety of �ags in V

' = ({0} = V 0 ⊂ V 1 ⊂ ⋯ ⊂ V k = V ),
which are homogeneous with respect to the decomposition V = ⨁i∈I Vi , and for each 1 ≤ r ≤ k the graded
dimension of V r /V r−1 is equal to ar�ir . Further, let F̃i be the following variety of pairs:

F̃i = {(x, ') ∈ E� × Fi ∶ x(V r ) ⊂ V r , 0 ≤ r ≤ k} .
Analogously to Section 2.1, we have an isomorphism H ∗

G� (Fi) ≃ Pol
Sim , where for each r ∈ [1; k] the elements

ya1+…+ar−1+1, ya1+…+ar−1+2, … , ya1+…+ar are the Chern roots of the vector bundle V r /V r−1. Since F̃i is a vector
bundle over Fi, we also have H ∗

G� (F̃i) ≃ Pol
Sim .

We also denote F� = ∐i∈I � Fi, F̃� = ∐i∈I � F̃i. Let �� ∶ F̃� → E� be the natural projection, that is �� (x, ') =
x , and consider the corresponding �ber product Z� = F̃� ×E� F̃� . We have

Z� = ∐
i,j∈I �

Zi,j = ∐
i,j∈I �

F̃i ×E� F̃j.

In other words, Zi,j is the variety of triples (x, '1, '2) ∈ E� × Fi × Fj, such that x preserves both '1 and '2.
Remark 6.5. For now, we only consider i ∈ I � ; however, the de�nition of Zi,j makes sense for i, j ∈ I (�) as well.
We will make use of these more general varieties in Section 6.6.
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By Propositions 1.8 and 1.9, we have an algebra structure on A(�� ) = H ∗
G� (Z� ,k), and an action of it

on H ∗
G� (F̃� ,k). The following statement is proved in [VV11, Rou08] for k a �eld of characteristic zero, and

in [Mak15] for an arbitrary ring k of �nite global dimension.

Proposition 6.6. The KLR algebra R(�) is isomorphic to the convolution algebra H ∗
G� (Z� ). Moreover, the repre-

sentation Pol� of R(�) is isomorphic to the representation H ∗
G� (F̃� ) of H ∗

G� (Z� ).
Remark 6.7. The idempotents 1i ∈ R(�) correspond to di�erent connected components. Namely, we have

H ∗
G� (Zi,j) ≃ 1iR(�)1j, H ∗

G� (F̃i) ≃ Polm 1i.
6.4. Divided powers. The algebra R(n�i) is known as the nil-Hecke algebra of rank n. Let w = si1 … sir be
a reduced decomposition of w ∈ Sn. Relation (28) implies that the product  i1 … ir is independent of the
decomposition above. We denote this element of R(n�i) by  w .

Let w0,n be the longest element in Sn. De�ne y0,n ∶= yn−1n yn−2n−1 …y23y2, and 1i(n) ∶=  w0,ny0,n ∈ R(n�i). It is
easy to check that  w0,ny0,n w0,n =  w0,n , which implies that the element 1i(n) is an idempotent. We call 1i(n) the
divided di�erence idempotent. Note that it acts on Poln�i ≃ Poln as the projector to symmetric polynomials.

Let � ∈ ZI
≥0 be as in Section 6.3. For each i = (i(a1)1 , i(a2)2 , … , i(ak )k ) ∈ I (�), let w0,i be the maximal length

element in Si, and de�ne the following elements in R(a1�i1) ⊗ … ⊗ R(ak�ik ) ⊂ R(�):
1i ∶= 1i(a1)1

⊗ 1i(a2)2
⊗ … ⊗ 1i(ak )r

, yi ∶= y0,a1 ⊗ y0,a2 ⊗ … ⊗ y0,ak .

The de�nitions in nil-Hecke algebra imply that yi = yi1i and 1i =  w0,iyi.
In graphical calculus we draw divided power idempotents as boxes. For example, the idempotent 1i with

i = (i(a1)1 , i(a2)2 , … , i(ak )k ) is depicted as follows (we have ar strands with label ir ):

…

i1 i1
…

i1

i(a1)1

…

i2 i2
…

i2

i(a2)2
…

…

ik ik
…

ik

i(ak )k

6.5. Basis. For each w ∈ Sm �x a reduced decomposition w = sr1 … srk , and let

 w1i =  r1 … rk1i,  w = ∑
i∈I �

 w1i.

Unlike the case of nil-Hecke algebra, this de�nition of  w1i does depend on the choice of the decomposition.
Note that we allow to choose di�erent reduced decompositions of the same w for di�erent i.

For any i = (i1, i2, … , im) ∈ Im and w ∈ Sm, set w(i) = (iw−1(1), iw−1(2), … , iw−1(m)). For any i, j ∈ I � , let
Sj i = {w ∈ Sm ∶ w(i) = j}. More generally if i, j ∈ I (�), de�ne Sj i to be the set of shortest representatives of

cosets in Sj⧵ Sj i/Si. The following lemma is proved in [Rou08, Theorem 3.7], see also [KL09, Theorem 2.5].

Lemma 6.8. For any i, j ∈ I � , each of the following two sets forms a basis of 1jR(�)1i:
{ya11 ya22 …yann  w1i; w ∈ Sj i, ar ∈ Z≥0}, { wya11 ya22 …yann 1i; w ∈ Sj i, ar ∈ Z≥0}.

Remark 6.9. As we explained above, the de�nition of  w depends on some choices. However, the following
vector subspaces of R(�) always remain the same:

R(�)≤w = ⨁
w′≤w

Pol�  w′ , R(�)<w = ⨁
w′<w

Pol�  w′ .

Moreover, they are stable by multiplication by elements of Pol� on the right and on the left. The image of  w
in R(�)/R(�)<w is also independent of our choices.
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Above we described some bases in 1jR(�)1i for i, j ∈ I � . However, we will need a version of Lemma 6.8
which allows i, j to lie in I (�). Let us begin with some preparations. For each i = (i(a1)1 , i(a2)2 , … , i(ak )k ) ∈ I (�) and
x ∈ Sk , let

x−1(i) = (i
(ax(1))
x(1) , i(ax(2))x(2) , … , i(ax(k))x(k) ) .

De�nition 6.10. Let i, j ∈ I (�), i = (i(a1)1 , i(a2)2 , … , i(ak )k ), j = (j(b1)1 , j(b2)2 , … , j(bk )k ). We say that j is a permutation of
i if there exists x ∈ Sk such that x(i) = j. Each such x induces a permutation w ∈ Sj i.

Note that each reduced decomposition x = sr1sr2 … srt of x induces a decomposition w = ŝr1 ŝr2 … ŝrt of w .
We say that a reduced decomposition of w is adapted to i, j and x if it is a re�nement of the decomposition
w = ŝr1 ŝr2 … ŝrt for some reduced decomposition x = sr1sr2 … srt .
Lemma 6.11.

(a) For x ∈ R(�) and i ∈ I (�), we have 1ix = x if and only if the image of the action of x on Pol� is contained
in PolSim 1i;

(b) let i, j ∈ I (�) be such that j is a permutation of i in the sense of De�nition 6.10. For w ∈ Sj i induced by
some x ∈ Sk with x(i) = j, de�ne the operator  w using a reduced decomposition adapted to i, j and x .
Then we have  w1i = 1j w1i;

(c) if sr ∈ Si, then  rQ1i = −)r (Q)1i as elements in R(�) for any Q ∈ Polm.
Proof. Part (a) follows from the fact that 1i acts on Pol� as a projector to PolSim 1i.

For (b), it is enough to prove the statement for i = (i(a1)1 , i(a2)2 ), j = (i(a2)2 , i(a1)1 ), and w the unique non-trivial
permutation in Sj i. If i1 ≠ i2, then we clearly have 1j w =  w1i by relations (25) and (28). If i1 = i2, then it
su�ces to show that the Demazure operator )w sends PolSa1×Sa2a1+a2 to PolSa2×Sa1a1+a2 . This follows from Lemma 4.6,
which says that )w always sends PolSa1×Sa2a1+a2 to PolSa1+a2a1+a2 .

In order to check (c), we act by  rQ1i on some P ∈ Pol� . First of all, 1i ⋅ P is of the form R1i for some
R ∈ PolSi . Since sr ∈ Si, we have sr (R) = R. In particular, the operator )r commutes with multiplication by R.
Therefore

 rQ1i ⋅ P =  r ⋅ QR1i = −)r (QR)1i = −)r (Q)R1i = −)r (Q)1i ⋅ P .
We conclude by faithfulness of the polynomial representation. �

For j, j′ ∈ I (�), we say that j′ is a split of j if we have j = j′ and Sj′ ⊂ Sj. In this case, let w0,j,j′ = w0,jw−1
0,j′ be

the longest element in Sj ∩ Sj j′ . For any i, j ∈ I (�) and w ∈ Sj i, there exist unique i′, j′ ∈ I (�) such that i′ is a
split of i, j′ is a split of j, j′ is a permutation of i′ and Sj′ = wSiw−1 ∩Sj, Si′ = w−1Sjw ∩Si (compare this to
the notation in (19)). Fix a basis Bi′ of PolSi′m ; note that Bj′ = w(Bi′) is a basis of PolSj′

m .

