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Part 1. D-modules

1. Introduction and motivation

1.1. D-modules and linear PDEs. The study of D-modules is motivated by the
study of linear differential equations. What is a linear PDE? It is an expression of the
form

(1.1.1) (0=(C)%= + . . . + 01(C)% + 00(C)) 5 (C) = 0,

where 5 (C) is the indeterminate function. If we have multiple variables, partial
derivatives can appear. Suppose that all the coefficients 08(C) are polynomial in C.
Then we can consider LHS as a polynomial in two operators C , % acting on 5 . Note
that %(C 5 ) = 5 + C%( 5 ), so that we have [%, C] = 1. Thus, a linear DE is just an element
� of theWeyl algebra

DA1 = C〈C , %〉/([%, C] = 1).
What constitutes a solution of the equation (1.1.1)? First, we need to decide on

the space of functions F among which we are looking for a solution (differentiable,
analytic, polynomial etc). Second, we are looking for 5 ∈ F such that � 5 = 0. This
means thatF has to be a leftDA1-module. Then the space of solutions is tautologically
given by the following Hom-space:

HomD
A1 (DA1/(DA1 · �),F) =

{
5 ∈ F : � 5 = 0

}
.

1.2. D-modules and connections. Let - be a smooth algebraic variety, and �→ - a
vector bundle. What is a connection? It is a gadget, which allows us to consider PDEs
on the spaces of sections of � by providing a rule of how to differentiate sections
along a given tangent direction. Algebraically speaking, we have two equivalent
definitions of a connection ∇ on �:

• amap ∇ : Vect- ×�→ �, (�, 4) ↦→ ∇�(4), which isO- -linear in �, and satisfies
the Leibniz rule in 4:

∇�( 5 4) = 5∇�(4) + �( 5 )4;

• or a map of O--modules ∇ : � → � ⊗O- Ω1
-
, where Ω1

-
is the sheaf of

differentials.
One might also want to require that differentiating in different directions is

compatible. One says that a connection ∇ is flat, if
• for any �, � ∈ Vect- , 4 ∈ � we have

∇� ◦ ∇�(4) − ∇� ◦ ∇�(4) = ∇[�,�](4);

• or the composition �
∇−→ � ⊗O- Ω1

-

∇−→ � ⊗O- Ω2
-
is zero.

Comparing with the case of - = A1 before, we see that to give a flat connection on
� amounts to upgrading O- -module structure on � to a D- -modules structure. The
key insight which leads to the theory of D-modules is that we don’t need to require
� to be locally free.
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1.3. Geometric representation theory. Let us give a quick glimpse of where we
want to get by the end of the course. Given a simple Lie algebra g, or equivalently its
universal enveloping algebra*g, we want to study its modules. It is known since
the beginning of 20th century that finite-dimensional representations are completely
reducible, and all simple ones are classified. The infinite-dimensional case is much
richer and more complicated, though. It turns out the category of *g-modules is
equivalent to the category of D-modules on the flag variety �/� (modulo some
technical assumptions). This is the content of localization theorem of Beilinson and
Bernstein (and its numerous generalizations). Without going into details, one reason
to expect such connection is that one can identify gwith vector fields on �/�. This
point of view opens an avenue of attack on completely algebraic/representation
theoretic questions through geometric methods.

2. Weyl algebra

2.1. Definition and examples. Before going to the definition for general -, let us
play around with - = A1.

Definition 2.1.1. Let DA1 = C〈C , %〉/([%, C] = 1). A left D-module over A1 is a left
module over DA1 . The category of left D-modules is denoted by D-mod(A1); it is an
abelian category.

Note that in DA1 we have [%, 5 (C)] = % 5
%C .

Example 2.1.2. (1) " = C[C]with %( 5 (C)) = % 5
%C ;

(2) " = C[C , C−1];
(3) for any 0(C) ∈ C[C], " = C[C]0 = {?(C)/0(C)=};
(4) " = C(C);
(5) " = DA1/(% − �). Let us denote the image of 1 by 4�C . Then we have

%
(
5 (C)4�C

)
=
% 5

%C
· 4�C + 5 · %4�C =

% 5

%C
· 4�C + � 5 · 4�C ;

(6) " = C[C , C−1]4�C ;
(7) " = C[%], where C acts by differentiation. We call this module �0.

Question 2.1.3. We have an injective map of D-modules C[C] → C[C , C−1]. Compute
its cokernel.

Question 2.1.4. DoesDA1 have any finite-dimensional representations? What if we
replace C by F??

In general, we have an automorphism � of DA1 , given by �(C) = %, �(%) = −C. It
induces an autoequivalence � : D-mod(A1) → D-mod(A1), which we call the Fourier
transform. For instance, �(�0) ' C[C].

Question 2.1.5. Compute the Fourier transform of C[C]4�C .
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2.2. Filtered algebras. DA1-modules can be seen as a non-commutative version of
sheaves on A2. In order to explain this statement, let us recall some basic facts about
filtered algebras.

Definition 2.2.1. A filtered algebra is an algebra � together with a chain of subspaces

�≤0 ⊂ �≤1 ⊂ . . . ,
⋃
8

�≤8 = �,

satisfying
�≤8 · �≤ 9 ⊂ �≤8+9 .

Definition 2.2.2. For a filtered algebra �, define the associated graded algebra by

gr� =
⊕
8≥0

gr8 � :=
⊕
8≥0

�≤8/�≤8−1 ,

where the product is given by

gr8 � × gr9 �→ gr8+9 �,

[0] · [1] = [01].

Question 2.2.3. Let � be a filtered algebra, satisfying [0, 1] ∈ �≤8+9−1 for any 0 ∈ �≤8 ,
1 ∈ �≤ 9 . Show that gr� is commutative.

We call such filtered algebras almost commutative.
We have a convenient formal construction, which interpolates between � and its

associated graded.

Definition 2.2.4. The Rees algebra of � is the C[ℏ]-algebra

�ℏ =
⊕
8≥0

�≤8ℏ8 ,

where the product is obvious, and ℏ acts by the inclusion ℏ
(
�≤8ℏ8

)
⊂ �≤8+1ℏ8+1.

Question 2.2.5. Show that �ℏ/(ℏ − 1) = �, and �ℏ/(ℏ) = gr�.

Example 2.2.6 (Filtration by order). Let us return to the Weyl algebra. Any 5 ∈ DA1

can be written as 5 =
∑
8 08(C)%8 . We call the maximal 8 with 08 ≠ 0 the degree of 5 ,

and define D≤:
A1 = {

∑:
8=0 08(C)%8}.

Question 2.2.7. Prove that DA1 is almost commutative, and grDA1 ' C[C , %].

Example 2.2.8. For any Lie algebra g, its universal enveloping algebra*g admits a
filtration with gr(*g) = Sym g (Poincaré-Birkhoff-Witt theorem).

2.3. Support of a DA1-modules.

Definition 2.3.1. Let " be a DA1-module. A good filtration on " is a filtration
of C[C]-modules . . . ⊂ " 8−1 ⊂ " 8 ⊂ " 8+1 ⊂ . . ., such that " 8+1/" 8 is finitely
generated for any 8, and

D
≤ 9
A1"

8 ⊂ " 8+9 .

For any such filtration, gr" =
⊕

8 "
8/" 8+1 is naturally a grDA1 = C[C , %]-module.
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Recall that for a commutative ring � and " ∈ �-mod, we can define

Supp(") = Spec(�/
√
Ann").

Now, for a DA1-module ", we define its singular support to be Supp" := Supp(");
we will see later that Supp" does not depend on the choice of a good filtration. Note
that Supp" is a subvariety in SpecC[C , %] = )∗A1.

Example 2.3.2. (1) let " = C[C]. Then " 8 = ", 8 ≥ 0 is a good filtration, and
gr" = C[C , %]/(%), so that Supp" = {% = 0};

(2) let " = DA1 . Then filtration by order is a good filtration, and the singular
support is the whole )∗A1.

(3) let " = �0. Again, we filter by order; then gr" = C[C , %]/(C) and Supp" =

{C = 0}.

Question 2.3.3. Compute the singular support of C[C , C−1].

2.4. Multiple variables. We can define an analogous ring for - = A= :

DA= = C〈C1 , . . . , C= , %1 , . . . , %=〉/([%8 , C 9] = �8 9),

where �8 9 is the Kronecker symbol. Note that we have D≤0
A= = C[C1 , . . . , C=], and

gr1 DA= = D≤1
A=/D≤0

A= = C[C1 , . . . , C=]%1 ⊕ . . . ⊕ C[C1 , . . . , C=]%=
is the space of polynomial vector fields on A= .

All the examples for DA1 can be generalized to our case.

Question 2.4.1. Let, = A< ⊂ A= , < ≤ =. Then
�, = C[C1 , . . . , C< , %<+1 , . . . , %=]

has a left D-module structure, where C8 acts by multiplication and %8 by derivation
for 1 ≤ 8 ≤ <, and vice versa for < + 1 ≤ 8 ≤ =. Compute the singular support of �, .

3. Differential operators on smooth affine varieties

After going through examples, let us give general definitions. In the first half of
this course, we are going to concentrate on the case of affine varieties for simplicity.
Let - be a smooth affine variety over C, and let O- denote the ring of functions on -.

3.1. Definitions. Recall that we want to generalize the notion of flat connections,
which had two equivalent definitions. The first one was in terms of vector bundles
on -. Algebraically speaking, we have

Vect- := Der(O-) = {� : O- → O- | �( 5 6) = �( 5 )6 + 5 �(6)}.
Differential-geometric Lie bracket of vector fields then corresponds to the commutator
[�, �] = �� − ��. Let us encapsulate all the properties that we want from Vect- in
one definition:

Definition 3.1.1. A Lie algebroid over O- is an O--module !, equipped with a Lie
bracket [, ] and a homomorphism of Lie algebras � : !→ Vect- , satisfying

[�, 5 �] = �(�) 5 · � + 5 [�, �], �, � ∈ !, 5 ∈ O- .
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Remark 3.1.2. As one might expect, there exists a notion of Lie groupoid, which,
when considered infinitesimally, produces a Lie algebroid.

Example 3.1.3. Let D- = O- ⊕ Vect- , where [�, 5 ] = �( 5 ) and [ 5 , 6] = 0, and let
� : D- → Vect- be the natural projection. This is a Lie algebroid.

Given a Lie algebroid ! over O- , consider its universal enveloping algebra *O-!.
Abstractly speaking, one defines*O- (−) as a left adjoint of a certain functor. Alter-
natively, we can define*O-! in a hands-on way as follows:

• take the tensor algebra )O- (!) =
⊕

= !
⊗= ;

• quotient out the relations
[�, 5 �] = 5 [�, �] + �( 5 )�, 5 · � = 5 �.

The tensor algebra )O- (!) is naturally equipped with a filtration

()O- (!))≤8 =
⊕
=≥8

!⊗= ,

which induces a filtration on*O-!.

Definition 3.1.4 (First definition). The algebra D- is the universal envelope of the
Lie algebroid D- :

D- = *O- (O- ⊕ Vect-).
Remark 3.1.5. For any ! locally free over O- , we have the Poincaré-Birkhoff-Witt
isomorphism for algebroids:

gr*O- (!) = SymO-
!.

In particular, grD- = SymO-
Vect- , and Spec(grD-) ' )∗-.

Question 3.1.6. Prove the Poincaré-Birkhoff-Witt isomorphism theorem for Lie alge-
bras (see exercise sheets for details).

Let us defineD- in a more intrinsic way. Consider the vector spaceHomC(O- ,O-)
(attention to the base ring!). We have

O- → HomC(O- ,O-), 5 ↦→ ( 5 · −).
Set D≤0

-
= O- , and

D≤=
-
=

{
� | [�, 5 ] ∈ D≤=−1

-
for all 5 ∈ O-

}
.

Question 3.1.7. Show that D≤1
-
= O- ⊕ Der(-).

Question 3.1.8. Show that D≤8
-
D
≤ 9
-
⊂ D

≤8+9
-

and [D≤8
-
,D
≤ 9
-
] ⊂ D

≤8+9−1
-

.

Definition 3.1.9 (Second definition). We define D- =
⋃
= D
≤=
-

.

Proposition 3.1.10. Let - be smooth. Then the two definitions are equivalent.
Let us first prove Proposition 3.1.10 for - = A= , O- = C[C1 , . . . , C=]. The universal

enveloping algebra of O- ⊕ Vect- is then just the Weyl algebra in = variables. Let
,≤= be the operators of degree less or equal to =. We need to show the following
for all =:

,≤=+1 = {� ∈ HomC(O- ,O-) | [�, 5 ] ∈,≤= for all 5 ∈ O-}.
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Let � be an element in the right-hand side, and denote �8 = [�, C8]. Since �8 ∈,≤= ,
we can write it as a polynomial in C8 , %8 , where all derivatives are on the right. Then
one has [�8 , C 9] = %�8

%(%9) . Moreover, we clearly have

%�8
%(%9)

= [�8 , C 9] = [[�, C8], C 9] = [[�, C 9], C8] =
%� 9

%(%8)
.

The fundamental theorem of multivariate calculus says that then there exists
�′ ∈,≤=+1 such that [�′, C8] = �8 for all 8. Consider � = � − �′ ∈ D≤=+1

-
. We have

[�, C8] = 0 for all 8. We will prove that this implies � ∈ O- . Reasoning by induction,
we can assume that � ∈ D≤1

-
. Then � = 50 +

∑
8 58%8 , 58 ∈ O- by Question 3.1.7. By

the assumption, we have 58 = [�, C8] = 0, so that � ∈ O- . Thus both � ∈,≤=+1, and
we may conclude.