Lemma 6.12. For each i, j ∈ I (�), each of the following two sets forms a basis of 1jR(n�)1i:
(31) { w0,j,j′P w1i; w ∈ jSi, P ∈ Bj′}, { w0,j,j′ wP1i; w ∈ jSi, P ∈ Bi′}.

Proof. We concentrate on the �rst set for now. Let us �rst prove that it forms a basis under the following
additional assumptions on the choice of reduced decompositions:

∙ each element w ∈ Sj i can be written in a unique way as w = w′x , where w′ ∈ Sj i and x ∈ Si. We
assume that the reduced expressions are chosen in such a way that  w1i =  w′ x1i;

∙ each element w ∈ Sj i can be written in a unique was as w = xw′, where w′ ∈ Sj i and x ∈ Sj. We
assume that the reduced expressions are chosen in such a way that  w1i =  x w′1i;

∙ we assume additionally that the reduced representation of each w ∈ Sj i is adapted to i′, j′ and x in
the sense of De�nition 6.10, where x is the permutation with x(i′) = j′ that induces w .

It is clear from Lemma 6.8 that the set

(32) {1jP w1i ∶ w ∈ Sj i, P ∈ Polm}
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spans 1jR(�)1i. We are going to reduce the number of generators in (32). First, we can assume that each w
lies in Sj i, because if w is not minimal in wSi, then we have  w1i = 0 by the �rst assumption. Let us write
w ∈ Sj i as w = xw′, where w′ ∈ Sj i and x ∈ Sj as in the second assumption. There exists a polynomial
Q ∈ Polm such that we have the following chain of equalities

1jP w1i =  w0,jyjP x w′1i
=  w0,jQ w′1i
=  w0,j,j′ w0,j′Q w′1i
=  w0,j,j′ (−1)

� (w0,j′ ))w0,j′ (Q) w′1i.
The �rst and the third equalities follow from the de�nitions of 1j and  w0,j,j′ respectively. For the second
equality, we use relations (25) and (26) in order to move polynomial in the expression yjP x past  . Since
 w0,j r = 0 for each r with sr ∈ Sj, the additional terms coming from (26) will disappear, and therefore
 w0,jyjP x =  w0,jQ for some Q ∈ Polm. Finally, let us justify the fourth equality. First, Lemma 6.11.(b) implies
that

 w′1i =  w′1i′1i = 1j′ w′1i′1i = 1j′ w′1i.
Second, by Lemma 6.11.(c) we have

( w0,j′Q1j′) w′1i = (−1)� (w0,j′ )()w0,j′ (Q)1j′) w′1i.
All in all, this shows that the �rst set in (31) spans 1jR(n�)1i. It remains to check linear independence.

Consider an element  w0,j,j′P w1i from this set. Applying relations (25-26), we get

 w0,j,j′P w1i ∈ Q w0,j,j′ w1i + R(�)
<w0,j,j′w ,

where we use notations of Remark 6.9, and Q = w0,j,j′(P). Linear independence therefore follows from
Lemma 6.8.

Now, let us prove the claim without additional assumptions on the reduced decompositions. Consider a
partial order on the basis obtained above, de�ned as follows:

 w0,j,j′P1 w11i <  w0,j,j′P2 w21i ⇔ l(w1) < l(w2).
First, note that 1j w0,j,j′ is independent of the choice of the reduced decomposition of w0,j,j′ because its

diagram contains only crossings of strands with the same label. Assume that we have made some other choice
of reduced decompositions. Let us write  w for the operator de�ned with respect to the previous choice of
decompositions, and  ′w with respect to the new one. We have

 w0,j,j′P 
′
w1i =  w0,j,j′P w1i + … ,

where ellipses stand for lower terms with respect to the order introduced above. We have thus deduced that
the �rst set in (31) forms a basis for an arbitrary choice of reduced decompositions. Finally, in a similar fashion
we have

 w0,j,j′ wP1i =  w0,j,j′w(P) w1i + … ,
so that the second set in (31) is a basis as well. �

6.6. Geometric construction of divided powers. Let us consider the following divided power versions of
the KLR algebra R(�) and related geometric objects:

R̂(�) = ⨁
i,j∈I (�)

1iR(�)1j, F̃(�) = ∐
i∈I (�)

F̃i, Z(�) = ∐
i,j∈I (�)

Zi,j.

Similarly to Pol� , let us also consider the vector space Pol(�) = ⨁i∈I (�) PolSim 1i, where 1i is the projector to the
direct summand labeled by i. For any i, j ∈ I (�), each element of 1iR(�)1j yields a linear map Polm 1j → Polm 1i
by Lemma 6.4. In particular, each element of 1iR(�)1j ⊂ 1iR(�)1j yields a linear map PolSj

m 1j → PolSim 1i by
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Lemma 6.11.(a). This de�nes an action of R̂(�) on Pol(�). Moreover, since R(�) acts faithfully on Pol� , the
representation Pol(�) of R̂(�) is faithful as well.

On the other hand, H ∗
G� (Z(�)) is a convolution algebra, which acts on H ∗

G� (F̃(�)). We have an identi�cation
of vector spaces

H ∗
G� (F̃(�)) = ⨁

i∈I (�)
H ∗
G� (F̃i) = ⨁

i∈I (�)
PolSim 1i = Pol(�) .

We will upgrade this to an isomorphism of R̂(�)-modules in Proposition 6.17.
Note that for any i ∈ I (�), we have a closed embedding

F̃i = F̃i ×F̃i F̃i ↪ F̃i ×E� F̃i = Zi,i.
Consider the corresponding classes in the algebra H ∗

G� (Z(�)):
zi,i = [F̃i ×F̃i F̃i] ∈ H

∗
G� (Zi,i) ⊂ H ∗

G� (Z(�)), zi,i = [F̃i ×F̃i F̃i] ∈ H
∗
G� (Zi,i) ⊂ H ∗

G� (Z(�)).
Lemma 6.13. The map

H ∗
G� (Zi,j) → H ∗

G� (Zi,j), x ↦ zi,ixzj,j
is injective.

Proof. By the de�nition of convolution product, this map is given by the following correspondence:

Zi,j
p←←←←←←←← F̃i ×F̃i Zi,j ×F̃j F̃j

q←←←←←←←→ Zi,j, zi,ixzj,j = q∗p!(x).
Since Zi,j = F̃i ×E� F̃j, it is clear that the map q is an isomorphism. Note that F̃i → F̃i is a locally trivial �bration
in partial �ag varieties for any i. In particular, p is a locally trivial �bration in products of partial �ag varieties,
and it is straightforward to verify that p! = p∗. Moreover, p∗ is injective by an iterated application of projective
bundle theorem.

Putting everything together, the map x ↦ zi,ixzj,j is identi�ed with an injective map p∗. �

Corollary 6.14. The representation H ∗
G� (F̃(�)) of H ∗

G� (Z(�)) is faithful.

Proof. Suppose that x ∈ H ∗
G� (Zi,j) acts on H ∗

G� (F̃(�)) by zero. Then the element zi,ixzj,j ∈ Zi,j acts on H ∗
G� (F̃� ) by

zero. Since the action of R(�) on H ∗
G� (F̃� ) is faithful, we have zi,ixzj,j = 0, and the lemma above implies that

x = 0. �

Recall that w0,i is the maximal length element in Si. We view the polynomial yi, de�ned in Section 6.4, as
an element of H ∗

G� (Zi,i).
Lemma 6.15. (a) The element zi,i acts on Pol(�) by

zi,i ∶ Polm 1i → PolSim 1i, P1i ↦ (−1)� (w0,i))w0,i(P)1i;
(b) the element zi,i acts on Pol(�) by

zi,i ∶ PolSim 1i → Polm 1i, P1i ↦ P1i.
Proof. See [Prz19, Theorem 4.7]; the proof there is similar to our Proposition 3.15. �

Corollary 6.16. (a) We have zi,iyizi,i = 1 in H ∗
G� (Zi,i);

(b) we have zi,izi,iyi = 1i in 1iR(�)1i = H ∗
G� (Zi,i).

Proof. It su�ces to check these equalities on polynomial representations, where they follow from Lemma 6.15.
�

The following statement is the divided power version of Proposition 6.6.

Proposition 6.17. (a) There exists an isomorphism of algebras H ∗
G� (Z(�)) ≃ R̂(�);

(b) this isomorphism restricts to H ∗
G� (Zi,j) ≃ 1iR(�)1j for each i, j ∈ I (�);

(c) the H ∗
G� (Z(�))-action on H ∗

G� (F̃(�)) gets identi�ed with the R̂(�)-action on Pol(�).
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Proof. For each i, j ∈ I (�), consider the maps

pi,j∶ H ∗
G� (Zi,j) → H ∗

G� (Zi,j), x ↦ zi,ixzj,jyj,
qi,j∶ H ∗

G� (Zi,j) → H ∗
G� (Zi,j), x ↦ zi,iyixzj,j.

It follows from Corollary 6.16.(a) that qi,j◦pi,j is the identity of H ∗
G� (Zi,j). This allows to identify H ∗

G� (Zi,j) with
a vector subspace of H ∗

G� (Zi,j). Moreover, pi,j◦qi,j is the projector to the image of H ∗
G� (Zi,j) in H ∗

G� (Zi,j). Let us
describe this image.

Let us identify H ∗
G� (Zi,j) with 1iR(�)1j. By Corollary 6.16.(b), the map pi,j◦qi,j becomes

(33) 1iR(�)1j → 1iR(�)1j, x ↦ 1ix1j.
This shows that under the identi�cation aboveH ∗

G� (Zi,j) coincides with 1iR(�)1j as vector subspaces in 1iR(�)1j.
Summing over i, j ∈ I (�) yields an isomorphism of vector spaces H ∗

G� (Z(�)) ≃ R̂(�).
Using Corollary 6.16.(a), we see that for any h, i, j ∈ I (�) and x ∈ H ∗

G� (Zh,i), y ∈ H ∗
G� (Zi,j) we have ph,i(x) ⋅

pi,j(y) = ph,j(x ⋅ y). Therefore H ∗
G� (Z(�)) ≃ R̂(�) is an isomorphism of algebras, which proves (a) and (b).

Let us verify (c). Suppose x ∈ H ∗
G� (Zi,j) acts on H ∗

G� (F̃(�)) ≃ Pol(�) by

PolSj
m 1j → PolSim 1i, P1j ↦ L(P)1i,

where L ∶ PolSj
m → PolSim is a linear map. Then by Lemma 6.15, the element pi,j(x) acts on Pol� by

Polm 1j → Polm 1i, P1i ↦ L()w0,j(yjP))1i.

We see that this action agrees with the action of R̂(�) on Pol(�). �

7. Semi-cuspidal category of the Kronecker qiver

In this section, we establish a link between KLR algebras for the Kronecker quiver and Schur algebras for
P1. We will assume that either k is a �eld or k = Z, unless otherwise stated.

7.1. Kronecker quiver. From now on, let Γ = (1⇒ 0) be the Kronecker quiver, and denote by � the dimen-
sion vector �0 + �1.

Take � = n0�0 + n1�1, and m = |�| = n0 + n1. Let us introduce a more convenient notation for polynomial
variables in the KLR algebra R(�). Let i ∈ I � ; it can be thought of as a sequence consisting of n0 zeroes and n1
ones. For each 1 ≤ r ≤ m, let kr be the number of r ′ ∈ [1, r] such that ir ′ = ir . Inside 1iR(�)1i, we then write
yr = ukr if ir = 0, and yr = vkr if ir = 1.
Example 7.1. Let � = 2�0 + 3�1, i = (0, 1, 1, 0, 1). Then we have

u11i = y11i, u21i = y41i,
v11i = y21i, v21i = y31i, v31i = y51i.

In particular, for any non-negative integer n denote

Polln = k[u1, … , un, v1, … , vn].
Using the new notation, we can write Poln� = ⨁i∈I n� Polln 1i.

For each composition � = (�1, … , �k) ∈ Comp(n), consider the elements

i� = (0(�1), 1(�1), … , 0(�k ), 1(�k )) ∈ I (n�), j� = i� = (0�11�1 …0�k1�k ) ∈ I � .
Let i0 = j0 = j1n = (0101… 01) ∈ I n� . In order to unburden the notation, we will write e� = 1i� , e0 = 1i0 ,
and e = ∑�∈Comp(n) e�. By Lemma 6.4 the algebra R(n�) acts faithfully on Poln� . This implies that we have a
faithful representation of eR(n�)e on e Poln� . Since e� Poln� ≃ Poll(S�)2n , we obtain that eR(n�)e has a faithful
representation on ⨁�∈Comp(n) Poll(S�)2n .
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7.2. Semi-cuspidal modules.

De�nition 7.2. We say that a sequence i = (i1, i2, … , i2n) ∈ I n� is non-cuspidal if there exists an index r ∈
[1; 2n] such that (i1, i2, … , ir ) contains more 1’s than 0’s. Denote by I n�nc the set of all non-cuspidal sequences
in I n� , and write 1nc = ∑i∈I n�nc

1i.

Given a k-algebra A, let mod(A) denote the category of �nitely generated A-modules.

De�nition 7.3 ([KM17b, §2.6]). We say that an R(n�)-module M is semi-cuspidal if 1iM = 0 for each i ∈ I n�nc .
In other words, M is semi-cuspidal if it is annihilated by 1nc.

Denote by cusp(R(n�)) ⊂ mod(R(n�)) the full subcategory of semi-cuspidal R(n�)-modules. We clearly have
cusp(R(n�)) = mod(C(n�)), where C(n�) is the quotient algebra R(n�)/R(n�)1ncR(n�).

Lemma 7.4. Let k be a �eld. The C(n�)-module C(n�)e is a projective generator in the categorymod(C(n�)). If
k has characteristic zero, then C(n�)e0 is a projective generator of mod(C(n�)) as well.

Proof. The second claim follows from [KM17b, Lemma 6.22].
Let us prove the �rst claim. It is equivalent to the fact that for each simple module L ∈ mod(C(n�)) we can

�nd � ∈ Comp(n) and a surjection C(n�)e� → L. In other words, we need to show that for each simple module
L ∈ C(n�) we can �nd � ∈ Comp(n) such that e�L ≠ 0. However, this follows from [KM17a, Theorem 5.5.4].

Let us provide some additional explanation about the given reference. The algebra Sn is de�ned in [KM17a,
§4.3] as a quotient of R(n�) by the annihilator of some semi-cuspidal R(n�)-module. In particular, we a
get a chain of surjections R(n�) → C(n�) → Sn, and inclusions of categories mod(Sn) ⊂ mod(C(n�)) ⊂
mod(R(n�)). For each � ∈ Comp(n), [KM17a, §5.3] constructs an Sn-moduleZ � and [KM17a, Theorem 5.5.4 (iii)]
shows that Z = ⨁�∈Comp(n) Z � is a projective generator in mod(Sn). On the other hand, the proof of [KM17a,
Theorem 5.5.4] shows that there is a surjection of R(n�)-modules from R(n�)e� (denoted by I n� Γ� in [KM17a])
to Z � . This proves that for each simple module L ∈ mod(Sn) there exists � ∈ Comp(n) such that the R(n�)-
module R(n�)e� surjects to L, in particular we have 1�L ≠ 0.

In order to complete the proof, we have to show that each simple module L ∈ mod(C(n�)) factors through
the quotient C(n�) → Sn. In other words, we have to show that the categories mod(C(n�)) and mod(Sn)
have the same number of simple modules. By [KM17a, Theorem 6], the number of simple modules inmod(Sn)
is equal to the number of partitions of n. On the other hand, by [KM17b, Theorem 2] the number of simple
modules in mod(C(n�)) is the same. �

Corollary 7.5. For k a �eld, the algebra C(n�) is Morita equivalent to eC(n�)e. Moreover, if k has characteristic
zero, C(n�) is Morita equivalent to e0C(n�)e0.

7.3. Thick calculus in eR(n�)e. In this section we construct some special element in the algebra eR(n�)e.
Let us introduce some diagrammatic abbreviations. First, we write

a

=

…

0(a)

…
0 0 0

…

1(a)

…
1 1 1

.

In particular, for � = (�1, … , �k) ∈ Comp(n), we draw the idempotent e� as k parallel vertical lines with labels
�1, … , �k . Moreover, a strand with label a is allowed to carry a polynomial P ∈ Poll(Sa)2a . In fact, it would
make sense to allow polynomials from Polla; however, the presence of an idempotent allows us to replace any
polynomial by a symmetric one.



KLR AND SCHUR ALGEBRAS FOR CURVES AND SEMI-CUSPIDAL REPRESENTATIONS 37

Next, we write

a + b

a b

∶=

0(a+b) 1(a+b)

0(a) 1(a) 0(b) 1(b)

…
…

…

…

…
… ,

a + b

a b

∶=

0(a+b) 1(a+b)

0(a) 1(a) 0(b) 1(b)
…

…

…

…

…

…

…

…

.

Assume that �, � ∈ Comp(n) are such that � is a split of � at k-th place. Then, similarly to Section 3.4, we de�ne
elements S�� ∈ e�R(n�)e� and M�

� ∈ e�R(n�)e� by (18), but using the diagrammatic calculus de�ned above for
eR(n�)e instead of the analogous calculus for curve Schur algebra. It is easy to check that the elementary
splits and merges above are associative as in (3.4). This allows us to extend the de�nitions of S�� and M�

� to
any �, � with S� ⊂ S�.

Remark 7.6. It is not the case that we can write any element of eR(n�)e as a linear combination of diagrams
containing splits, merges and symmetric polynomials. However, we will see in Remark 7.14 that this holds for
eC(n�)e. Moreover, it can be shown that eR(n�)e is an idempotent truncation of the quiver Schur algebra and
the diagrams introduced above are nothing else than the diagrams in quiver Schur algebra (replacing the label
a by a�). However, here we allow only labels of the form a� , while quiver Schur algebras allow more general
labels of the form a0�0 + a1�1. This is the reason why our thick calculus does not have enough diagrams to
represent every element in eR(n�)e.