Sketch of proof of Proposition 3.1.10. By the universal property and Question 3.1.7, we
have a map*O- (O- ⊕ Vect-) → D- . Since it is a map of O--modules, it suffices to
prove the claim locally. One can check that for any maximal ideal m ⊂ O- our map
localizes to*O-,m(O-,m ⊕ Vect-,m) → D-,m. Since - is smooth, this reduces us to the
case - = A= , which was proved above. �

Note that the smoothness condition on - is crucial.

Question 3.1.11. Let O- = C[C2 , C3].
(1) prove that Der(O-) is generated by C%C , C2%C as an O--module;
(2) show that 3 := C%2

C − %C belongs to D≤2
-
;

(3) show that 3 cannot be expressed as a polynomial of elements in O- and
Der(O-). Conclude that Proposition 3.1.10 does not hold for -.

Definition 3.1.12. Let - be smooth affine. A (left) D-module on - is a (left) D--
module. Right modules are defined analogously.

Unraveling this definition, the data defining a D-module is:
• an O--module ",
• a covariant derivative Vect- ×" → ", (�, <) ↦→ ∇�(<),
• which satisfy the following conditions:

∇� ◦ ∇� − ∇� ◦ ∇� = ∇[�,�] ,
∇ 5 �(<) = 5∇�(<), ∇�( 5 <) = �( 5 )< + 5∇�(<).

Given a Lie algebra g, we have three standard modules: trivial, adjoint, and*(g).
In the global case of D-modules, however, there is no adjoint representation!

Question 3.1.13. Try to construct an adjoint D-module. Which condition breaks?

Example 3.1.14. (1) " = O- , covariant derivative is the usual action by derivation;
(2) " = D- , rank 1 free D-module.

Question 3.1.15. Let", # ∈ D--mod. Equip the module" ⊗O- # with the following
covariant derivative:

∇�(< ⊗ =) = ∇"� (<) ⊗ = + < ⊗ ∇
#
� (=).
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Check that this defines a D--module structure on " ⊗O- # . This turns D--mod
into a monoidal category.

3.2. Direct and inverse images.

3.2.1. The case of O- -modules. Consider a map - → ., associated to the map of rings
O. → O- . When we work with quasi-coherent sheaves, we have a pair of adjoint
functors

5 ∗ : O.-mod� O--mod.

In the affine case 5 : - = Spec�→ . = Spec �, this boils down to

� ⊗� − : �-mod� �-mod : res�→�

3.2.2. Functors between module categories, bi-modules, and correspondences. For D-
modules, we don’t have map in either direction. Roughly speaking, D is mixture of
functions and derivations. Functions pullback, whereas derivation push-forward.
However, not all is lost.

Consider an abstract situation where we have rings �, � and we want to constuct
a functors

� : �-mod→ �-mod.

In general, there are a lot of functors, but let us restrict to functors which respect
colimits. Then, all such functors are given by �(�).

First of all note that by functoriality, �(�) has a structure of a right �-module,
compatible with the left �-module structure. I.e. �(�) is an object of �-mod-�. Now,
for any " ∈ �-mod, we have a resolution

�⊕�1 → �⊕�0 → " → 0.

Applying �, which is right-exact, we get a resolution of �("):

�(�)⊕�1 → �(�)⊕�0 → �(") → 0.

The first two terms are precisely

(3.2.3) �(�) ⊗� (�⊕�1 → �⊕�0)
and hence, since tensoring is right-exact,

�(") ' coker (3.2.3) ' �(�) ⊗� ".

To sum up, nice functors �-mod → �-mod are of given by % ⊗� − where % ∈
�-mod-�. Given such a % ∈ �-mod-�, we can also construct a functor

− ⊗� % : mod-�→ mod-�.

This is what will happen with D-modules. Namely, for 5 : - → . between
smooth affine varieties, we will define D-→. ∈ D--mod-D. , which, as discussed
above, will define for us functors

D-→. ⊗D.
− : D.-mod→ D--mod

− ⊗D-
D-→. : mod-D- → mod-D.
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Remark 3.2.4. Assume that� and � are commutative algebras (so thatwe don’t have to
worry about left and right modules). Then, �-mod ' QCoh(Spec�) and �-mod-� '
(� ⊗ �)-mod ' QCoh(Spec(� ⊗ �)) ' QCoh(Spec� × Spec �). Given a module
% ∈ QCoh(Spec� × Spec �), we can cook up a functor QCoh(Spec�) → QCoh(Spec �)
by pulling, tensoring with %, and pushing along the following correspondence

Spec� × Spec �

Spec� Spec �

5 6

I.e. we are looking at the following functor 6∗( 5 ∗(−) ⊗ %).
More generally, given a correspondence of affine schemes Spec� ← Spec� →

Spec � and " ∈ QCoh(Spec�) we also obtain a functor. Moreover, the module on
QCoh(Spec�×Spec�) couldbeobtainedbypushing forward along Spec� → Spec�×
Spec�. Note that this works more generally: for a correspondence - ← � → ., we
only need � → - × . affine.

Remark 3.2.5. D-modules are supposed to be a deformed version of QCoh()∗-). So
let’s now think about )∗- a bit. Consider a map - → . of schemes, then, we have
the following

)-

- ×. ). ).

- .

where the map )- → - ×. ). is a map vector bundles. Taking the dual, we obtain
the following correspondence

- ×. )∗.

)∗- )∗.

It is easy to check that - ×. )∗. → )∗- ×)∗. is affine. The above discussion allows
us to form functors between QCoh()∗-) and QCoh()∗.). Our goal now is to actual
do this for D-modules.

3.2.6. The case of D-modules. Since D-modules are defined using sheaf of differential
operators and vector fields, it’s more convenient to say what we’ve discussed above
in terms of sheaves.

Consider the natural map, analogous to the left arrow in the correspondence,

Vect- → O- ⊗O. Vect. ,

� ↦→ 5(1) ⊗ �(2).
Here, we have used Sweedler’s notation.

Definition 3.2.7. Let D-→. be the following bimodule:
• as an O--module, D-→. = O- ⊗O. D. ,
• right D.-module structure is given by multiplication on the right,
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• left D--module structure is given by the covariant derivative

�( 5 ⊗ <) = �( 5 ) ⊗ < + 5 5(1) ⊗ �(2)(<).

This allows us to define the following functors:

D-→. ⊗D.
− : D.-mod→ D--mod

− ⊗D-
D-→. : mod-D- → mod-D.

Remark 3.2.8. The underlying O--module of a D-module pullback is particularly
simple. Indeed,

D-→. ⊗D.
" ' O- ⊗O. D. ⊗�. " ' O- ⊗O. ",

which is the same as the O-module pullback. Thus, the D-module pullback con-
struction above could be viewed as defining aD- -module struture on the O-module
pullback. In fact, D-→. is this construction applied to the D.-module D. .

Question 3.2.9. Let H1 , . . . , H= , %1 , . . . , %= be a local coordinate system on.. Show that
the map Vect- → O- ⊗O. Vect. associated to 5 : - → . sends � to

∑
8 �(H8 ◦ 5 ) ⊗ %8 .

Thus, in terms of local coordinates, we have

�( 5 ⊗ <) = �( 5 ) ⊗ < + 5
∑
8

�(H8 ◦ 5 ) ⊗ %8<.

Remark 3.2.10. Let’s phrase everything in terms of differentials. First, for any affine
scheme - = Spec�, Vect- = Ω∨

�
= Hom�(Ω� , �) = Der(�, �), where Ω� is the

module of Kähler differentials. For any 5 : Spec�→ Spec �, by universal property,
we have � ⊗� Ω� → Ω�. Dualizing, we obtain

Der(�, �) = Hom�(Ω� , �) → Hom�(�⊗�Ω� , �) ' Hom�(Ω� , �) ' �⊗�Ω∨� ' Der(�, �).

Example 3.2.11 (Open affine embedding). Let 9 : - ↩→ . be an open embedding of
affine schemes defined by - = { 5 ≠ 0}. In other words, O- = (O.) 5 (localized at 5 ).
Then, D- = (D.) 5 ' O- ⊗O. D. ' D-→. . Thus, in this case, we have D. → D-

and D-→. = D- .
Thus, the pullback of a D.-module " is just " 5 with the obvious D--module

structure. Similarly, if# is a rightD- -module, then its pushforward is#⊗D-
D-→. '

# ⊗D-
D- ' # .

Let’s consider an example of this example: A1 \ {0} → A1. Writing A1 = SpecC[C]
and A1 \ {0} = SpecC[C , C−1], then DA1 = C〈C , %〉. Pulling back is just localizing by
inverting C. For example, C[C] pulls-back to C[C , C−1].

For push-forward, since we haven’t thought much about examples of right D-
modules. In the case of C〈C , %〉, note that there is an isomorphism of rings

C〈C , %〉 → C〈C , %〉op

C ↦→ C

% ↦→ −%
Under this isomorphism, we have an equivalence of categories C〈C , %〉-mod '

mod-C〈C , %〉. Thus, we can view C[C , C−1] as a right DA1\{0}-module. The push-
forward is still just C[C , C−1].
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Note that the right D-module of C[C , C−1] is somewhat unusual. So we need to be
careful when computing. For example, C · % = −%(C) = −1.

Note also that in this case, both pullback and pushforward of D-modules agree
with the corresponding functors for O-modules.

Example 3.2.12 (Projection to a point). Let 5 : - → pt = SpecC. In this case,
D-→pt = O- . Thus, the pullback of C is O- with the usual action of D- . Let # be a
right D--module. Then, the pushforward is # ⊗D-

O- .
Let’s compute the pushforward for A1. Namely, we need to compute C[C] ⊗C〈C ,%〉

C[C]. This looks a bit confusing, so let us resolve the right copy of C[C]

0→ C〈C , %〉 ·%−→ C〈C , %〉 → C[C] → 0.

Applying C[C] ⊗C〈C ,%〉 − to the first two terms, we have the following chain complex

0→ C[C] ·%−→ C[C] → 0

whose zeroth homology is C[C] ⊗C〈C ,%〉 C[C] ' 0 and first homology is C.

Example 3.2.13 (Closed immersions). We will consider the closed embedding A= ↩→
A=+< of the LHS to the first = coordinates in the RHS. We have

DA=→A=+< ' C〈C1 , . . . , C= , %1 , . . . , %=+<〉

Pulling back a left DA=+< -module " gives

C[C1 , . . . , C=] ⊗C[C1 ,...,C=+<] " ' "/(C=+1 , . . . , C=+<)"

Similary, pushing forward a DA= -right module # gives

# ⊗C〈C1 ,...,C= ,%1 ,...,%=〉 C〈C1 , . . . , C= , %1 , . . . , %=+<〉 ' #[%=+1 , . . . , %=+<].

In particular, pushing forward C along {0} ↩→ A= gives C[%1 , . . . , %=].

3.3. Right vs. leftD-modules. For a morphism of affine schemes 5 : - → ., using
D-→. , we can pullback left D.-modules and pushforward right D--modules. But
how do we pushforward left D--modules? As it turns out, the category of left and
right D-modules are equivalent.

First, let us unravel the definition of a right D-module.

Lemma 3.3.1. Let " be an O--module. Giving a right D--module on " extending the
O--module structure is equivalent to giving a C-linear morphism

∇′ : Vect- → EndC(")

satisfying the following conditions for all B ∈ ", �, �1 , �2 ∈ Vect- , and 5 ∈ O-
(i) ∇′( 5 �)(B) = ∇

′
�( 5 B)

(ii) ∇′�( 5 B) = �( 5 )B + 5∇′�(B)
(iii) ∇′[�1 ,�2]B = [∇

′
�1
,∇′�2
]B

In terms of ∇′, the right D--module is given by

(3.3.2) B� = −∇′�(B).
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Remark 3.3.3. The confusing part about this lemma is that we are trying to define
a “right structure” using “left notation.” If our ring were commutative, then left
modules are the same as right modules on the nose. In the case of D-modules, the
G’s and %’s commute among themselves but not with each other. The minus sign
appearing in (3.3.2) is designed to make (ii) works (the minus sign essentially comes
from [�, 5 ] vs [ 5 , �]).

Philosophically speaking, one should think of left D-modules as functions and
right D-modules as distributions. If we view distributions as the dual of functions,
then the left action of differential operators on functions should induce a right action
of distributions. We will now define a right module structure on Ωtop

-
= ∧topΩ- .

There is a natural action of Vect- on Ωtop
-

called Lie derivative. For � ∈ Vect- , we
define

((Lie �)$)(�1 , . . . , �=) := �($(�1 , . . . , �=)) −
=∑
8=1

$(�1 , . . . , [�, �8], . . . , �=).

In general, for a 3-th form $,

(Lie �)$ = 8�3$ + 3(8�$),

where,

8� : Ω3
- → Ω3−1

-

(8�$)(�1 , . . . , �3−1) = $(�, �1 , . . . , �3−1).

When $ is a top form, however, we get

(Lie �)$ = 3(8�$).

Remark 3.3.4. To show that the two formula are the same, we need to use the following
identity

(3$)(�1 , . . . , �=+1) =
∑
8

(−1)8�8$(�1 , . . . , �̂8 , . . . , �=+1)

+
∑
8< 9

(−1)8+9$([�8 , �9], �1 , . . . , �̂8 , . . . , �̂9 , . . . , �=+1).

Lemma 3.3.5. We have
(i) (Lie( 5 �))$ = (Lie �)( 5 $)
(ii) (Lie �)( 5 F) = �( 5 )F + 5 Lie(�)F
(iii) Lie([�1 , �2])F = [Lie �1 , Lie �2]F.

Thus, Lemma 3.3.1 above equips Ωtop
-

with a right D--module.

Proof. Exercise. �

Lemma 3.3.6. In terms of a local coordinate system {G8 , �8}, we have

( 5 3G1 ∧ · · · ∧ 3G=) · %(G, %) = (C%(G, %) · 5 )3G1 ∧ · · · ∧ 3G= ,

where for %(G, %) = ∑

 G


%
, C%(G, %) = ∑

(−%)
G
 is the transpose of %(G, %).
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Proof. I will only prove a special case of one variable

5 3G · %G = − Lie(%G)( 5 3G) = −3( 5 8%G3G) = −35 = −%G 5 3G.

�

Note that for any ring ', being a right '-module is the same as being a left
'op-module. We will thus use Dop

-
-mod to denote the category of right D-modules.

The lemma above implies that once we’ve chosen a local coordinate system, we can
use the adjoint operator to identify D- and D

op
-

and hence, left and right modules.
This was exactly what we did in the example above.

Proposition 3.3.7. Let ", # ∈ D- -mod and "′, #′ ∈ Dop
-
-mod. Then

(i) " ⊗O-# ∈ D- -mod, �(B ⊗ C) = (�B) ⊗ C + B ⊗ (�C).
(ii) "′ ⊗O-# ∈ D

op
-
-mod, (B ⊗ C)� = (B�) ⊗ C − B ⊗ (�C).

(iii) HomO- (", #) ∈ D- -mod, (�?)(B) = �(?(B)) − ?(�(B)).
(iv) HomO- ("′, #′) ∈ D- -mod, (?�)(B) = −?(B)� + ?(B�).
(v) HomO- (", #′) ∈ Dop

-
-mod, (?�)(B) = ?(B)� + ?(�B).

Corollary 3.3.8. We have mutually inverse functors

Ω
top
-
⊗O- − : D- -mod� D

op
-
-mod : − ⊗O- (Ω

top
-
)−1.

Proof. Use (ii) and (iv) in the proposition above, where "′ = Ωtop
-

. �

Now, we can define push-forward of left D--modules as follows. Let 5 : - → .

be a morphism between smooth affine schemes and " ∈ D- -mod. Then, the push
forward of " is defined to be

((Ωtop
-
⊗O- ") ⊗D-

D-→.) ⊗O. (Ω
top
.
)−1.

3.4. Twisted differential operators. Let us recap what we did last week. For any
map of smooth algebraic varieties 5 : - → . we defined a natural (D- ,D.)-
bimodule D-→. . Further, we defined a right D--module $- := Ωtop

-
of top degree

differential forms on-. Tensoringwith$- overO- gives an equivalence of categories
D- -mod→ D

op
-
-mod. Using this equivalence, we can define

D.←- := $- ⊗O- D-→. ⊗O. $−1
. ∈ D.-mod-D-

This produces us the functors

D-→. ⊗D.
− : D.-mod→ D- -mod,

D.←- ⊗D-
− : D- -mod→ D.-mod,

as well as their right modules counterparts.
Recall that in order to define the equivalence $- ⊗O- −, we used Proposition 3.3.7.

However, the tensor product between two right D-modules, as well as one of the
possible Hom-spaces were notably absent from the statement. Let us explain this
omission in a conceptual fashion.
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Definition 3.4.1. Let �1 , �2 ∈ O- -mod. Similarly to Definition 3.1.9, we define

D≤=
-
(�1 , �2) :=

{
� ∈ HomC(�1 , �2) | [�, 5 ] ∈ D≤=−1

-
(�1 , �2) for all 5 ∈ O-

}
,

and set D-(�1 , �2) =
⋃
= D
≤=
-
(�1 , �2) ⊂ HomC(�1 , �2).

An analog of Question 3.1.8 shows that we have a composition

D-(�1 , �2) ×D-(�2 , �3) → D-(�1 , �3).

In particular, we callD-(�) := D-(�, �) the ring of differential operators twisted by
�.

Question 3.4.2. Let � be a locally freeO- -module. Show thatD≤1
-
(�) is a Lie algebroid

over O- .

One can show like before that for a locally free O--module �, we have an
isomorphism D-(�) ' *O-

(
D≤1
-
(�)

)
.

Question 3.4.3. Show that
(
D≤1
-

)op ' D≤1
-
($-). Deduce that Dop

-
' D-($-).

As in Question 3.1.15, we can define a tensor product functor

⊗ : D-(�1)-mod×D-(�2)-mod→ D-(�1 ⊗O- �2)-mod .

In particular, we have maps

D- -mod×mod-D- = D- -mod×D-($-)-mod→ D-($-)-mod,

mod-D- ×mod-D- = D-($-)-mod×D-($-)-mod→ D-($2
-)-mod .

This explains why the tensor product of two right D-modules is neither right nor
left D-module in general. Analogous reasoning also works for Hom-functors.

3.5. Derived category of D--modules.

Definition 3.5.1. The bounded derived category�1(D- -mod) is the bounded homotopy
category of complexes of projective D--modules.

Given a map 5 : - → ., we define derived functors in the usual way. Let
'-(D-→.), '.(D-→.) be finite resolutions of D-→. as a D-- and D.-module
respectively. Then1

5∗(") = '-(D.←-) ⊗D-
",

5 !(#) = '.(D-→.) ⊗D.
#[dim- − dim.].

We are working in the affine setting, so we always have free resolutions. However,
in order to justify that these functors land in the bounded derived category, we need
finite resolutions. Let us construct them.

Lemma 3.5.2. For any composition - → . → /, we have

D-→/ = D-→. ⊗D.
D.→/ = D-→. ⊗!D.

D.→/ .

1We will explain the homological shift later.
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Proof. The proof is a formal manupulation of tensor products:

D-→. ⊗D.
D.→/ = (O- ⊗O. D.) ⊗D.

(O. ⊗O/ D/)
= (O- ⊗O. O.) ⊗O/ D/

= O- ⊗O/ D/ = D-→/ .

The second equality is deduced analogously. We simply need to use the fact that
D- is a locally free O--module, and replace some tensor porducts by their derived
counterparts. �

Note that 5 always factors as a composition of a regular embedding and a
projection:

-
id, 5
−−−→ - × .

?A.−−→ ..

3.5.3. Pushforward. Let - → . be a closed embedding. Then analogously to
Example 3.2.13 we have

D-→. = O- ⊗O. D. = D- ⊗O- SymO-
#-..

In particular, D-→. is free over D- , and the functor − ⊗D-
D-→. is exact. Thus it

suffices to construct a resolution for projection maps - × . → .. In order to keep
notations simple, we will only consider projection to a point - → pt. In this case
D-→. = O- and D.←- = $- . Let us denote

�':(O-) = D- ⊗O-
:∧
O-

Vect- ,

and consider the following differential:

d : �':(O-) → �':−1(O-),

3(D ⊗ �1 ∧ . . . ∧ �:) =
∑
8

(−1)8+1D�8 ⊗ �1 ∧ . . . ∧ �̂8 ∧ . . . ∧ �:

+
∑
8< 9

(−1)8+9D ⊗ [�8 , �9] ∧ �1 ∧ . . . ∧ �̂8 ∧ . . . ∧ �: .

Question 3.5.4. Show that d2
= 0, �0 = O- , and other cohomology groups vanish.

Thus we have obtained a resolution O- ' D- ⊗O-
∧• Vect- .

Dually, we have $- ' Ω•- ⊗O- D-[dim-], with the differential given by

d($ ⊗ D) = d$ ⊗ D +
∑
8

3G8 ∧ $ ⊗ %8D,

where {G8 , %8} are local coordinates on -.
Thus the pushforward of " ∈ D- -mod to a point is given by

pr∗(") = Ω•- ⊗O- D- ⊗D-
" = Ω•- ⊗O- ".

For instance, when " = O- we get the algebraic de Rham cohomology:

pr∗(O-) = �∗(Ω•-).
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3.5.5. Pullback. Let 5 : - × . → . be a projection. Then D-×.→. = O- ⊗C D. by
Example 3.2.12. This is a free rightD.-module, so that the functorD-×.→. ⊗D.

− is
exact. Thus it suffices to construct a resolution for regular embeddings.

Suppose that 8 : - ↩→ . is a closed embedding, given by a regular sequence
( 51 , . . . , 5=) = �- ⊂ O. . Then we have the Koszul resolution of O- :

O- '  (�-) :=
⊗
8

[O.
58−→ O.].

More explicitly, we can write

 (�-) =
(
 = →  =−1 → · · · →  0) ,

where  : =
∧: (⊕=

8=1 O.3H8
)
, with 3H8 formal symbols, and the differentials are

given by

d
(
63H81 ∧ . . . ∧ 3H8:

)
=

:∑
9=1
(−1)9+1 58 9 63H81 ∧ . . . ∧ 3̂H8 9 ∧ . . . ∧ 3H8: .

Question 3.5.6. Check that  (�-) is indeed a resolution of O- .
In particular, we have D-→. = O- ⊗O. D. '  (�-) ⊗O. D. .

Corollary 3.5.7. Let - → . be a closed embedding of codimension =, where - and
. are smooth schemes. Then, 8!" is concentrated in cohomological degrees [0, =] for
" ∈ D- -mod.
Example 3.5.8. Consider the diagonal embedding Δ : - ↩→ - × -. Then one can
check that Δ!(" � #)[dim-] = " ⊗O-# as defined before.
3.6. Kashiwara’s theorem. Once again, let 8 : - ↩→ . is a closed embedding of
smooth varieties, given by an ideal �- ⊂ O. .
Definition 3.6.1. A D.-module " is topologically supported on -, if the action of �-
on " is locally nilpotent, that is every < ∈ " is annihilated by some power of �- :

∃= > 0 : �=-< = 0.
Theorem 3.6.2 (Kashiwara’s theorem). Let (D.-mod)- denote the full subcategory of
D.-mod, consisting of modules topologically supported on -. Then the pushforward functor
is an equivalence of categories:

8∗ : D- -mod ∼−→ (D.-mod)- .
Moreover, the inverse is given by 8! ' H0(8!).

There is also a derived version. We start with the following
Definition 3.6.3. Let 8 : - → . be a closed embedding of smooth affine schemes. Let
�1(D.-mod)- be the full subcategory of �1(D.-mod) consisting of chain complexes
in D.-mod whose cohomologies are in D.-mod- .
Corollary 3.6.4 (Kashiwara’s theorem, derived version). Let 8 : - → . be a closed em-
bedding of smooth affine schemes. Then the pushforward 8∗ : �1(D- -mod) → �1(D.-mod)
induces an equivalence of categories

�1(D- -mod) ∼−→ �1(D.-mod)- .
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Before proving this theorem, let us have a quick discussion about adjoint functors.
Let �, � be two rings, and take an (�, �)-bimodule %. We have a natural adjunction

− ⊗� % : mod-�� mod-� : Hom�(%,−).

Question 3.6.5. Prove this adjunction, as well as its derived version.

In particular, let � = D- , � = D. , and % = D-→. . We obtain an adjunction

8∗ : mod-D- � mod-D. : HomD.
(D-→. ,−)

Lemma 3.6.6. For any right D.-module " we have

8!" = RHomD.
(D-→. , ").

Before proving this lemma, let us give the main idea behind the proof. Forgetting
theD-module structure (and remembering just theO-module structure), up to a shift,
pulling back is just pulling back of O-modules. For O-modules, there are two ways
to pullback: the usual way − ⊗L

O.
O- , and the “exceptional” way RHomO. (O- ,O.).

The content of this result is that for a closed embedding of D-modules, exceptional
pullback of a free O.-module differs from the usual one by a shift and a twist by the
determinant of the normal bundle.

Proof. We have isomorphisms of right D--modules

RHomD.
(D-→. , ") = RHomD.

(O- ⊗O. D. , ")
' RHomO. (O- , ")
' " ⊗L

O.
RHomO. (O- ,O.),

where the last equivalence can be seen by picking a perfect resolution of O- as an
O.-module. This exists in a very big generality, but in our case we can just use the
Koszul resolution.

Let us consider the right D--module2 'HomO. (O- ,O.). Since the statement is
local in ., we can shrink it and assume that - is a complete intersection. In this case,
O- has a Koszul resolution

 (�-) = ( 3 →  3−1 → · · · →  0) ,
as an O.-module, where 3 = dim. − dim-. Each  8 is locally free, and we have a
perfect pairing  8 ⊗O.  3−8 →  3. In particular, we have

RHomO. (O- ,O.) =  (�-)∨• '  (�-)•[−3] ⊗O. ( 3)∨

' O- ⊗O. ( 3)∨[−3] ' ∧3(�-/�2-)
∨[−3] ' $- ⊗O. $∨.[−3].

In the last line, we have used the short exact sequence

0→ �-/�2- → 8∗Ω. → Ω- → 0

and the fact that �-/�2- is a free O--module. For more details, see the proof of [H,
Theorem III.7.11].

Question 3.6.7. Prove that �-/�2- is a locally free O--module.

2or rather a complex thereof.



D-MODULES IN REPRESENTATION THEORY 19

Finally, we have

RHomD.
(D-→. , ") ' " ⊗LO. RHomO. (O- ,O.)