Let �, � ∈ Comp(n) be such that S� ⊂ S�. Let us give a geometric description of the operators S��, M�
� . We

have an obvious projection F̃i� → F̃i� , obtained by forgetting some components of the �ag. This allows us to
de�ne the following correspondences:

ZSi� ,i� ∶= F̃i� ×F̃i� F̃i� ⊂ F̃i� ×E� F̃i� = Zi� ,i� , ZMi� ,i� ∶= F̃i� ×F̃i� F̃i� ⊂ F̃i� ×E� F̃i� = Zi� ,i� .

Lemma 7.7. Under the identi�cation in Proposition 6.17, we have S�� = [ZSi� ,i� ] andM�
� = [ZMi� ,i� ].

Proof. It su�ces to check these equalities on the faithful representation Pol(n�) of R̂(n�). The actions of S�� and
M�
� can be easily obtained from Lemma 6.4. On the other hand, the actions of [ZSi� ,i� ] and [ZMi� ,i� ]were computed

in larger generality (for quiver Schur algebras) in [Prz19, Theorem 4.7]; see also [SW14, Proposition 3.4].
By [Prz19, Theorem 4.7(b)], the element [ZMi� ,i� ] acts by

PolSi�
2n 1i� → PolSi�

2n 1i� , P1i� ↦ P1i� ,

which coincides with the action of M�
� .

For S��, assume � = (a + b) and � = (a, b); the general case is proved in the same way, but requires more
complicated notation. By [Prz19, Theorem 4.7(a)], the element [ZSi� ,i� ] acts on Pol(n�) by

PolSi�
2n 1i� → PolSi�

2n 1i� , P1i� ↦ ∑
wu ,wv∈Sn/(Sa×Sb)

wuwv (P
a

∏
i=1

a+b
∏
j=a+1

(vi − uj)2
(ui − uj)(vi − vj))

,

where wu permutes ui’s, and wv permutes vi’s. Let )uw0,a,b be the composition of Demazure operators as in
Lemma 4.6 acting on variables u1, … , un, and de�ne )vw0,a,b analogously. Applying Lemma 4.7, we have

∑
wu ,wv∈Sn/(Sa×Sb)

wuwv (P
a

∏
i=1

a+b
∏
j=a+1

(vi − uj)2
(ui − uj)(vi − vj))

= )uw0,a,b)
v
w0,a,b (P

a
∏
i=1

b
∏
j=a+1

(vi − uj)2) ,

and the right-hand side coincides with the action of S�� given by Lemma 6.4. �
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As in Section 3.4, we will use the following abbreviation:

a b

b a

∶=

a b

b a

=

0(a) 1(a) 0(b) 1(b)
…

…

…

…

…

…

…

…0(b) 1(b) 0(a) 1(a)

.

Let �, � ∈ Comp(n) be such that � is obtained by permuting components in � = (�1, … , �r ), and w ∈ Sr the
corresponding permutation. We can de�ne the permutation element R��(w) ∈ e�R(n�)e� as in Section 3.4;
recall that it depends not only on w , but also on the choice of a reduced decomposition of w .

7.4. Basis in eR(n�)e. Let �, � ∈ Comp(n). To each element w ∈ Si� i� , we can associate a pair (x, y) ∈
S� � × S� �, where x is the restriction of w to positions colored by 0, and y to positions colored by 1. This

induces a bijection Si� i� ∼←←←←←←←→ S� � × S� �. We will use this bijection implicitly from now on, and write  (x,y)
instead of  w . In the case x = y, we may also write  (x) instead of  (x,x) by abuse of notation.

As in Section 6.5, consider the elements i′�, i′� ∈ I (n�) (both depending on �, �, w) characterized by

i′� = i�, i′� = i� , Si′� = w
−1Si′�w = Si� ∩ w−1Si�w.

The elements i�, i� , i′� and i′� here play the roles of i, j, i′ and j′ respectively in Section 6.5. Note that in general
i′� cannot be expressed as i�′ for �′ ∈ Comp(n); however, this works if x = y.

The following is a restatement of the second part of Lemma 6.12 for the Kronecker quiver.

Lemma 7.8. For each �, � ∈ Comp(n), the following set is a basis of the k-module e�R(n�)e�:

{
 w0,i� ,i′� (x,y)Pe� ∶ x, y ∈ S� �, P ∈ Bi′�

}
.

Remark 7.9.

(a) The lemma above implies that for any � ∈ Comp(n) we have an isomorphism of k-modules

Poll(S�)2n → e�R(n�)e(n), P ↦ P ⋅ S�(n);

(b) suppose that we have �r = 1 for some index r , and set k = �1 + … + �r−1 + 1. The quadratic relation
 22k−1e� = (uk − vk)21j� and the fact that the idempotent s2k−1(j�) is non-cuspidal implies that the
polynomial (uk − vk)2 is in the kernel of the map

Poll(S�)2n → e�C(n�)e(n), P ↦ P ⋅ S�(n).

Example 7.10. Let n = 4, � = (3, 1), � = (1, 3), w = (1, 3, 4, 6, 7, 8, 5, 2). In this case x = (1, 2, 3, 4), y = (2, 3, 4, 1),
and the set Bi′� is a basis in the vector space of polynomials in k[u1, u2, u3, u4, v1, v2, v3, v4]S2×S2 , where S2×S2
acts by transpositions u1 ↔ u2 and v1 ↔ v2. For example, take P = u1u2v4. Then the basis element
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 w0,i� ,i′� wPe� is given by the following diagram:

0 1 0 0 0 1 1 1

0(3) 1(3) 0 1

Lemma 7.11. Let w be such that x ≠ y . Then the reduced decomposition of w can be chosen in such a way that
every basis element  w0,i� ,i′� wPe� goes to zero under the quotient map eR(n�)e → eC(n�)e.

Proof. For a composition � = (�1, … , �k) and r ∈ [1, n], let L(r) ∈ [1, k] be the unique index for which �1 +
… + �L(r)−1 < r ≤ �1 + … + �L(r). If x ≠ y , then we can �nd an index r ∈ [1, n] such that L(x(r)) > L(y(r)). In
e�ect, assume the contrary, that is that for every r ∈ [1, n] we have L(x(r)) ≤ L(y(r)). Since ∑1≤r≤n L(x(r)) =
∑1≤r≤n L(y(r)), this implies L(x(r)) = L(y(r)) for every r . On the other hand, since x is the shortest element in
S�x , the values of L(x(r)) for each r determine x uniquely, so we must have x = y.

Let r be as above. Further, let a be the position of the r-th appearance of “0” in j� (counting from the left),
and b is the position of the r-th appearance of “1” in j�. We have 1 ≤ a < b ≤ 2n and w(a) > w(b). Let
c ∈ [a, b − 1] be the unique index such that (j�)c = 0 and (j�)c+1 = 1. We have

w(c) ≥ w(c − 1) ≥ … ≥ w(a + 1) ≥ w(a) > w(b) ≥ w(b − 1) ≥ … ≥ w(c + 1).
Then we can pick such reduced decomposition of w that on the bottom of the diagram for  w1j� we cross
all strands at positions [a, c] with all strands at positions [c + 1, b]. This implies that  w1j� is zero in C(n�)
because it factors through a non-cuspidal idempotent, and thus  w0,i� ,i′� wPe� is zero in eC(n�)e. �

The following example illustrates the proof.

Example 7.12. Let � = (3, 1), � = (2, 2), and w = (1, 5, 6, 3, 4, 7, 2, 8). Then we have x = (1, 3, 4, 2) and y =
(1, 2, 3, 4). In this case we can take r = 2, because L(x(2)) = 2 and L(y(2)) = 1. Then a = 2, b = 5, c = 3, and we
should �x a reduced decomposition of w such that on the bottom of the diagram of  w1j� the second and the
third strands cross the fourth and the �fth. The bottom of this diagram will look as follows:

0

0

0

0

0

0

1

1

1

1

1

1

0

0

1

1

On the top of this diagram we have a non-cuspidal sequence 01100101. Therefore the element  w1j� is zero
in C(n�), because it factors through a non-cuspidal idempotent.

From now on, we will always assume that the reduced decompositions are chosen as in Lemma 7.11. The
following statement is an immediate corollary of Lemmas 7.8 and 7.11.

Corollary 7.13. The algebra eC(n�)e is spanned by the set
{
 w0,i� ,i′� (x)Pe� ∶ x ∈ S�⧵Sn/S�, P ∈ Bi′�

}
.
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Remark 7.14. Consider a basis element  w0,i� ,i′� (x)Pe� as above. Let �′, �′ ∈ Comp(n) be such that S�′ =
S� ∩ x−1S�x and S�′ = S� ∩ xS�x−1. Then, for an appropriate choice of a reduced decomposition of x , the
element  (x) can be written as  (x) =  1 2 3, where  3 = S�

′
� ,  2 = R�

′

�′ and  w0,i� ,i′� 1 = M
�
�′ . In particular, we

see that each element of the algebra eC(n�)e is a linear combination of diagrams containing splits, merges
and polynomials.

7.5. Comparison with sheaves on P1. In this section we will establish a relation between eC(n�)e and the
Schur algebra of projective line Sn = SP1

n .
We say that a representation M ∈ En� is regular if there exists an invertible linear combination of two

arrows in Γ. Regular representations form an open subvariety Eregn� ⊂ En� . Similarly, we de�ne F̃regn� ⊂ F̃n� ,
Zregn� ⊂ Zn� as inverse images of Eregn� under the natural maps F̃n� → En� and Zn� → En� respectively. We also
set F̃regi = F̃i ∩ F̃regn� , Zregi,j = Zi,j ∩ Zregn� . Let us make the following standard observation:

Lemma 7.15. If a sequence i ∈ I n� is non-cuspidal, then F̃regi = ∅.
Proof. Each sub-representation of a regular representation has dimension vector of the formm0�0+m1�1 such
that m0 ≥ m1. In particular, a regular representation cannot stabilize a �ag of non-cuspidal type. �

Corollary 7.16. If i ∈ I n� is non-cuspidal, then the idempotent 1i lies in the kernel of the pullback map

R(n�) ≃ H ∗
Gn� (Zn� ) → H ∗

Gn� (Z
reg
n� ).

In particular, the pullback yields a map C(n�) → HGn�∗ (Zregn� ).
Remark 7.17. It will be more important for us to have a truncated version by the idempotents e�. Let us
write Zn�,e = ⨆�,�∈Comp(n) Zi� ,i� . Then the pullback map eR(n�)e ≃ H ∗

Gn� (Zn�,e) → H ∗
Gn� (Z

reg
n�,e) factors through

eC(n�)e → H ∗
Gn� (Z

reg
n�,e).

Recall [Bei78] that we have an equivalence of bounded derived categories

(34) RHom(O(−1) ⊕ O, −) ∶ Db(CohP1) → Db(Rep Γ).
Restricting this map to torsion sheaves of length n and representations with dimension vector n� respectively,
we obtain an open embedding of algebraic stacks

" ∶ Tn ↪ Repn� Γ, F ↦ ( Γ(F) Γ(F(1))
Γ(O(1))

) .

Moreover, the image of " is precisely the substack of regular representations. Let 'n ∶ H ∗(Repn� Γ,k) →
H ∗(Tn,k) be the corresponding pullback map.

Lemma 7.18. The ring homomorphism

'n ∶ PollSn×Snn → PSnn

is obtained as a restriction of the following map to invariants:

(35) Polln → Pn; ui ↦ xi , vi ↦ xi + ci .
Proof. By universal coe�cients, it su�ces to prove the statement for k = Z. We have the following commu-
tative diagram:

Tn1 Tn

(Rep� Γ)n Repn� Γ

⨁

⨁

Since pullback is functorial, and pullback along the lower horizontal map realizes the inclusion PollSn×Snn ⊂
Polln, it su�ces to prove our claim for n = 1. We will use the notations from Example 5.5.
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The variables u, v are �rst Chern classes of tautological line bundles on Rep(1,1) Γ, which associate to a
representation U ⇒ V vector spaces U and V respectively. We denote by � the projection map T1 ×P1 → T1.
By de�nition of the embedding ", restriction of these line bundles to T1 is Γ(E) and Γ(E(1)) respectively, where
Γ(−) = R0�∗(−) denotes the sheaf of global sections along P1. Let us compute Chern character of Γ(E(k)),
k ∈ Z, by applying Grothendieck-Riemann-Roch theorem.

ch(Γ(E(k))) = ch(R�∗E(k)) = �∗ (ch(E) ch(O(k)) td(P1))
= �∗ (exp(x)(1 − exp(−c − p)) exp(kp)(1 + p))
= �∗ (exp(x)(c + p − cp)(1 + kp)(1 + p)) = �∗ (exp(x)(c + p + kcp))
= exp(x)(1 + kc) = exp(x + kc).

In particular ch(Γ(E)) = exp(x) and ch(Γ(E(1))) = exp(x + c), so that '1(u) = x and '1(v) = x + c. �

Let � ∈ Comp(n).
Lemma 7.19. We have a natural isomorphism F� ≃ Tn ×Repn� [F̃i� /Gn� ].
Proof. LetM ∈ Repn� Γ, andM ′ ⊂ M a subrepresentation with dimension vector n′� , n′ < n. Since the vertex 0
in Γ has only incoming arrows, M ′ uniquely determines a compatible �ag M ′

0 ⊂ M ′ ⊂ M , with dimM ′
0 = n′�0.

Therefore the derived equivalence (34) provides us with an injective map

F� → [F̃regi� /Gn� ] = Tn ×Repn� [F̃i� /Gn� ],
(E1 ⊂ … ⊂ Ek) ↦ (0⇒ Γ(E1(1))) ⊂ "(E1) ⊂ … ⊂ (Γ(Ek−1)⇒ Γ(Ek(1))) ⊂ "(Ek).

Further, let M be regular, and M ′ as above. Since restriction of an isomorphism is an isomorphism, then M ′

is also regular. Therefore every �ag in Fregi� comes from a �ag in F�, and the map above is an isomorphism. �

As before, let us de�ne '� ∶ PollS�×S�n → PS�n as pullback along the open embedding F� ⊂ [F̃i� /Gn� ]. The
following corollary is proved completely analogously to Lemma 7.18.

Corollary 7.20. The map '� is obtained as a restriction of (35) to the invariants.

Lemma 7.21. For k a �eld of characteristic zero, the maps 'n, '� are surjective.
Proof. It is clearly enough to prove the statement for 'n. By a theorem of Weyl [Wey39, II.3], the ring PSnn is
generated by elements

pk,0 = ∑
i
xki , pk,1 = ∑

i
cixki .

However, we have

pk,0 = 'n (∑
i
uki ) , pk,1 =

1
k ∑

i
((xi + ci)k − xki ) =

1
k 'n (∑

i
vki −∑

i
uki ) ,

and so we may conclude. �

Another immediate corollary from Lemma 7.19 is that we have F� ×Tn F� ≃ [Zregi� ,i� /Gn� ]. The resulting
restriction map eR(n�)e → Sn is a homomorphism of algebras by smooth base change and functoriality of
pullbacks. Furthermore, it descends to a homomorphism Φn ∶ eC(n�)e → Sn by Remark 7.17.

Remark 7.22. Note that both eC(n�)e and Sn are de�ned over any commutative ring k, in particular k = Fp
�nite �eld. Since Φn is essentially a pullback along an open embedding, it is also de�ned for any k. This will
become important at the end of this section.

Proposition 7.23. The algebra homomorphism Φn sends each thick diagram in eC(n�)e to the same diagram
in Sn, replacing each polynomial P ∈ Poll(Sa)2a on a strand of thickness a by 'a(P).
Proof. Follows from Lemmas 7.7 and 7.18. �
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Restricting to polynomial operators, we have the following commutative square:

(36)
PollS

2
nn PSnn

eC(n�)e Sn

'n

�n
Φn

Let Jn be the kernel of �n. It is clear that Jn ⊂ Ker 'n; we will show in Lemma 7.32 that this is actually an
equality. In order to prove this, we will need some preparations.

7.6. Shu�le products. Consider the product ∗∶ Poll(Sn)2n × Poll(Sm)2m → Poll(Sn+m)2n+m given by

(37)

n + m

P ∗ Q

n + m

=

n + m

n m
P Q

n + m

.

Thanks to the proof of Lemma 7.7, we have the following expression for shu�e product:

P ∗ Q = )uw0,a,b)
v
w0,a,b ((P ⊗ Q)

a
∏
i=1

b
∏
j=a+1

(vi − uj)2) ,

We also consider the shu�e product

∗∶ PSnn × PSmm → PSn+mn+m

given by the same picture (37), but using diagrammatic calculus in Sn instead of diagrammatic calculus in
eR(n�)e.

Lemma 7.24. The map

⨁
n
'n ∶ ⨁

n
Poll(Sn)2n → ⨁

n
PSnn

is a homomorphism of algebras (with respect to the operations ∗).

Proof. Follows from the de�nitions and Proposition 7.23. �

For a polynomial f ∈ Polln, denote by ev(f ) the polynomial in k[v1, … , vn] obtained from f after evaluation
u1 = u2 = … = un = 0. Set Du

n = )u1 )u2 …)un−1 and Dv
n = )v1 )v2 …)vn−1, where )ui denote Demazure operators in

variables u1, … , un, and )vi are de�ned analogously.

Remark 7.25. Note that Du
n (un−1n ) = (−1)n−1. This identity allows to simplify expressions of the form ev(Du

n (P)),
where P ∈ k[v1, … , vn]Sn [un]. Write P = ∑r urnPr , where Pr ∈ k[v1, … , vn]Sn . Then we have

ev(Du
n (P)) = (−1)n−1(Pn−1).

Denote by � (n)k the k-th elementary symmetric polynomial on the variables v1, … , vn; we use the convention
� (n)0 = 1. We also denote the unit in Polln by 1n.

Lemma 7.26. Assume 1 ≤ k ≤ n. We have ev(1n−1 ∗ (v − u)uk−1) = (−1)k−1� (n)k .
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Proof. We have

1n−1 ∗ (v − u)uk−1 = Du
nDv

n [(v1 − un)2(v2 − un)2… (vn−1 − un)2(vn − un)uk−1n ] .

First, let k = 1. We have

ev(1n−1 ∗ (v − u)) = ev (Du
nDv

n [(v1 − un)2(v2 − un)2… (vn−1 − un)2(vn − un)])
= ev(Du

n [(v1 − un)(v2 − un) … (vn − un)])
= v1 + v2 + … + vn = � (n)1 .