' " ⊗L
O.

(
$- ⊗O. $∨.

)
[−3]

' " ⊗L
D.

(
$- ⊗O- O- ⊗O. D. ⊗O. $−1

.

)
[−3]

' " ⊗L
D.

D.←-[−3],

and we conclude by definition of 8!". �

Remark 3.6.8. Technically, we define 5 ! for left (and not right)D-modules. In order
to fix this, we should do some side switching in the proof above. The actual
statement for left D-module is as follows: we have an equivalence of functors
8! ' RHomD.

(D.←- ,−).

We obtain a pair of adjoint functors 8∗ a 8!. We will prove that 8∗ is fully-faithful,
with the essential image being given by D.-mod- . Note that fully-faithfullness of 8∗
is equivalent to id→ 8!8∗ being an equivalence.

Proof of Theorem 3.6.2. Since we formulated adjunctions for right modules, we will
proceedwith the proof in this context. Moreover, sincewe only prove the non-derived
statement, for brevity’s sake, we will use 8!0 to denote H0(8!) in this proof.

Consider the right action of �- ⊂ O. onD-→. . Let 5 ⊗� be a differential operator
in D-→. , where 5 ∈ O./�- and � ∈ D≤=

.
. For any 00 , . . . , 0= ∈ �- , we have the

following:

( 5 ⊗ �)(0= . . . 00) =
(
( 5 0=) ⊗ � + 5 ⊗ [�, 0=]

)
(0=−1 . . . 00)

= ( 5 ⊗ [�, 0=])(0=−1 . . . 00).

Note that [�, 0=] ∈ D≤=−1
.

. By induction on =, we obtain that ( 5 ⊗ �)(0= . . . 00) = 0.
Thus �- acts locally nilpotently on D-→. , and so on 8∗(") = " ⊗O- D-→. as well.
This proves that the image of 8∗ lies in (D.-mod)- .

Let us now prove that 8∗ is an equivalence. Choose a regular sequence ( 51 , . . . , 5=)
of generators of �- . Write -: = SpecO./( 51 , . . . , 5:). Then -:+1 ⊂ -: is a smooth
embedding of codimension 1 for any :. Reasoning by induction, we therefore assume
that - ⊂ . is of codimension 1 from now on.

Suppose that - = ( 5 = 0) ⊂ ., so that O- = O./( 5 ). For any right D.-module ",
we write

" 5 := {< ∈ " | < 5 = 0}.
This coincides with 8!0(") as an O--module. The rest of the proof is basically an
exercise in linear algebra.

As before, in local coordinates we can always find a dual vector % ∈ Vect(.) such
that [%, 5 ] = 1. In this case, D-→. is isomorphic to D-[%] as a left D--module, and
we have

8∗(#) = #[%] =
⊕
=≥0

#%=

for any right D--module # .
Consider the grading element B = 5 %. It is clear that [B, 5 ] = 1 and [B, %] = −1.
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Question 3.6.9. Check that #%= is precisely the (−=)-th eigenspace of B acting on # .
Moreover, 5 induces an isomorphism of vector spaces #%= → #%=−1 for any = > 0.

In particular, we see that

8!08∗(#) = (8∗(#)) 5 = # ⊗ 1 ⊂ #[%],

and thus # → 8!8∗(#) is an isomorphism, which means that 8∗ is fully-faithful.
To characterize the image, note that for any # ∈ (D.-mod)- , we can show that

# '
⊕
=≥0

# 8 ,

where # 8 is the (−8)-eigenspace for B = 5 %. Moreover, 5 and % are as above, i.e. %
increases 8, 5 decreases 8, 5 : # 8 → # 8−1 iso for 8 > 0 and surjective otherwise. This
is proved by using local nilpotence of # .

By Corollary 3.5.7, we know that 8! has cohomological amplitudes [0, 1], where

H0(8!#) = # 5 = ker(#
5
−→ #) = #0 ,

H1(8!#) = coker(#
5
−→ #) = 0.

The second line shows that 8!# ' H0(8!#). It is easy to check that

8∗8
! = #0[%] ' #,

which means that # is in the essential image of 8∗. Hence, we are done. �

Example 3.6.10. Consider the easiest example of 0 ↩→ A1. Kashiwara’s theorem says
that the (DA1-mod)0 ' Vect. In particular, DA1-modules supported at 0 do not have
non-trivial extensions. This is decidedly not true for coherent sheaves on A1!

Let us now demonstrate a couple of applications of Kashiwara’s theorem.

Proof of Corollary 3.6.4. We will prove fully-faithfulness of 8∗ and characterize its
essential image by induction on cohomological length.

For any " ∈ �1(D- -mod), we will show that 8!8∗" ' ". If " has length 1, we
are done. Suppose we already know up to length =, for " of length = + 1, we have

�≤<" " H<+1(")[−< − 1] · · ·

8∗8!�≤<" 8∗8!" 8∗8! H<+1(")[−< − 1] · · ·

' '

and we conclude by 2-out-of-3.
Essential image is done similarly. �

3.7. Base change. Let 5 : - → . be a map of smooth (affine) schemes, H ∈ ., and
" ∈ D- -mod. Let -H = 5 −1(H) be the fiber of 5 at H and 5H : -H → .. We want to
understand how the “fiber” of 5∗" at H is related to ( 5H)∗". As it turns out, they are
the same. In fact, we have a very general statement.
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Theorem 3.7.1 (Base change). Let 5 : . → -, 6 : /→ - be two morphisms of smooth
affine varieties, and consider the cartesian square

./ .

/ -

6̃

5̃ 5

6

Assume that./ = .×- / is smooth. Then we have an isomorphism of functors 5̃∗ 6̃! ∼−→ 6! 5∗.

Remark 3.7.2. Let 5 : 0 ↩→ A1. Then we have 5 ! 5∗ = id. If we worked with coherent
sheaves (say, in  -theory), the Euler class of the conormal bundle would pop up on
the right-hand side. This happens because C is not a D-module.

Before proving Theorem 3.7.1, we need a preliminary result.

Proposition 3.7.3 (Dévissage). Let - be a smooth variety, / a smooth closed subvariety
and* = - \ /. Let 8 and 9 be the corresponding closed and open embeddings.

(i) We have 9!8∗ ' 0 and 8! 9∗ ' 0;
(ii) For " ∈ �1(D- -mod) we have a distinguished triangle

8∗8
!" → " → 9∗ 9

!" +1−−→

Proof. First claim is an exercise. For the second claim, recall that 8∗ a 8!. It is also easy
to see that 9! a 9∗ and moreover, id ' 9! 9∗, i.e. 9∗ is fully-faithful. Consider the unit
map " → 9∗ 9!". Let  be the co-cone of this, i.e. we have the following triangle

 → " → 9∗ 9
!" +1−−→

We want to show that  ' 8∗8!". Applying 9! to this triangle, we see that 9! ' 0.
Since 9! is exact, we know that 9! H∗( ) = H∗(9! ) ' 0. Thus,  is topologically
supported along /; in other words,  ∈ �1(-)/.3 Now, applying 8! to the triangle
above, we get 8! ' 8!" since 8! 9∗ ' 0. By Kashiwara, we get that  ' 8∗8!". �

We are now ready to prove the base change theorem.

Proof of Theorem 3.7.1. As before, we can decompose 6 in a composition of a closed
embedding with aa projection. Since pullbacks are functorial, it suffices to prove the
claim for projections and closed embeddings.

First, assume 6 = pr- : ) ×- → - is a projection. Then 6̃ = pr. , 5̃ = id) × �, and
for any " ∈ �1(D.-mod)we have

5̃∗ 6̃
!(") ' id) × 5 ∗(O) �")[dim)] ' O) � 5∗(")[dim)] ' 6! 5∗(").

Now, suppose 6 : / ↩→ - is a closed embedding then so is 6̃. Using Kashiwara’s
theorem, we have (we ignore all the tildes here as they should be clear from the
context)

5∗6
! ' 6!6∗ 5∗6

! ' 6! 5∗6∗6
!.

3Here, we use the fact that for a module " over a ring ' and 5 ∈ '. If " 5 = 0, then " consists of
only locally 5 -nilpotent elements.
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It remains to show that 6! 5∗6∗6! ' 6! 5∗. Consider the following diagram, where all
squares are cartesian, and 9’s are open complement of 6’s

./ . *.

/ - *

5

6

5

9

5

6 9

Let " ∈ �1(-). Then we have the following exact triangle

6∗6
!" → " → 9∗ 9

!" +1−−→
Applying 6! 5∗, we get

6! 5∗6∗6
!" → 6! 5∗" → 6! 5∗ 9∗ 9

!" +1−−→
But now

6! 5∗ 9∗ 9
!" ' 6! 9∗ 5∗ 9

!" ' 0,
since 6! 9∗ ' 0 by Proposition 3.7.3. Thus 6! 5∗6∗6!" ' 6! 5∗", and we are done. �

Corollary 3.7.4 (Projection formula). Let 5 : - → . be a morphism of smooth affine
varieties. Then for any " ∈ �1(D- -mod), # ∈ �1(D.-mod), we have

5∗(" ⊗!O- 5
!(#)) ' 5∗(") ⊗!O. #.

Proof. Exercise. �

3.7.5. D-modules on singular varieties. Let - be a singular Noetherian affine scheme.
Then embed it in some affine space - ↩→ A# , and define the category of D-modules
on - to be

D-mod(-) := (DA# -mod)- .
Kashiwara’s theorem then guarantees that this category does not depend on the
embedding, since we can always embed into a bigger affine space:

- A"

A" A"+# .

Another application of Kashiwara’s theorem is the proof that the projective space
P= is D-affine; we will do this later.

4. Holonomic D-modules

4.1. CoherentD-modules. In order to continue our study ofD- -modules in a more
geometric direction, we need to impose some finiteness conditions. Recall that for
O- -modules such condition is provided by the notion of coherent sheaves. Our first,
very naive guess is thus to consider D--modules with the underlying O--modules
being coherent. Unfortunately, this essentially suffocates our field of study, as the
following proposition shows.
Proposition 4.1.1. A D--module " is coherent over O- if and only if it is locally free.

In particular, this definition only captures vector bundles with flat connections.
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Proof of Proposition 4.1.1. The “if” part is obvious. For the “only if” part, it suffices
to show it locally, that is that "G is free for all G ∈ -. Let us pick local coordinates
(G8 , %8)38=1 at G. Let B̄1 , . . . , B̄= be a basis of "G/mG"G over C, and choose lifts
B1 , . . . , B= ∈ "G . By Nakayama’s Lemma, B8’s span "G as an O-,G-module. This
induces a surjective map O⊕=

-,G
→ "G . Our goal is to show that it is injective as well.

Suppose that we have a non-trivial relation in "G

(4.1.1)
=∑
8=1

58B8 = 0, 58 ∈ O-,G .

Passing to the completion Ô-,G ' C~G1 , . . . , G3�, the same non-trivial relation holds
in "̂G .

For any 5 ∈ C~G1 , . . . , G3�, define ord( 5 ) to be the degree of the lowest term. The
natural action of %8’s on C~G1 , . . . , G3� obviously decreases the degree of series,
where the lowest term contains G 9 . Note that %9B8 is a linear combination of B8’s in
Ô-,G . Applying %9 to the relation (4.1.1), we get

0 =
=∑
8=1
((%9 58)B8 + 58(%9B8)) =

=∑
8=1

68B8 , 68 ∈ Ô-,G .

Let 80 be such that 580 has the smallest degree among 58’s. Pick 9 such that some
lowest degree term in 58 contains G 9 . Then ord(68) ≤ ord(%9 58) < ord( 58), and so

min
8
(ord( 58)) > min

8
(ord(68)).

We can continue doing this until the minimum degree reaches 0. At this point, we
arrive at a non-trivial relation in "G/mG"G

=∑
8=1

ℎ̄8 B̄8 = 0, ℎ̄8 ∈ C.

But this contradicts the fact that B̄8’s form a basis for "G/mG"G . Thus we are
done. �

Recall that D- is supposed to be a deformation of O)∗- , so in a sense it is not
surprising that we have failed. Let us consider the following definition instead.

Definition 4.1.2. We say that a D- -module " is coherent if it is finitely generated as
a D--module. We denote the category of coherent D--modules by Coh(D-).

Note that D- is Noetherian, so “finitely generated” is the same as “finitely
presented.”

Example 4.1.3. The DA1-module �0 = C[%] is infinitely generated over C[C], but is
clearly generated over C[C , %] by 1.

We see that this definition is less restrictive. However, we soon face another
serious problem: the category Coh(D-) is not preserved under the natural functors.

Example 4.1.4. Let � : A1 → pt be the projection, and " = DA1 . We have

�∗(") = C[C , %] ⊗C[C ,%] C[C] = C[C].
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This is an infinite-dimensional C-vector space.

Example 4.1.5. Let 8 : {0} ↩→ A1, and " = DA1 . We have
8∗(") = C[C , %] ⊗C[C ,%] C[%] = C[%].

Remark 4.1.6. Later we will prove Bernstein’s 1-function lemma, which says that
push-forward along an open embedding preserves coherency.

In order to resolve this issue, let us make a quick detour.

4.2. Singular supports. Recall that we had the following definition.

Definition 4.2.1. Let " ∈ Coh(D-). A good filtration on " is a filtration by O--
modules

. . . ⊂ � 8−1 ⊂ � 8 ⊂ � 8+1 ⊂ . . . ,
exhaustive and bounded from below, such that

D
≤ 9
-
� 8 ⊂ � 8+9 ,

and gr�" =
⊕

8 �
8/� 8+1 is a coherent grD- = O)∗--module.