Now, assume k > 1. We �x k and proceed by induction on n. If n = k, we have

ev(1n−1 ∗ (v − u)uk−1) = ev (Du
nDv

n [(v1 − un)2(v2 − un)2… (vn−1 − un)2(vn − un)un−1n ])
= (−1)n−1(Dv

n (v21v22 …v2n−1vn))
= (−1)n−1(v1v2…vn−1vn) = (−1)n−1� (n)n .

where the second equality follows from Remark 7.25.

Now assume n > k > 1. Let us write Q(u, v) = (v1 − un)2(v2 − un)2… (vn−2 − un)2 for brevity. We have

)vn−1 [Q(u, v)(vn−1 − un)2(vn − un)uk−1n ] = Q(u, v)(vn−1 − un)(vn − un)uk−1n )vn−1(vn−1 − un)
= Q(u, v)(vn−1 − un)(vn − un)uk−1n .

This implies

ev(1n−1 ∗ (v − u)uk−1) = ev (Du
nDv

n [Q(u, v)(vn−1 − un)2(vn − un)uk−1n ])
= ev (Du

nDv
n−1[Q(u, v)(vn−1 − un)(vn − un)uk−1n ])

= − ev (Du
n−1Dv

n−1[Q(u, v)(vn−1 − un−1)(vn − un−1)uk−2n−1])
= −vn ev(1n−2 ∗ (u − v)uk−2) + ev(1n−2 ∗ (v − u)uk−1)
= −vn(−1)k−2� (n−1)k−1 + (−1)k−1� (n−1)k = (−1)k−1� (n)k ,

where the third equality follows from Remark 7.25. �

For each positive integer k we set f̃k = (v − u)uk−1 ∈ Poll1, and t̃n,k = 1n−1 ∗ f̃k ∈ Poll(Sn)2n . The following
proposition follows from Lemma 7.26.

Proposition 7.27. The commutative ring Poll(Sn)2n is generated by k[u1, … , un]Sn together with elements t̃n,k
for k ∈ [1; n].

7.7. Spanning set of Poll(Sn)2n /Jn.

Lemma 7.28. For each positive integer r , we have the following equality in Poll(Sn)2n /Jn:

t̃n,k1 ⋅ t̃n,k2 ⋅ … ⋅ t̃n,kr =
{
1n−r ∗ f̃k1 ∗ f̃k2 ∗ … ∗ f̃kr , if r ≤ n,
0, if r > n.

Proof. First, we prove the case r ≤ n. We prove the statement by induction on r . It is enough to prove the
following equality for r < n:

(1n−r ∗ f̃k1 ∗ … ∗ f̃kr ) ⋅ (1n−1 ∗ f̃k) = 1n−r−1 ∗ f̃k ∗ f̃k1 ∗ f̃k2 ∗ … ∗ f̃kr .
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We can rewrite this as the following diagrammatic identity in eC(n�)e:

(38)

n
n − 1 1

uk

n − r 1 1

uk1
…

ukr

=

n

uk

n − r − 1
1 1 1

uk1
…

ukr

,

where a cross on a strand means the polynomial v − u. It su�ces to prove an equality of parts below the
dashed line.

First, note that by Remark 7.9.(a) both pictures are equal in eR(n�)e to some polynomials in Poll(S�)2n , where
� = (n − r, 1, 1, … , 1). The left picture gives the polynomial

(vn−r+1 − un−r+1) … (vn − un)Du
nDv

n [(v1 − un)2… (vn−1 − un)2(vn − un)ukn],
while the right picture gives

(vn−r+1 − un−r+1) … (vn − un)Du
n−rDv

n−r [(un−r − v1)2… (un−r − vn−r−1)2(un−r − vn−r )ukn−r ].
We want to show that the images of these polynomials in e�C(n�)e(n) coincide. By Remark 7.9.(b), it is enough
to show that these polynomials are equal modulo the ideal generated by (vn−r+1 − un−r+1)2, … , (vn − un)2. Note
that both polynomials already contain the factor (vn−r+1 − un−r+1) … (vn − un). Therefore, it is enough to prove
the congruence

Du
nDv

n [(v1 − un)2… (vn−1 − un)2(vn − un)ukn] ≡ Du
n−rDv

n−r [(un−r − v1)2… (un−r − vn−r−1)2(un−r − vn−r )ukn−r ]
modulo the ideal (vn−r+1 − un−r+1, … , vn − un). Indeed, we have

Du
nDv

n [(v1 − un)2… (vn−1 − un)2(vn − un)ukn]
= Du

nDv
n−r [(v1 − un)2… (vn−r−1 − un)2(vn−r − un) ⋯ (vn − un)ukn]

≡ Du
n−rDv

n−r [(v1 − un−r )2… (vn−r−1 − un−r )2(vn−r − un−r )ukn−r ].
Let us justify the congruence between the second and the third line above. When we apply the sequence of
Demazure operators )un−r …)un−1 to

ukn (v1 − un)2… (vn−r−1 − un)2(vn−r − un) ⋯ (vn − un)
(the order is important!) and use Leibniz rule )ut (f g) = )ut (f )g + sur (f ))ut (g), the only situation when the result
is not in the ideal appears when

∙ Demazure operator )un−1 hits (vn − un) (and applies sun−1 to other factors),
∙ Demazure operator )un−2 hits (vn−1 − un−1) (and applies sun−2 to other factors),

and so on, until
∙ Demazure operator )un−r hits (vn−r+1 − un−r+1) (and applies sun−r to other factors).

Now, let us prove the case r > n. For this we need to show that

(f̃k1 ∗ … ∗ f̃kn ) ⋅ (1n−1 ∗ f̃k) = 0.
For this, it is enough to show that the left hand side of (38) is zero in eC(n�)e for r = n. This left hand side is
given by the polynomial

(v1 − u1) … (vn − un)Du
nDv

n [(v1 − un)2… (vn−1 − un)2(vn − un)ukn].
We have

Du
nDv

n [(v1 − un)2… (vn−1 − un)2(vn − un)ukn] = Du[(v1 − un) … (vn−1 − un)(vn − un)ukn] ≡ 0.
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The congruence is justi�ed in the same way as in the previous case. �

Corollary 7.29. We have f̃k1 ∗ f̃k2 = f̃k2 ∗ f̃k1 in Poll(S2)2
2 /J2.

For each positive integer n, let us �x a basis B̃n of k[u1, … , un]Sn .

Lemma 7.30. The algebra Poll(Sn)2n /Jn is spanned by the following set

{P ∗ f̃k1 ∗ f̃k2 ∗ … ∗ f̃kr ∶ r ∈ [0; n], P ∈ B̃n−r , 0 < k1 ≤ k2 ≤ … ≤ kr}.

Proof. By Proposition 7.27, Poll(Sn)2n in generated (as an algebra) by k[u1, … , un]Sn and by the elements t̃n,k
for k ∈ Z>0. Then Lemma 7.28 implies that Im 'n is generated as a k[u1, … , un]Sn -module by elements of the
form 1n−r ∗ f̃k1 ∗ f̃k2 ∗ … ∗ f̃kr . When we multiply 1n−r ∗ f̃k1 ∗ f̃k2 ∗ … ∗ f̃kr by an element of k[u1, … , un]Sn ,
we get an linear combination of elements of the form P ∗ f̃k′1 ∗ f̃k′2 ∗ … ∗ f̃k′r , where P ∈ k[u1, … , un−r ]Sn−r and
k′i ≥ ki . Note that we can also reorder the factors using Corollary 7.29. This implies that the desired set spans
Poll(Sn)2n /Jn. �

From here until Section 7.9, let us assume that k is either a �eld of characteristic 0 or Z. Set fk = cxk−1 ∈ P1
and tn,k = 1n−1 ∗ fk ∈ PSnn . Under 'n, the basis B̃n ofk[u1, … , un]Sn de�nes an analogous basis ofk[x1, … , xn]Sn ,
which we denote by the same symbol.

Lemma 7.31. The following set is a k-basis of Im 'n:

B ∶= {P ∗ fk1 ∗ fk2 ∗ … ∗ fkr ∶ r ∈ [0; n], P ∈ B̃n−r , 0 < k1 ≤ k2 ≤ … ≤ kr}.

Proof. The fact that the set B spans Im 'n follows from Lemma 7.30 together with commutative square (36).
Next, we prove linear independence. It is enough to do this for k = Q.

Let us choose a speci�c basis of Q[x1, … , xn]Sn . Namely, let

Pn = {� = (�1, … , �n) ∈ Zn; 0 ≤ �1 ≤ �2 ≤ … ≤ �n},

and write Bn = {m� ∶ � ∈ Pn}, where m� = ∑w∈Sn x
�1
w(1)…x�nw(n) are the monomial symmetric functions.