Proposition 4.2.2. For any" ∈ Coh(D-), there exists a good filtration. If {� 81} and {�
8
2}

are two good filtrations on ", then for some # we have

� 81 ⊂ �
8+#
2 ⊂ � 8+2#

1

for all 8.

Proof. Since" is coherent, it is generatedbyafinite collectionof elements<1 , . . . , <: ∈
". Consider the associated mapD:

-
� ". It is easy to check that for any surjection

of D--modules #1 � #2 the image of a good filtration on #1 is a good filtration on
#2. Since D:

-
has a good filtration by degree, we obtain a good filtration on ".

For the second claim, let ?8 be such that �?1 =
∑
?≥?8 D

≤?−?8
-

<8 for any ?. Such a
choice exists, because we can assume that images of <8’s generate gr�1 ". Further,
let @8 be such that <8 ∈ �@82 . Denote by # the maximal value of @8 − ?8 . Then we have

�
?

1 =
∑
?≥?8

D
≤?−?8
-

<8 ⊂
∑
?≥?8

D
≤?−?8
-

�
@8
2 ⊂

∑
?≥?8

�
?+(@:−?: )
2 ⊂ �?+#2 ,

and we may conclude. �

Corollary 4.2.3. The closed subvariety

(4.2.1) Supp(gr�") = +
(√

Ann(gr�")
)
⊂ )∗-

does not depend on the choice of a good filtration �.

Proof. We use Proposition 4.2.2. Shifting the filtrations, we can assure that for some
# we have

� 81 ⊂ �
8
2 ⊂ �

8+#
1 .

Let us first assume that # = 1. Consider the natural map )8 : � 81/�
8−1
1 → � 82/�

8−1
2 .

Then we have
ker)8 = � 8−1

2 /�
8−1
1 = coker)8−1.
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Consider the exact sequence

0→ ker)→ gr�1 " → gr�2 " → coker)→ 0,

where ) is the natural map. We have

Supp(gr�1 ") = Supp(ker))∪Supp(im)) = Supp(coker))∪Supp(im)) = Supp(gr�2 "),

and so we can conclude.
The general case is obtained by considering the intermediate filtrations � 81,: =

� 81 + �
8+:
2 , 1 ≤ : ≤ =. �

Remark 4.2.4. The claims above remain true for any Noetherian almost commutative
filtered ring.

Definition 4.2.5. We call the subvariety (4.2.1) the singular support (or characteristic
variety) of " ∈ Coh(D-), and denote it by Ch(").

Lemma 4.2.6. Let 0 → "1 → " → "2 → 0 be a short exact sequence of coherent
D--modules. Then Ch" = Ch"1 ∪ Ch"2.

Proof. See exercise sheet 1. �

Recall that giving a grading on a commutative algebra ' is equivalent to defining
a C∗-action on Spec'. Graded ideals then correspond to C∗-invariant subvarieties.
In our case, the grading on grD- ' O)∗- coincides with the one obtained from the
action C∗y )∗- by homotheties along the cotangent direction. In particular, Ch(")
is preserved by C∗, or in other words a conical subvariety in )∗-. Furthermore, let
? : )∗- → - be the natural projection. Then ?(Ch") = - ∩ Ch" = Supp(") by
conicality.

Proposition 4.2.7 (Bernstein’s inequality). For any irreducible component Ch(")8 ⊂
Ch("), we have codimCh(")8 ≤ dim-.

In order to prove this inequality, we will have to do some preparatory work.
However, note that for any vector bundlewith flat connection", we haveCh(") = -,
so that Bernstein’s inequality becomes an equality.

4.3. Holonomic modules.

Definition 4.3.1. A coherent D--module is called holonomic, if dimCh(") = dim-.
The category of holonomic D--modules will be denoted by Hol-.

Let us think of " in terms of differential equations, see Section 1. If the singular
support is as “small” as possible, this means that the corresponding system of PDEs
is as “large” as possible, e.g. we cannot add any boundary conditions. In effect, one
can show that the solution spaces of holonomic D-modules are finite-dimensional.

It turns out that this is precisely the finiteness condition that we need.

Theorem 4.3.2 (Main theorem A). Let 5 : - → . be a map of smooth affine varieties.
Then the functors 5∗, 5 ! preserve holonomicity.
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After a series of reductions, this theorem reduces to Bernstein’s 1-function lemma,
but we will have to work quite a bit to get there. Let us begin with a couple of
statements about Hol-. The first one tells us that we did not go that far from vector
bundles with flat connections.
Proposition 4.3.3. Let" ∈ Hol(-). There exists an open* ⊂ -, such that" |* is locally
free over O- .

Proof. Let ? : )∗- → - be the natural projection. If ?(Ch") ≠ -, then the
proposition is trivially true. We therefore assume that ?(Ch") = -. There exists
an irreducible component (Ch")8 which surjects to -. Since Ch" is conical, this
implies that (Ch")8 = -. The projection of any other irreducible component has to
be closed in -, so that there exists an open* ⊂ - with Ch(" |* ) = * . We conclude
by invoking Proposition 4.1.1. �

The next statement shows that Hol- is extremely rigid.4 Let us start with a
definition.

Definition 4.3.4. Let Ch(") = ⋃
8 �8 be the decomposition into irreducible compo-

nents. We define the characteristic cycle of " to be the formal sum

CC(") :=
∑
8

<�8 (") · �8 ,

where <�8 (") is the multiplicity of gr" along �8 .

Proposition 4.3.5. CC(") does not depend on the choice of good filtration. If 0→ "1 →
" → "2 → 0 is a short exact sequence, we have CC(") = CC("1) + CC("2).

Proof. Exercise. �

Corollary 4.3.6. Every " ∈ Hol(-) has finite length.

Proof. By additivity of characteristic cycle, the length of " is bounded above by∑
8 <�8 ("). �

Remark 4.3.7. This stands in stark contract with Coh-, where finite length implies
zero-dimensional support.

4.4. Proof of Bernstein’s inequality. Let us first recall that for a possibly singular
variety /, its dimension is defined as the maximum of dimensions of irreducible
components of the smooth locus /sm.

Definition 4.4.1. Let " ∈ Coh(D-). We define �8" to be the largest submodule
# ⊂ " with dimCh(#) ≤ 8. The increasing filtration {�8"}8 of " is called the
Gabber filtration.

Proposition 4.4.2. We have dimCh(�8"/�8−1") = 8. Moreover, this variety is equidi-
mensional.

Unfortunately, we will need more technology in order to prove Proposition 4.4.2.
Let us first show how this implies Bernstein’s inequality.

4Not a mathematical term.
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Lemma 4.4.3. Let 8 : - ↩→ . be a closed embedding of a smooth subvariety," ∈ D- -mod,
and # = 8∗". Consider the correspondence

)∗. |-

)∗- )∗.

6 ℎ

Then we have

Ch(#) = ℎ6−1 Ch(").

Proof. The question is local in -. Moreover, by induction on codimension we can
assume that - = SpecO./( 5 ) for some 5 ∈ O. . Pick local coordinates {G8 , %8} on .
such that 5 = G1, and set % = %1. Then # ' 8∗"[%] as in the proof of Theorem 3.6.2.
Take a good filtration � 8", such that �−1" = 0. Then

� 8# =

∑
:≤ 9≤8

C%: ⊗ 8∗� 8−9".

is a good filtration of # , which satisfies

� 8#/� 8−1# =

8⊕
9=0

C% 9 ⊗ 8∗(� 8−9"/� 8−9−1").

Therefore we have

Ch(#) = Supp(gr� #) = Supp(gr�"[%]) = ℎ6−1 Supp(gr�") = ℎ6−1 Ch(").

�

Proof of Proposition 4.2.7. By Proposition 4.4.2, it suffices to show that dimCh(") ≥
dim- for any coherent D--module ". We do it by induction on dim-. If
Supp" = -, then - ⊂ Ch("), and thus dimCh(") ≥ dim-. We can therefore
assume that ( = Supp" is a closed subscheme of -. Passing to an open subset of
-, we can further assume that ( is smooth. Let 8 : ( ↩→ - be the embedding. By
Kashiwara’s theorem we have " = 8∗! for some ! ∈ D(-mod. By Lemma 4.4.3 we
have

dimCh(") = dim(ℎ6−1 Ch(!)) = dimCh(!) + codim- (.

On the other hand, we have dimCh(!) ≥ dim ( by induction, and so we may
conclude. �

Remark 4.4.4. One can prove that Ch(") is coisotropic; however, this is a much deeper
theorem.

In order to prove Proposition 4.4.2, we need another characterization of Gabber
filtration. Its definition uses Verdier duality.
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4.5. Verdierduality. Recall that forO- -modules,wehave aduality functorRHom(−,O-) :
�1(Coh-) → �1(Coh-)op. The reason we take the derived Hom-functor is that the
non-derived one obviously kills all torsion sheaves. We have a similar definition in
the world of D--modules.

Definition 4.5.1. The functor

D : �1(Coh(D-)) → �1(Coh(D-))op ,

D("•) = RHomD-
("• ,D-)[dim-] ⊗O- $−1

-

is called the Verdier duality.

Proposition 4.5.2. The Verdier duality D is an auto-equivalence of categories. We have
D ◦D ' id.

Proof. This is obvious for free, and therefore projective D--modules. The general
case follows by induction on the length of projective resolution. �

Recall that for any complex "• = · · · → "8−1
38−1−−−→ "8

38−→ "8+1 → · · · we can
define its 8-th truncation by

�≥8"• = · · · → 0→ im 38−1
38−1−−−→ "8

38−→ "8+1 → · · · .
We have a natural map "• → �≥8"•.

Definition 4.5.3. Let " ∈ Coh(D-). We define (8" to be the image of the natural
map

�0(D �≥8 D") → �0(D D") = �0(") = ".

The increasing filtration {(8"}8 of " is called the Sato-Kashiwara filtration.

It is obvious that the Sato-Kashiwara filtration is compatible with morphisms of
D--modules.

Lemma 4.5.4. We have dimCh((8") ≤ 8, and (dimCh(")" = ".

Proof. Let us reformulate the statement as follows:

dimCh((8"/(8−1") ≤ 8 , (8"/(8−1" for 8 > dimCh(").
The natural equivalence D2 ' id yields a spectral sequence

�
8 9

2 = Ext
9

D-
(ExtdimCh(")−8

D-
(",D-),D-) ⇒

{
(8"/(8−1" for 8 = 9 ,

0 otherwise.

The claim then follows from the lemma below; see [G2] for more details and
references. �

Lemma 4.5.5. Let " ∈ Coh(D-). Then
(1) codimCh(Ext9

D-
(",D-)) ≥ 9,

(2) Ext
9

D-
(",D-) = 0 unless codimCh(") ≤ 9 ≤ 2 dim-.

Proof. In the exercise sheet 3. �

Theorem 4.5.6. The Gabber filtration is equal to the Sato-Kashiwara filtration.
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Proof. By Lemma 4.5.4 we have (8" ⊂ �8". In the opposite direction, consider
the inclusion �8" ↩→ ". By functoriality of (8 we have (8(�8") ⊂ (8". Since
dimCh(�8") = 8, we have (8�8" = �8", and so we may conclude. �

In particular, this theorem buys us functoriality of Gabber filtration, which is not
at all obvious from the original definition. It is also easy to check that Sato-Kashiwara
filtration commutes with pullbacks along open embeddings.

Proof of Proposition 4.4.2. Suppose that Ch(�8"/�8−1") has a component � of di-
mension strictly less than 8. Choose an open affine 9 : * ↩→ - such that

* ∩ Ch(�8") ⊂ �sm.

We have 9!("/�8−1") ≠ 0, because its characteristic variety is non-empty. On the
other hand, we clearly have dimCh(9!") ≤ 8 − 1, so that 9!" = �8−1 9!" = 9!�8−1".
In particular,

9!("/�8−1") = 9!"/9!(�8−1") = 0,
and so we have arrived at a contradiction. �

4.6. 1-function lemma. One important property of holonomicity is that it is pre-
served under pulling back and pushforward. We have seen before that coherence,
by itself, is not preserved. Let us start with a simple but instructive example.

Example 4.6.1. Let - = A1 = SpecC[C] and 9 : * = A1 \ {0} ↩→ A1 be the open
immersion. Let " = C[C , C−1] be a �-module over * . Then, 9∗" = C[C , C−1] is a
D--module. We want to see that it is holonomic.

First, we check that it’s coherent. Observe that

%C−= = −=C−=−1 , = ≥ 1

and hence, as a D--module, 9∗" is generated by C and C−1. Thus, it is coherent.
To see that it’s holonomic, we use the following exact sequence of D--modules

0→ C[C] → C[C , C−1] → C−1
C[C−1] → 0.

Note that here, C−1C[C−1] = 8∗8!C[C][1]. The singular support of 8∗8!C[C][1] is 1-
dimensional. Thus, it is holonomic. C[C] is obviously holonomic. We thus conclude.

The main upshot of this example is that even though {C−=}=≥1 show up, there’s
nothing to fear since we can reach negative powers of C by differentiating C−1. This is
in stark contrast to the case of O--modules.

The proof of the fact that holonomicity is compatible with pushforward and
pulling back will follow a series of reduction. One important case is that of an affine
open embedding, a generalization of the example above.