For any t ≥ 0, consider the element et = x t ∈ P1. Then the set

B′ = {et1 ∗ et2 ∗ … ∗ etn−r ∗ fk1 ∗ fk2 ∗ … ∗ fkr ; r ∈ [0; n], 0 ≤ t1 ≤ t2 ≤ … ≤ tn−r , 0 < k1 ≤ k2 ≤ … ≤ kr}

is a basis in PSnn , see [FR19] for details. Consider a lexicographic order on B, where we assume

e0 > e1 > e2 > … > f1 > f2 > f3 > …

Let � ∈ Pn. An easy induction argument shows that 1n = 1
n! (1 ∗ 1 ∗ … ∗ 1). We can therefore write

m� =
1
n! (1 ∗ 1 ∗ … ∗ 1)m� =

1
n! ∑

w∈Sn

e�w(1) ∗ … ∗ e�w(n) ,

where we have used that S1nn ∈ Sn commutes with any polynomial in PSnn . Next, we apply the reordering
relations in [FR19, Theorem 1] to write m� in terms of B′. We get

m� = e�1 ∗ e�2 ∗ … ∗ e�n + lower terms.

Similarly, for � ∈ Pn−r , we can write each element m� ∗ fk1 ∗ … ∗ fkr ∈ B as

m� ∗ fk1 ∗ … ∗ fkr = e�1 ∗ e�2 ∗ … ∗ e�n−r ∗ fk1 ∗ … ∗ fkr + lower terms.

Therefore the transition matrix from B to B′ is upper triangular. This implies linear independence of B. �
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7.8. Realization of eC(n�)e inside Sn.
Lemma 7.32. We have Jn = Ker 'n.
Proof. The inclusion Jn ⊂ Ker 'n follows from diagram (36). Next, the map Poll(Sn)2n /Jn → PSnn induced by 'n
takes the generating set of Poll(Sn)n /Jn from Lemma 7.30 to the basis of Im 'n from Lemma 7.31. This implies
that this map is injective, so that Jn = Ker 'n. �

Fix � ∈ Comp(n). Denote by J� the kernel of the map

�� ∶ Poll(S�)2n → eC(n�)e, P ↦ e�Pe�.
Corollary 7.33. We have J� = Ker '�.
Proof. Thanks to Proposition 7.23, we have the following commutative diagram:

PollS
2
�n PS�n

eC(n�)e Sn

'�

��
Φn

Since the rightmost vertical map is injective, it follows that J� ⊂ Ker '�.
Let us prove the opposite inclusion. Write � = (�1, … , �k). By de�nition of C(n�), the map �� can be written

as a composition

PollS
2
�n

J�1⊗…⊗J�k←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ ⨂
i
eC(�i�)e

⊗←←←←←←←→ eC(n�)e.

On the other hand, we have '� = '�1 ⊗ '�2 ⊗ … ⊗ '�k by Corollary 7.20, so that

Ker '� = Ker�1 ⊗ Poll
(S�2 )2
�2 ⊗… ⊗ Poll(S�k )

2

�k +… + Poll(S�1 )2
�1 ⊗ Poll(S�2 )2

�2 ⊗… ⊗ Ker '�k .
Now, the inclusion Ker '� ⊂ J� follows from Lemma 7.32. �

Remark 7.34. In view of Corollary 7.33, the statement of Corollary 7.13 remains true if we replace Bi′� by a

basis of Poll(S�′ )2n / Ker '�′ . Note also that Poll(S�′ )2n / Ker '�′ ≃ Im'�′ is free over k by Lemma 7.31.

Proposition 7.35. Let k be a �eld of characteristic zero or k = Z. Then Φn is injective and its image is spanned
by split/merge diagrams, whose strands of thickness k are decorated by elements of Im 'k ⊂ PSk

k . In particular, if
k is a �eld of characteristic zero, then Φn is bijective.
Proof. The statement about the image of Φn follows from Remark 7.14 and Proposition 7.23. For injectivity,
note thatΦn takes the spanning set of eC(n�)e from Corollary 7.13 and Remark 7.34 to a linear independent set
in Sn, see Proposition 3.10. Therefore the spanning set of eC(n�)e is automatically a basis, and Φn is injective.
Finally, surjectivity in characteristic zero follows from Lemma 7.21. �

Corollary 7.36. The algebra eC(n�)e is generated by elementary splits and merges, polynomial (v − u) on thin
strands, and symmetric polynomials k[u1, … , uk]Sk on strands of thickness k.
7.9. Counterexamples to injectivity/surjectivity of Φn. Let us begin by providing a certain geometric
meaning for the image of 'n.

Proposition 7.37. Let k = Z. The HGn -submodule of H ∗(Tn) generated by the tautological ring TH ∗(Tn) coin-
cides with the image of 'n.
Proof. By de�nition of the moduli stack Repn� Γ, equivariant parameters ui , vi are the Chern roots of tautolog-
ical vector bundles U , V respectively. In particular, restricting to Tn we see that the image of 'n is generated
over Z by the Chern classes of Γ(E) and Γ(E(1)).

Let us write c0(E) = ∑i ci,0(E) and c1(E) = ∑i ci,1(E); we have c(E) = c0(E) + c1(E)p. Since p2 = 0, it
follows from the de�nition of Chern character that ch(E) = ch0(E) + pQ, where Q is some class in H ∗(Td ), and
ch0(E) = ch(c0(E)).
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By Grothendieck-Riemann-Roch, we have
ch(Γ(E(1))) − ch(Γ(E)) = �∗ (ch(E) td(P1)p) = �∗ (p ch(E)) = ch0(E).

In particular, we see that c(Γ(E(1))) = c(Γ(E))c0(E). Since the coe�cients of c(Γ(E)) are precisely the generators
of HGn , we conclude that Im 'n ⊂ H ∗

Gn ⋅ TH ∗(Tn).
On the other hand, applying " to the standard resolution of the path algebra of Γ (see [BK99, (1.2)]) produces

the following resolution of E:
0 → Γ(E(−1)) ⊗ H 0(O(1)) ⊗ O → Γ(E(−1)) ⊗ O(1) ⊕ Γ(E) ⊗ O → E → 0.

In particular, we have

(39) c(E) = c(Γ(E))c(Γ(E(−1)) ⊗ O(1))
c(Γ(E(−1)))2 = c(Γ(E))

c(Γ(E(−1)) ⊗ O(−1)) .

The denominator is a polynomial in the Chern classes of Γ(E(−1)) and p ∈ H 2(P1). Moreover, we have
c(Γ(E(−1))) = c(Γ(E))2/c(Γ(E(1))).

Therefore the formula (39) shows that the Künneth-Chern classes ci,j(E) are expressed as polynomials of the
Chern classes of Γ(E) and Γ(E(1)). Thus HGn ⋅ TH ∗(Tn) ⊂ Im'n, and we may conclude. �

Now let k = Z, and consider the map '2∶ Z[u1, u2, v1, v2]S
2
2 → (Z[x1, x2, c1, c2]/(c21 , c22 ))S2 . The element

c1c2 does not lie in Im '2 by Example 5.7 and Proposition 7.37. However, note that 2c1c2 = (c1 + c2)2 =
'2((v1 + v2 − u1 − u2)2) ∈ Im'2.

Non-surjectivity of '2 automatically implies non-surjectivity of Φ2. In e�ect, Im '2 ⊂ PS2
2 can be identi�ed

with ImΦ2 ∩ e(2)S2e(2) ≃ PS2
2 . Moreover, applying universal coe�cients we obtain that Φ2 is not surjective if

k = F2.

Lemma 7.38. For k = F2 we have J2 ( Ker '2.
Proof. The inclusion J2 ⊂ Ker '2 holds by the same argument as in Lemma 7.32. Let us show that this inclusion
is strict. First, note that both J2 and Ker '2 are homogeneous ideals in PollS

2
2

2 . Let us add the base ring (Z or
Fp) to our notation as a superscript. Since '2((v1 + v2 − u1 − u2)2) = 2c1c2 = 0 over F2, the ideal Ker 'F2

2
contains a generator of degree 2. Thus in order to prove that the inclusion JF2

2 ⊂ Ker 'F2
2 is strict, it su�ces

to show that JF2
2 is generated by elements of degrees strictly greater than 2.

Since Ker(eRF2(n�)e → eCF2(n�)e) is the clearly reduction modulo 2 of Ker(eRZ(n�)e → eCZ(n�)e), we
deduce that JF2

2 is reduction modulo 2 of JZ
2 . So, in order to show that JF2

2 is generated by elements of degrees
greater than 2, it is enough to show the same for JZ

2 . At the same time we know that JZ
2 = Ker 'Z

2 , and it is
easy to check that Ker 'Z

2 has no elements of degree 1 or 2. This completes the proof. �

The lemma above implies that Φ2 is not injective for k = F2. Indeed, take P ∈ (Ker '2⧵J2) ⊂ Poll(S2)2
2 . Then

Pe(2) is a non-zero element in eC(2�)e that lies in the kernel of Φ2.
7.10. Positive characteristic. We have seen that the map Φkn ∶ eCk(n�)e → Skn is an isomorphism when k
is a �eld of characteristic zero. However, in general this map is neither injective nor surjective over a �eld of
positive characteristic, as we have seen in Section 7.9. This behavior is explained by non-surjectivity of ΦZ

n ,
because Φkn is obtained from ΦZ

n by base change k ⊗Z −.
Let S̃Z

n ∶= ImΦZ
n ⊂ SZ

n . Proposition 7.35 implies that S̃Z
n is a sublattice of full rank. Now, for any �eld k

de�ne S̃kn ∶= k ⊗Z S̃Z
n . The following theorem follows immediately from Proposition 7.35.