Until the end of the subsection, we use the following notation. Let - be smooth
affine variety, 5 ∈ O- , and* = - 5 , the complement of { 5 = 0} ⊆ -. Let 9 : - 5 → -

denote the open immersion. Moreover, let " ∈ D* -mod.

Theorem 4.6.2. Let 9 : * → - as above. Suppose that " is holonomic, then 9∗" ∈
D- -modhol.
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The proof of this theorem needs a technical lemma called the 1-function lemma.
It is a generalization of the observation above where we see that negative powers of
C don’t cause any trouble. We need some preparation to state the result.

Let $ = C[B] and  = C(B). We can base change and obtained* and - as well
as *$ and -$ . Consider D* / = D* ⊗  , D- / = D- ⊗  as well as subrings
D*$/$ = D* ⊗ $ and D-$/$ = D- ⊗ $. Let " 5 B = {0(B)< 5 B : 0(B) ∈  , < ∈ "}.
Here, 5 B is just a formal symbol and some places write 0(B)<“ 5 B”.
" 5 B has an O--module structure given by acting on <. It also has a D--module

structure given by

�(< 5 B) = �(<) 5 B + B
�( 5 )
5
< 5 B , � ∈ Vect- .

Note that this also gives " 5 B the structure of a D* / -module.

Remark 4.6.3. If 5 B looks a bit strange, here’s another way to think about it. There is
an automorphism � of D*$/$ given by

�(�) = � + B
� 5

5
.

Then, we can twist the natural D*$/$-module structure of " to get a new module
"�. It is clear that this is the same as the one above.

Remark 4.6.4. In general, if # is a D--module that is holonomic, then so is # 5 B ,
as a D- / -module, by extending the filtration by scalars. Moreover, if � is a field
automorphism of  , then it induces an automorphism of D- / -module, which
doesn’t affect holonomicity.

Remark 4.6.5. There’s also a geometric way to think about 5 B , via Kummer sheaf.
First, fix B ∈ C (rather than a variable). Consider the following �-module on A1 \ {0}

“GB” = C[G, %]/(C[G, %](% − B
G
)).

By abuse of notation, we also denote by “GB” by its pushforward to A1. Given a
function 5 : - → A1, one obtain “ 5 B” by pulling back “GB” along 5 .

Now, we have to perform this construction “in family” to get the variable B.
Consider SpecC[G, B] = A1 × A1 → A1 = Spec[B] and relative �-modules “GB” given
by

“GB” = C[G, B, %G]/(C[G, B, %G](%G −
B

G
)).

For any map 5 : - → A1, we obtain 5A1 : - × A1 → A1 × A1 → A1 via (G, B) ↦→
( 5 (G), B) ↦→ B. Pulling back “GB” along this map, we get “ 5 B”, where B is now a
variable. We can also take the generic fiber and obtain “ 5 B” as a D- / -module. For
any D--module ", we can consider " , which is a D- / -module and hence, also
" ⊗O- “ 5 B” which is the same as " 5 B above.

We are now ready to state the lemma on 1-function.
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Lemma 4.6.6. Suppose " is a holonomicD* -module. Then, for any section < ∈ ", there
exists D(B) ∈ D-$/$ and a polynomial 1(B) ∈ $ = C[B] such that

D(B)(< 5 B) = 1(B)<
5
5 B .

Remark 4.6.7. Suppose that B were a number and not a variable. Then since 1(B) has
only finitely many roots, when B = = � 0, 1(−=) ≠ 0 and we have

D(−=)
1(−=) (< 5

−=) = < 5 −=−1 ,

which says that we get get lower powers of 5 by differentiating.

Proof of Lemma 4.6.6. We will start by proving a slightly more general statement.
Let "0 ⊂ " be a O--coherent module. We will show that # = D- / "0 5

B is a
holonomic �- / -module.

Let #′ ⊂ # be the lowest term of the Gabber–Sato–Kashiwara filtration. By
definition #′ is holonomic. From Sato–Kashiwara formulation of the filtration, we
see that it’s well-behaved with respect to localization. Hence, #′ |* 

' # |* 
, since #

is holonomic over * , being a submodule of ", which is holonomic over * . In
particular, #′ ≠ 0.

Consider #/#′, which is now a D- -module supported on - \* . Consider the
image of "0 5

B in #/#′. Since "0 is finitely generated, we know that its image
is annihilated by a large enough power of 5 . In particular, there exists some :
such that 5 :"0 5

B ⊂ #′, and hence, D- / "0 5
B+: ' D- / 5

:"0 5
B ⊂ #′. Thus,

D- / "0 5
B+: is holonomic, being a sub-module of a holonomic �-module. Now,

note thatD- / "0 5
B+: ' D- / "0 5

B , by a an automorphism of given by B ↦→ B+:.
Thus, the latter, which is # by definition, is also holonomic.

Consider the following decreasing chain of D- / -modules

D- / "0 5
B ⊇ D- / 5 "0 5

B ⊇ D- / 5
2"0 5

B ⊇ · · · ,

which necessarily stabilizes, since the category of holonomic D-modules is Artinian.
Thus, there exists : � 0 such that D- / 5

:"0 5
B = D- / 5

:+1"0 5
B . Using the

change of variable trick on  again, we get D- / "0 5
B = D- / 5 "0 5

B .
Now, suppose that "0 is generated by 1 element <, then, we get D- / < 5

B =

D- / 5 < 5
B . In particular, there exists D′(B) ∈ D- / such that D′(B)( 5 < 5 B) = < 5 B .

Write D′(B) = D(B)
1(B) where D(B) ∈ D-$/$ and 1(B) ∈ $, we get

D(B)< 5 B = 1(B)<
5
5 B ,

and the proof is complete. �

We will now return to the proof of Theorem 4.6.2.

Proof of Theorem 4.6.2. Since " is holonomic, it’s generated, over D* , by a coherent
O--module "0 = O- 〈<1 , . . . , <:〉. By Lemma 4.6.6 and Remark 4.6.7, we see that
9∗" is generated over D- by <1 5

−; , <2 5
−; , . . . , <: 5

−; for some ; � 0. Thus, 9∗" is
coherent. It remains to show holonomicity.
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We have

D- / "0 5
B =

⋃
:∈Z

D- / "0 5
B−: = D* / "0 5

B = 9∗" 5 B .

Here, the first equality is due to Lemma 4.6.6. Moreover, from the first part of the
proof of Lemma 4.6.6, we know that D- / "0 5

B , and hence 9∗" 5 B , is a holonomic
D- / -module. Assume that "0 is generated by one element < (otherwise, do an
induction on the number of generators), then D-$/$< 5

B = D-$/$/�. By what we
saw above, over  , O)∗- /gr(� ) defines a dim - dimensional subvariety of )∗- .
By upper semi-continuity of fiber dimension [G3, Theorem 13.1.3], we know that
for all but finitely many values of B, O)∗-/gr(�B) defines also a dim--dimensional
variety of )∗- over :(B) ' C. Specializing B = −;, ; � 0, we get D-"0 5

−; = 9∗"
(see first part of the proof) is holonomic and we are done. �

4.7. Functoriality of holonomicity. The main goal of this subsection is to show
that pulling and pushing preserve holonomicity.

The lemma on 1-function allows us to show that pushing forward along an open
affine embedding preserves holonomicity. This is true in more general (though
admittedly, we haven’t really talked about �-modules on a non-affine variety).

Lemma 4.7.1. Let* be an open subset of -. If " ∈ �1
hol(*), then 9∗" ∈ �1

hol(-).

Proof. By induction on cohomological length, it suffices to prove it for the case when
" ∈ (D* -mod)hol. Since holonomicity is a local property, without loss of generality,
we can assume that - is affine.

When 9 : * → - is an open affine embedding, then it is the content of Theo-
rem 4.6.2. Now suppose* = ∪8*8 is a (finite) affine covering of* , then

9∗" '
⊕
8

(90)∗" |*8 →
⊕
80<81

(980 81)∗" |*80∩*81
→

⊕
80<81<82

(980 81 82)∗" |*80∩*81∩*82
→ · · ·

This is a chain complex of holonomic D--modules. Thus, its cohomology is
holonomic and we are done. �

Corollary 4.7.2. For any closed embedding 8 : /→ -, 8! preserves holonomicity.

Proof. Let " ∈ �1
hol(-), then we have the following excision sequence

8∗8
!" → " → 9∗ 9

!" → .

Clearly 9!" is holonomic. By Lemma 4.7.1, 9∗ 9!" is holonomic. Thus, 8∗8!" is
holonomic. Since we know precisely what the singular support of 8∗# looks like for
any # . It’s easy to see that 8!" is also holonomic. �

This allows us to conclude that pulling back always preserves holonomicity.

Theorem 4.7.3. Let 5 : - → . be a morphism between smooth varieties. Then 5 ! preserves
holonomicity.

Proof. We factors 5 into a composition of a closed embedding and a smooth projection

- → - × . → .
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Pulling back along a closed immersion preserves holonomicity by Corollary 4.7.2.
For a smooth projection, it’s easy to see that coherence is preserved. Moreover, the
singular support of pulling back along a smooth projection is also easy to compute
by going from right to left in the following correspondence

)∗(- × .) ←↪ (- × .) ×. )∗. → )∗..

Thus, we are done. �

It remains to show that pushforward preserves holonomicity. We start with the
following easy lemma.

Lemma 4.7.4. Let 8 : . → - be a locally closed immersion of smooth variety. Let " be a
D.-module. Then, " is holonomic if and only if 8∗" is.

Proof. We factor 8 as .
8′−→ *

9
−→ - where 8′ is a closed embedding and 9 an open

embedding. By what we have seen above, 9 preserves holonomicity. It’s also easy to
see that it reflects holonomicity. Since 8′ is a closed embedding of smooth schemes, a
simple dimension count implies that it both preserves and reflects holonomicity. �

We will now prove an important criterion for holonomicity.

Theorem 4.7.5. Let " ∈ �1
coh(-). Then, the following are equivalent

(i) " is holonomic,
(ii) for any point G ∈ -, 8!G" is finite dimensional.

(i) implies (ii) is a direct consequence of Corollary 4.7.2. For the other direction,
we will need the following general.

Lemma 4.7.6. Let " be a coherent D- -module. Then, there exists an open dense subset*
of - such that " |* is flat. Furthermore, if for any G ∈ * , " ⊗� :(G) is finite dimensional,
then " |* is coherent over O* .

Proof. Choose a good filtration � on ", then gr�" is a coherent sheaf on )∗-. By
generic flatness, [Stacks, Tag 052A], we know that there exists an open dense subset
* of - such that gr�" |* is flat. In particular, for each 8, gr�

8
" |* is flat. This implies

that �8" |* is also flat for each 8, by induction on 8. Since " |* = colim8 �
8" |* , we

get that " |* is also flat.
For the second part, we assume that - = * , and wewill prove that" is a coherent

O--module. Something stronger is true: each gr�
8
"- is a finitely generated, i.e.

coherent, O--module. Thus, the fact that it’s flat implies that it’s locally free and
hence projective, see [Stacks, Tag 00NX]. By the splitting property of projective
modules, we get " '

⊕
8 gr

�
8
" as an O--module.

Let G ∈ - be an arbitrary closed point. Then, " ⊗O- :(G) is finite dimensional,
which means that gr�

8
" ⊗O- :(G) ' 0 when 8 � 0. By Nakayama’s lemma, we see

that (gr�
8
")G ' 0 when 8 � 0, and hence, assuming that - is connected, gr�

8
" ' 0

when 8 � 0. Thus, " '
⊕#

8 gr�
8
" for some large, but finite, # . In particular, " is

a finitely generated locally free sheaf. �

https://stacks.math.columbia.edu/tag/052A
https://stacks.math.columbia.edu/tag/00NX
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Proof of Theorem 4.7.5. (i) implies (ii) is a direct consequence of Corollary 4.7.2. It
remains to prove the other direction. And we will do this by downward induction
on dim Supp".

Let ( = Supp", let* be an open dense subset of (reg such that dim((\*) < dim (.
Let + be an open subset of - such that + ∩ ( = * . Let 9 : + → - denote the open
embedding, and consider

" → 9∗ 9
!" → � → · · ·

Note that � has lower dimensional support, so we are covered by induction. Thus, it
suffices to show that 9∗ 9!" is holonomic. Since 9∗ preserves holonomic, it suffices to
show that 9!" is holonomic. But, 9!" ' 8∗# where 8 : * ↩→ + is a closed embedding
and # a coherentD+ -module. Thus, 9!" is holonomic if and only if # is. Shrinking
* and + if necessary, Lemma 4.7.6 implies that we can take # to be flat over O* .
For any point G ∈ * , its fiber at G is, up to a shift, just tensoring with :(G) (there’s no
higher cohomology, due to flatness). Lemma 4.7.6 then allows us to conclude that
# is coherent, and in fact, locally free. Thus, # is an vector bundle with integrable
connection. In particular, # is holonomic, and we are done. �

Theorem 4.7.7. Let 5 : - → . be a morphism between smooth affine varieties. Then 5∗
preserves holonomicity.

Proof. Factoring 5 into a closed immersion followed by a projection, we reduce to
the case ? : - × . → . since we already know that pushing forward along a closed
immersion preserves holonomicity.

Now, embed - and . as closed sub-varieties of A< and A= respectively and
consider the following commutative diagram

- × . .

A< × A= A=

By Lemma 4.7.4, which says that pushing forward along a closed embedding both
preserves and reflects holonomicity, it suffices to show that pushing forward along
the projection map ? : A< × A= → A= preserves holonomicity.