Theorem 7.39. Let k be a �eld. We have an isomorphism of algebras eCk(n�)e ≃ S̃kn .

When chark = 0, we have S̃kn = Skn ; however, the two algebras are quite di�erent in general. The algebra
S̃kn is rather explicit: it has nice diagrammatic description and an explicit basis. Moreover, the action of S̃Z

n
on the polynomial representation PZ

n preserves the Z-submodule P̃Z
n ∶= ⨁� Im '� by Proposition 7.23. In

particular, we obtain a polynomial representation S̃kn y P̃kn ∶= k ⊗Z P̃Z
n . We conjecture the following:
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Conjecture 7.40. The polynomial representation P̃kn of S̃kn is faithful.

In positive characteristic neither S̃kn nor P̃kn has a concise geometric description, so the argument from the
proof of Proposition 3.15 does not apply here. It would be interesting to realize S̃kn as homology of some
variety.

Example 7.41. Let us illustrate how properties of S̃Fp
n can change for di�erent p. Let n = 2, and consider

2c1c2 ∈ Im'Z
2 ⊂ P̃Z

2 . It de�nes a non-zero element in the reduction P̃F2
2 by previous considerations. Recall

that we have the split operator S = S(1,1)2 ∈ S̃Z
2 ; we denote its reduction modulo 2 by the same letter. Note

that S(2c1c2) = 0 ∈ P̃F2
2 , because tautologically c1c2 ∈ Im'Z

(1,1) = PZ
2 . This implies that P̃F2

2 admits a non-trivial
submodule supported completely on the thick string.

On the other hand, it is an easy exercise to verify that Im 'Z
2 together with c1c2 generate the whole PS2

2 as
a ring. Therefore S̃

Fp
2 = S

Fp
2 , P̃Fp

2 = PFp
2 for p > 2. However, the split operator S now acts on PS2

2 ⊂ PFp
2 by

embedding it into P2, so that no submodule of PFp
2 can be supported solely on the thick string.

Appendix A. Several parity qestions

A.1. Parity of quiver �ag varieties, type A(1)1 . As before, let Γ = 1 ⇒ 0 be the Kronecker quiver. Pick a
representation M = (U ⇒ V ) ∈ Rep Γ with dimension vector v. For any increasing sequence of dimension
vectors v = (v1 < … < vk = v), consider the quiver �ag variety

Fv(M) = {M1 ⊂ …Mk = M ∶ dimMi = vi} .
The goal of this section is to prove the following theorem:

Theorem A.1. The �ag variety Fv(M) has no odd cohomology groups.

Before giving the proof, we will need some preparations. Let us say that Theorem A.1 holds for a repre-
sentation M if we have H odd(Fv(M),Z) = 0 for any v.

Recall (e.g., see [Sch12]) that isomorphism classes of indecomposable representations of Γ can be classi�ed
into three distinct families:

preprojective Pn, n ≥ 0 preinjective In, n ≥ 0 regular R(�,�)n , n > 0, �, � ∈ C

Cn Cn+1
(
idCn

0 )

(
0

idCn)

Cn+1 Cn(idCn 0)

(0 idCn )

Cn Cn, � ≠ �
� idCn +Ln

� idCn +Ln

Cn Cn� idCn

� idCn +Ln

Here, Ln denotes a nilpotent Jordan block of rank n.
Furthermore, for any n,m ≥ 0 we have vanishing of Ext-groups:

Ext1(Pn, Pn+m) = Ext1(Pn, R(�,�)n ) = Ext1(Pn, Im) = Ext1(R(�,�)n , In) = Ext1(In+m, In) = 0.
Two representation of the form R(�,�)n are isomorphic if and only if they have the same n and the same ratio
(� ∶ �) ∈ P1. We also have Ext1(R(�,�)n , R(�

′,�′)
m ) = 0 for (� ∶ �) ≠ (�′ ∶ �′).

The following lemma is an immediate consequence of [Mak19, Proposition 2.17].

Lemma A.2. LetM1 andM2 be two representations of Γ such that Ext1(M1, M2) = 0, and such that Theorem A.1
holds for M1 and M2. Then Theorem A.1 also holds for M1 ⊕ M2.

Lemma A.3 ([Mak19, Theorem 3.4]). Let M be a representation of Γ satisfying Ext1(M,M) = 0. Then Theo-
rem A.1 holds for M .

Remark A.4. The assumption Ext1(M,M) = 0 in [Mak19, Theorem 3.4] is only required in order to construct a
certain vector bundle on Fv(M) × Fv(M) with a distinguished section, which vanishes exactly on the diagonal.
This assumption can be slightly relaxed. Namely, it may happen that M has Ext1(M,M) ≠ 0, but there exists
another representation M ′ such that
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∙ there exists an isomorphism of I -graded vector spaces f ∶ M → M ′,
∙ for each v, the isomorphism ' induces as isomorphism of varieties Fv(M) ≃ Fv(M ′),
∙ Ext1(M,M ′) = 0.

In this case [Mak19, Theorem 3.4] is still applicable, and Theorem A.1 holds for M . An example of such
situation is M = R(�,�)n and M ′ = R(�

′,�′)
n with (� ∶ �) ≠ (�′ ∶ �′). More generally, we can take M = ⨁k

r=1 R(�,�)ar
and M ′ = ⨁k

r=1 R(�
′,�′)

ar with (� ∶ �) ≠ (�′ ∶ �′) for some positive integers a1, … , ak .

Proof of Theorem A.1. Any representation M can be decomposed as M = P ⊕R ⊕ I such that P is preprojective,
R is regular and I is preinjective. Since Ext1(P , R) = Ext1(R, I ) = Ext1(P , I ) = 0, it is enough to prove the
statement separately for P , R and I by Lemma A.2.

First, let us show that the theorem holds for a preprojective representation P . We know that P can be
decomposed as P = ⨁k

r=1 Par for some a1, a2… , ak ∈ Z≥0. We have Ext1(Pa, Pb) = 0 for a ≤ b. Applying
Lemma A.3 and Lemma A.2, we see that Theorem A.1 holds for each Par and then for P as well. The same
argument also proves the statement for preinjective representations.

Now, let R be a regular representation. We can decompose R as R = ⨁k
r=1 R(�r∶�r ), where (�r ∶ �r ) ∈ P1

are di�erent for di�erent r ’s, and R(�r∶�r ) is isomorphic to a direct sum of representations of the form R(�r ,�r )n .
Since Ext1(R(�i∶�i ), R(�j∶�j )) = 0 for i ≠ j, it su�ces to prove the statement for each R(�r∶�r ). We conclude by
applying Remark A.4. �

A.2. Parity sheaves. The theory of parity sheaves has been developed in [JMW14]. It takes as an input a
complex algebraic variety Y with an action of a complex algebraic group G, such that Y has a G-invariant
strati�cation Y = ∐� Y� satisfying some parity conditions [JMW14, (2.1),(2.2)]. For each stratum Y� and a
local system L on Y�, it produces a certain indecomposable complex E(�,L) supported on Y�, which satis�es
a list of properties. (This complex is not well-de�ned in general, but it is unique if it exists.)

The case Y = E� , G = G� was studied in [Mak15] for a Dynkin quiver. In this situation, we have a �nite
strati�cation of E� by G� -orbits, and each stratum admits only trivial G� -equivariant local systems. The
existence of parity sheaf for each stratum is then proved. However, [Mak15] did not prove that in positive
characteristics the Lusztig sheaf L� = (�� )∗k is a direct sum of shifts of parity sheaves. This was done later
in [McN17a, Mak19]. The key point was to prove that the �bers of maps F̃i → E� have no odd cohomology
groups. Note that Theorem A.1 proves an analogous statement about the �bers for the Kronecker quiver.

Nevertheless, the proposition below shows that there is no satisfactory theory of parity sheaves for the
Kronecker quiver, already for dimension vector � = 2� . So, despite Theorem A.1, we cannot deduce in this
case that the sheaf L� is a direct sum of shifts of parity sheaves.

Proposition A.5. Let Γ be the Kronecker quiver. There is no algebraic strati�cation (in the sense of [CG10,
De�nition 3.2.23]) of E2� into smooth connected locally closed subsets such that

∙ each stratum is G2� -invariant,
∙ each stratum satis�es [JMW14, (2.1),(2.2)],
∙ the subset Ereg2� ⊂ E2� is a union of strata.

Proof. Suppose that such a strati�cation exists. The �rst two assumptions are simply the assumptions in [JMW14]
that allow to apply the theory of parity sheaves. In particular, the constant sheaf k on E2� is a parity sheaf
(up to a shift).

Consider the inclusion map � ∶ Ereg2� → E2� . The third assumption together with argument in [McN17a,
Corollary 4.2] show that the map Ext∗G2� (k,k) → Ext∗G2� (�∗k, �∗k) must be surjective. Recall that we the fol-
lowing commutative diagram, where the horizontal maps are isomorphisms:

k[u1, u2, v1, v2]S
2
2 HG2�∗ (E2� ) Ext∗G2� (k,k)

(k[x1, x2, c1, c2]/(c21 , c22 ))S2 HG2�∗ (Ereg2� ) Ext∗G2� (�∗k, �∗k)

'2
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However, we have seen in Section 7.9 that the map '2 is not surjective for k = F2. �
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