Without loss of generality, we can assume that< = 1. Write+ = A=+1 and, = A= ,
then the projection ? : + → , induces a closed embedding 8 = ?∨ : ,∨ → +∨.
Consider the Fourier transform �+ : D+ ' D+∨ given by

G8 ↦→ −%∨8 and %8 ↦→ G∨8 .

It is known that � preserves and reflects holonomicity, see Remark 4.7.9. Observe
that

(4.7.8) �,?∗ ' 8!�+ .

Indeed, up to a shift, 8! is given by

(C[G∨1 , . . . , G∨=+1]
G∨
=+1−−−→ C[G∨1 , . . . , G∨=+1]) ⊗C[G∨1 ,...,G∨=+1] " '

(
"

G∨
=+1−−−→ "

)
,
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whereas ?∗" is given by

"
%=+1−−−→ ",

see also Example 3.2.12. These two are clearly related by a Fourier transform as
written in (4.7.8). Now, in order to show that ?∗ preserves holonomicity, it suffices to
show that 8! does. But this is already done in Corollary 4.7.2. �

Remark 4.7.9. Besides filtration by order, the Weyl algebra DA= has Bernstein filtration
�, defined as follows:

�:DA= =

∑
deg ?+deg @≤:

?(G1 , . . . , G=)@(%1 , . . . , %=),

where ?, @ are polynomials. Since G8’s and %8’s play symmetric role here, the
Bernstein filtration is compatible with Fourier transform. Furthermore, �:DA= is
finite-dimensional for any :. Thus for any good (with respect to �) filtration � on a
coherent DA= -module " each filtered piece � 8" is finite-dimensional. This allows
us to import the theory of Hilbert polynomials from the commutative setting. We
have

dim � 8" = "(", �; 8)

for 8 � 0, "(", �; C) ∈ Q[C]. Moreover, the degree of " is independent of �,
and equal to the dimension of the support of gr�". One can easily check that
dim gr�" = dimCh("). This shows that the dimension of singular support is
preserved under Fourier transform. In particular, Fourier transform preserves and
reflects holonomic D-modules.

4.8. Compatibility with Verdier duality. We finish this section by proving that
holonomic modules behaves nicely with respect to Verdier duality. For any "• ∈
�1(Coh(D-)), we define Ch("•) :=

⋃
8 Ch�

8("•).

Proposition 4.8.1. Let "• ∈ �1(Coh(D-)). We have Ch("•) = Ch(D"•).

Proof. By symmetry, we only need to show that Ch(D"•) ⊂ Ch("•). Let us first
consider the case when " ∈ Hol-. Given a good filtration � on ", there exists
a good filtration � on Ext8(",D-) such that gr� Ext8(",D-) is isomorphic to a
subquotient of Ext8(gr�",O)∗-), see [HTT, Lemma D.2.5]. As a consequence, we
have

Ch(D") =
⋃
8

Ch(Ext8(",D-)) =
⋃
8

Supp(gr� Ext8(",D-))

⊂
⋃
8

Supp(Ext8(gr�",O)∗-)) ⊂ Supp(gr�") = Ch(").

For the general case, we use induction on the cohomological length of "•. Suppose
"• ' �≥:"•. We have a distinguished triangle

� :("•)[−:] → "• → �≥:"•
+1−−→
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We have Ch("•) = Ch(�≥:"•) ∪ Ch(� :("•)). Applying D to the distinguished
triangle above, we have

Ch(D"•) ⊂ Ch(D �≥:"•) ∪ Ch(D� :("•))
⊂ Ch(�≥:"•) ∪ Ch(� :("•)) = Ch("•)

by the induction hypothesis. �

Corollary 4.8.2. Verdier duality D induces an autoequivalence of �1(Hol-).
One can ask if Verdier duality can be restricted to the abelian category Hol-, i.e.

if Verdier dual of a holonomic module is of cohomological length 1. The answer is
yes; in fact, the inverse statement also holds true.

Lemma 4.8.3. " is holonomic if and only if � 8(D") = 0 for 8 ≠ 0.

Proof. We use Lemma 4.5.5. Note that � 8(D") = Ext8+dim-(",D-). By (1), we have
codimCh(� 8(D")) > dim- for 8 > 0, and so � 8(D") = 0 by Bernstein inequality.
By (2), we have � 8(D") = 0 for 8 < 0. This proves the “only if” part.

For the “if” part, assume that D" ' �0(D") =: "′. We have D"′ ' ", and
�0(D"′) ' ". On the other hand, (1) tells us that codimCh(�0(D"′)) ≥ dim-,
so that " is holonomic. �

5. D-modules over general smooth varieties

Let us generalize our theory of D-modules to arbitrary smooth varieties.

5.1. Definitions. Let - be a smooth variety over C, O- is the sheaf of functions on
-, Θ- the tangent sheaf, Ω1

-
= Θ∨

-
the sheaf of 1-forms, and $- =

∧top
Ω1
-
the

dualizing sheaf.

Definition 5.1.1. The sheaf of differential operators D- is defined as the union⋃
D≤=
-
⊂ HomC(O- ,O-), where D≤0

-
= O- , and

D≤=
-
=

{
� | [�, 5 ] ∈ D≤=−1

-
for all 5 ∈ O-

}
.

On an open affine* ⊂ -, this definition recovers Definition 3.1.9. Let us underline
thatHomC(O- ,O-) is a quasi-coherent sheaf ofO- -modules and a sheaf ofC-algebras,
but not a sheaf of O--algebras.

Definition 5.1.2. A D-module on - is a quasi-coherent sheaf on - together with a
structure of a module over the sheaf of algebras D- . A D-module is coherent if it is
locally finitely generated over D- .

As before, we have grD- =
⊕

: Sym
:
O-
(Θ-), so that

Spec-(grD-) = )∗-.
The whole theory of characteristic varieties trivially generalizes to the non-affine
situation, since all the constructions and dimension estimates are local. In particular,
for any " ∈ Coh(D-)we can define Ch(") ⊂ )∗-, and the notion of holonomicity
makes sense.
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5.2. Pullbacks, pushforwards and duality. Recall that in the affine case, we defined
pullback and pushforward as tensor product by a certain bimodule D-→. . Back
then, we worked within the category of C-vector spaces. Now that -, . are not
necessarily affine, we need to keep track of the space over which we consider sheaves.
A careful consideration leads to the following definition.

Definition 5.2.1. Let 5 : - → . be a morphism of smooth varieties. We define
D-→. to be the following sheaf on -:

D-→. := O- ⊗ 5 −1O. 5
−1D. .

This sheaf is naturally equipped with a (D- , 5
−1D.)-bimodule structure as in

Definition 3.2.7.

The pullback is defined almost verbatim as in the affine case.

Definition 5.2.2. The D-module pullback 5 ! is defined by

5 ! : �1(D.-mod) → �1(D- -mod),

" ↦→
(
D-→. ⊗L5 −1D.

5 −1(")
)
[dim- − dim.],

where 5 −1(") is the sheaf-theoretic pullback of ".

Note that we have implicitly used the fact that 5 −1 is an exact functor.
In order to define pushforward, we need to be a little bit more careful. First of

all, let’s talk about right D-modules in order to not deal with additional canonical
sheaves. The formula that we had in the affine case is 5∗(") = " ⊗D-

D-→. .
In the current setting, this would be a sheaf over -, so we need to push it to .
sheaf-theoretically. However, contrary to pullback the sheaf-theoretic pushforward
5 O∗ is only left exact. Since tensor product above is right exact, this means that the
composition cannot be written as a derived functor of a functor between abelian
categories. Still, we have the following definition.

Definition 5.2.3. The D-module pushforward 5∗ is defined by

5∗ : �1(mod-D-) → �1(mod-D.),

" ↦→ ' 5 O∗

(
" ⊗L

D-
D-→.

)
,

where 5 O∗ is the sheaf-theoretic pushforward.

Remark 5.2.4. If 5 : - ↩→ . is a closed embedding, then 5 O∗ is exact, as well as
− ⊗D-

D-→. , so 5∗ is an exact functor, and the derived decorations above can be
omitted.

Finally, the Verdier duality D is defined in the same way as before, see Defini-
tion 4.5.1.

It is clear that D preserves holonomic modules, since this is a statement of local
nature. Furthermore, the proof of Theorem 4.7.3 works for non-affine varieties
without any changes, so that pullbacks preserve holonomic modules. Let us check
that the same hold for pushforwards. First of all, using factorization through graph
of 5 and Lemma 4.7.4 it suffices to consider the case when 5 : - × . → . is a
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projection. Without loss of generality, we may assume that. is affine, and" ∈ Hol-
is a holonomic module (and not complex). Cover - =

⋃A
8=0 -8 by affine open

charts, assuming that and let 98 : -8 × . ↩→ - × . be the inclusions. Then " is
quasi-isomorphic to the Čech complex

" '
(
0→

⊕
8

98∗" |-8×. →
⊕
80<81

(980 81)∗" |(-80∩-81 )×. → · · ·
)
.

Now 5∗(") can be computed via a spectral sequence associated to this complex.
However, we know that 5 ◦ 98 , 5 ◦ 980 81 (and so on) are maps between affine varieties,
so that Theorem 4.7.7 is applicable. Thus all terms in the spectral sequence are
holonomic, so 5∗(")must be holonomic as well.

Remark 5.2.5. In the next subsection, we will see another proof that pushforward
preserves holonomicity, which will use Theorem 4.7.5.

5.3. D-affine varieties.

Definition 5.3.1. A smooth variety - is called D-affine if the following conditions
are satisfied:

(1) the global section functor Γ(-,−) : D- -mod→ Γ(-,D-)-mod is exact,
(2) if Γ(-, ") = 0, then " = 0.

Proposition 5.3.2. Let - be a D-affine variety. Then
(1) any " ∈ D- -mod is generated by its global sections,
(2) the functor Γ(-,−) gives an equivalence of categories.

Proof. Let" ∈ D- -mod, and let"0 be the image of the naturalmapD-⊗CΓ(-, ") →
". By the first condition, we get an exact sequence

0→ Γ(-, "0) → Γ(-, ") → Γ(-, "/"0) → 0.
The first map is an isomorphism by definition of "0, therefore Γ(-, "/"0) = 0. By
the second condition, we have "/"0 = 0. Thus " = "0, which proves (1).

For (2), let us write D(-) = Γ(-,D-), and consider the left adjoint D- ⊗D(-) − to
Γ(-,−). It is sufficient to show that the unit and counit maps


" : D- ⊗D(-) Γ(-, ") → ", �+ : + → Γ(-,D- ⊗D(-) +)
are isomorphisms.

Pick a partial free resolution of +

D(-)⊕� → D(-)⊕� → + → 0.
By the first condition, the functor Γ(-,D- ⊗D(-) −) is right exact. Hence we obtain a
commutative diagram

D(-)⊕� D(-)⊕� + 0

D(-)⊕� D(-)⊕� Γ(-,D- ⊗D(-) +) 0

�+

and so �+ is an isomorphism.
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The map 
" is surjective by (1). Hence we have an exact sequence

0→  → D- ⊗D(-) Γ(-, ") → " → 0.

Applying Γ(-,−) and using that � is an isomorphism, we obtain Γ(-,  ) = 0. This
implies that  = 0 by the second condition. Thus 
" is an isomorphism, which
concludes the proof. �

It is obvious that any affine variety isD-affine. However, the latter class of varieties
is richer, as the following theorem shows.

Theorem 5.3.3. The projective space P= is D-affine for any = > 0.

Proof. Let us write + = C=+1, +◦ = + \ {0}, and P = +◦/G< = P= . We have the
following maps:

0 + +◦

P

8 9

�

Note that 9∗ coincides with the sheaf-theoretic pushforward, and �! with sheaf-
theoretic pullback �∗ (up to a shift).

Let " ∈ DP-mod. Recall that �∗" = O+◦ ⊗�−1OP
�−1". In particular, the space of

global sections Γ(+◦ ,�∗") acquires a G<-action. Note that

Γ(+◦ ,�∗") = Hom(9∗O,�∗") = Hom(O, 9∗�∗") = 9∗�
∗".

We can write down the weight space decomposition

Γ(+◦ ,�∗") = 9∗�
∗" =

⊕
8

(9∗�∗")8 .

It is easy to check that (9∗�∗")8 = Γ(P, "(=)); in particular, (9∗�∗")0 = Γ(P, ").
Thus, we need to prove that the functor " ↦→ (9∗�∗")0 is exact, and sends non-zero
objects to non-zero objects.

Let us express the weight decomposition above in a different way. Namely, akin
to the proof of Kashiwara’s theorem consider the Euler operator

� =
=∑
8=0

G8%8 ∈ D+ .

Its :-th eigenspace on 9∗�∗" coincides with the weight space (9∗�∗"): . Using this
definition, it’s easy to check that

(5.3.1) G8(9∗�∗"): ⊂ (9∗�∗"):+1 , %8(9∗�∗"): ⊂ (9∗�∗"):−1.

Let us beginwith exactness of 9∗�∗(−)0. Consider an exact sequence ofDP-modules

0→ "1 → "2 → "3 → 0.

Since � is faithfully flat, the map �∗ is exact. Applying 9∗, we obtain a long exact
sequence

0→ 9∗�
∗"1 → 9∗�

∗"2 → 9∗�
∗"3 → '1 9∗�

∗"1 → · · ·
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Since 9 is an open embedding, the sheaf '1 9∗�∗"1 is supported at 0. Applying
Kashiwara’s theorem, we have

'1 9∗�
∗"1 ' 8∗# = #[%0 , . . . , %=],

where # is a vector space. As we have seen before, G8(%:9 ⊗ D) = −:�8 9(%:−1
9
⊗ D) for

D ∈ # . Let %
 = %
0
0 . . . %
== . Then

�(%
 ⊗ D) = −
∑
8

(
8 + 1)%
 ⊗ D = − (|
 | + = + 1) %
 ⊗ D,

so that � acts on '1 9∗�∗"1 with negative eigenvalues. Taking 0-th eigenspaces in
the long exact sequence above, we therefore obtain

0→ (9∗�∗"1)0 → (9∗�∗"2)0 → (9∗�∗"3)0 → 0,
which proves exactness of 9∗�∗(−)0.

Next, assume that " ≠ 0 and (9∗�∗")0 = 0. Note that 9∗�∗" ≠ 0; in particular,
there exists ; ∈ Z such that (9∗�∗"); ≠ 0.

Suppose ; > 0, and D ∈ (9∗�∗"); . If %8D = 0 for all 8, then �D = 0 and thus ; = 0.
Pick 8 such that %8D ≠ 0. Then the formulas (5.3.1) imply that %8D ∈ (9∗�∗");−1.
Repeating this procedure, we obtain a non-zero element of (9∗�∗")0, and thus arrive
at a contradiction.

Suppose ; < 0, and D ∈ (9∗�∗"); . If G8D = 0 for all 8, then D is supported at 0, which
cannot happen by definition. Pick 8 such that %8D ≠ 0. Then the formulas (5.3.1)
imply that G8D ∈ (9∗�∗");+1. Repeating this procedure, we obtain a non-zero element
of (9∗�∗")0, and thus arrive at a contradiction. This concludes the proof. �

Remark 5.3.4. The same proof shows that for any = > 0, - affine variety the product
P= × - is D-affine.

Remark 5.3.5. Note that D-affineness is not equivalent to Dop-affineness. In effect, P1

is D-affine, while Γ(P1 , $P1) = 0.

Corollary 5.3.6. Let 5 : - → . be a morphism between smooth quasi-projective varieties.
Then 5∗ preserves holonomicity.

Proof. We already know the claim for open and closed embeddings, see Lemmas 4.7.1
and 4.7.4. Thus it remains to prove it for projections � : . = P= × - → -.

Let" be a coherentD.-module. Let us prove that �∗" is a coherentD- -module.
In view of Theorem 5.3.3, it is enough to assume that " = DP=×- . We have

�∗(D.) = '�O
∗ (D-←.) = '�O

∗ (�∗D- ⊗ $P= ) = D- ⊗ '�O
∗ ($P= )

= D-[−=],
and the latter D-module is clearly coherent.

Let " be a holonomic DP=×--module. For any G ∈ -, we have the following
pull-back square

P= P= × -

{G} -

�G

:G

�

8G
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By base change, 8!G�∗" ' �G∗:!
G". Since :G is a closed embedding, :!

G preserves
holonomicity by Corollary 4.7.2. But then, what we said above implies that (?G)∗:!

G"

is finite-dimensional. Thus, we conclude by invoking the criterion for holonomicity
(Theorem 4.7.5). �

From now on, we will keep the assumptions of Corollary 5.3.6 and only consider
quasi-projective varieties.5

Let us describe what the algebra Γ(D-) looks like for - = P1.

Question 5.3.7. Let C be a local coordinate on P1 around 0, and % the corresponding
derivation. Recall that vector fields on P1, that is global sections of ΘP1 = OP1(2), are
spanned by

(5.3.2) %, C%, C2%.

(i) Show that, up to rescaling, vector fields (5.3.2) satisfy the sl2-relations
[ℎ, 4] = 24 , [ℎ, 5 ] = −2 5 , [4 , 5 ] = ℎ.

(ii) Show that D(P1) is generated by the vector fields (5.3.2). Thus, we obtain a
surjective homomorphism of algebras 
 : *(sl2) → D(P1).

(iii) Show that the Casimir element 2 := 4 5 + 5 4 + ℎ2/2 is mapped to 0 by 
.

One can prove that the map *(sl2)/(2 = 0) → D(P1) obtained above is an
isomorphism. This example is the simplest manifestation of Beilinson-Bernstein
localization theorem.

5We have already implicitly done this, by assuming that there exist enough projective objects to
construct derived functors.
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Part 2. Representation theory of semi-simple Lie algebras

As hinted at the end of the first part, the main goal of the course is to establish
a result which relates representation theory of *(g) with D-modules on the flag
variety �/�, where g = Lie(�) and � is a semi-simple group. In this part, we will
study representation theory of semi-simple Lie algebras. We will mostly follow [G1].

6. Basics of the category O

6.1. Preliminaries on semi-simple Lie algebras. Fix g a semi-simple Lie algebra.
We fix a Borel subalgebra b ⊂ g and a Cartan subalgebra h ⊂ b. Sometimes, we will
use b+ to denote b.

Let n+ = n = [b, b] be the nilpotent radical of b and similarly for n−. We have
h ' b/n.

We have the following decompositions

g = h ⊕
⊕

∈Δ

g
 , n =

⊕

∈Δ+

g
 =

⊕

∈Δ+

n
 ,

where Δ ⊂ h∗ is the set of roots, and Δ+ ⊂ Δ is the set of positive roots. All vector
spaces g
 are one-dimensional. The complement Δ− = Δ \ Δ+ is the set of negative
roots. We write

n− =
⊕

∈Δ−

g
 =

⊕

∈Δ−

n−
 .

Then b− = n− ⊕ h is a Borel subalgebra of g which is opposite to b+, that is it satisfies
b+ ∩ b− = h. By abuse of notation, for 
 ∈ Δ+ we write n−
 = n−−
.

Let &+ be the sub-semigroup of h∗ given by the non-negative span of Δ+. For
�, � ∈ h∗, we say that � ≥ � if � − � ∈ &+. Each root 
 ∈ Δ admits a dual coroot

̌ ∈ h, and these coroots form a dual root system Δ̌. We denote by %+ ⊂ h∗ the
sub-semigroup of dominant integral weights, i.e. those � such that 〈�, 
̌〉 ∈ Z+

for all 
 ∈ Δ+. We also denote by %, & the sublattices of h∗, generated by %+, &+
respectively.

Example 6.1.1. Let g = sl2 = Cℎ ⊕ C4 ⊕ C 5 with the usual relations. Then, Δ =

{2ℎ∗ ,−2ℎ∗}, Δ̌ = {ℎ,−ℎ}, &+ = 2Z+ℎ∗ and %+ = Z+ℎ∗. We will use 
 = 2ℎ∗ and

̌ = ℎ to denote the unique positive root/coroot of sl2.

In a certain sense, all semi-simple Lie algebras are built from the example above.
Namely, for each 
 ∈ Δ+, let 4
 ∈ n
 and 5
 ∈ n−
 be non-zero vectors. Then6

[4
 , 5
] = :ℎ
̌ , : ∈ C×.
In particular, the span of 4
 , 5
 , ℎ
 inside g is isomorphic to sl2.

We write
� =

1
2

∑

∈Δ+


 ∈ h∗ and �̌ =
1
2

∑

∈Δ̌+


̌ ∈ h.

Let*(g) be the universal enveloping algebra of g. Then, in general (i.e. no extra
assumption on g needed)

g-mod ' *(g)-mod .

6ℎ
 is just 
̌.
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When g is semi-simple, we have an isomorphism

(6.1.1) *(g) ' *(n−) ⊗*(h) ⊗*(n)

as (*(n−), *(n))-bimodules given by left and right multiplications respectively.

6.2. Borel–Weil theorem. Let � be a semi-simple simply connected algebraic group
and g = Lie(�). Let Rep(�) denote the category of representations of �. Taking
differentials at the identity, we obtain a functor

Rep(�) → g-mod .

Unlike in the case of Lie algebras, all representations of � are unions of finite
dimensional representations. Thus it suffices to consider only finite dimensional
representations. Moreover, it can be shown that the category of �-representations is
semi-simple with irreducible representations given by integral dominant weights.
These coincide precisely with finite dimensional irreducible representations of g. In
particular, the essential image of the functor above is precisely the full subcategory
spanned by locally finite g-modules.

The theorem of Borel–Weil gives a way to realize these irreducible representations
geometrically. Consider the quotient map �→ �/�, which is naturally a �-principal
bundle. Let � be a character of ), i.e. a group homomorphism ) → Gm. Then in
particular, we get group homomorphism � � ) → Gm. The �-principal bundle
� → �/� is compatible with �-action on the left. Thus, it can can be induced to
obtain a principal Gm-bundle, and hence a line bundle, to be denoted by L�, which
is �-equivariant. The cohomology group H0(�/�,L�) thus has an action of �.

Remark 6.2.1. The discussion above could be made cleaner using the language of
stacks. Indeed, consider the following correspondence

�� �)

��

For any algebraic group �, QCoh(��) ' Rep(�). In particular, a character � of )
induces a line bundle L� on �). Pulling and pushing along this correspondence
gives an element in QCoh(��) = Rep�. The relation to the discussion above is
realized via the following pullback diagram

�/� ��

∗ ��

In this subsection, we will always assume that � is integral.

Theorem 6.2.2 (Borel–Weil). If −� is not a dominant weight, then H0(�/�,L�) ' 0. If
−� is dominant, then H0(�/�,L�) is an irreducible representation with lowest weight �
(and hence, is the dual of the irreducible representation of highest weight −�).
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Proof. Since �/� is proper, + = H0(�/�,L�) is finite dimensional. Thus, we obtain
a finite dimensional representation of �. Let *− denote the negative unipotent
subgroup of � and +0 ⊆ + denote the subspace of lowest weight vectors, i.e.
+0 = +

*− .
The space of global sections H0(�/�,L�) could be identified with the space of

functions E on � such that E(G1) = �(1)E(G) for each 1 ∈ �. The action of � on+ can
be realized explicitly as (6E)(G) = E(G6). The space +0 thus consists of those E such
that E(DG) = E(G) for all D ∈ *−. In particular, E(D1) = �(1)E(1) for all D ∈ *− , 1 ∈ �.
In other words, over*−�, E is completely determined by the value E(1). Since*−�
is dense in � we see +0 has dimension at most 1. If it’s non-zero, it’s generated by E
with E(1) = 1. Let C ∈ ), we have

(CE)(1) = E(C) = �(C)E(1),

so that CE = �(C)E and hence, + is an irreducible representation of lowest weight �.
But this is not possible unless −� is dominant.

It remains to show that +0 is non-trivial if −� is dominant. Exercise, at least for
SL2. �

6.3. Verma modules. The map of Lie algebras b → g induces a map of algebras
*(b) → *(g) from which we obtain a pair of adjoint functors

*(g) ⊗*(b) − ' Indg
b

: g-mod� b-mod : resg
b

For any � ∈ h, let C� denote the corresponding h-module. By abuse of notation,
we will also use C� to denote the b-module given by b→ h. We let

"� = Indg
b
C
� = *(g) ⊗*(b) C�.

By adjunction, for any # ∈ g-mod,

Homg("� , #) ' Homb(C� , #).

By construction, "� is generated over*(g) by a vector E�.

Lemma 6.3.1. We have an equivalence of *(n−)-modules "� = *(n−) ⊗ C�. In other
words, "� is freely generated over*(n−) by E�.

Proof. Indeed,

"� = *(g) ⊗*(b) C� ' *(n−) ⊗*(b) ⊗*(b) C� ' *(n−) ⊗ C
�.

�

Proposition 6.3.2. The action of h on "� is locally finite and semi-simple. The weights
(i.e. eigen-values of h) on "� are of the form

� −
∑

∈Δ+

=

, =
 ∈ Z+.

Proof. We have
"� =

⋃
:≥0

*(n−):E�.
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Each element in*(n−): is given by u8 5
8 for 5
8 ∈ n−
8 . Thus, for each ℎ ∈ h, we have

ℎ(
∏
8

5
8 )E� =
∑
9

5
1 · · · 5
 9−1[ℎ, 5
 9 ] 5
 9+1 · · · 5
=E� +
∏
8

5
8 ℎE�

= (� −
∑
8


8)
∏
8

5
8E�.

This shows that *(n−):E� is h-stable. Moreover, since it’s finite dimensional, the
action of h on "� is locally finite. The computation above also show that the action
is semi-simple with the correct weights. �

Corollary 6.3.3. The multiplicities of weights of h on "� are finite.

Proof. Let � < � be a weight of "�. Write

� − � =
∑

∈Δ−

=

, =
 ∈ Z+.

From the computation in the Proposition above, we see that each choice of =
’s
contributes one to the multiplicity. However,

〈�̌,� − �〉 =
∑

∈Δ−
〈�̌, 
〉 ≥

∑

∈Δ−

=
 ,

since 〈�̌, 
〉 ≥ 1. Thus, the =
’s are bounded and hence, there are only finitely many
possibilities. �

For each � ∈ &+, we will refer to the integer 〈�̌, �〉 as its length.

6.4. The case of sl2. Let us now consider Verma modules for sl2. For each each
number � is uniquely determined by a complex number ; = 〈
̌,�〉, where 
̌ is the
unique positive coroot of sl2. The weights of h on "� are of the form � − =
, i.e.
; − 2=. For ;′ = ; − 2=, we will use E;′ to denote 5 =E; . Moreover, we will write ";

instead of "�.

Proposition 6.4.1. The sl2-module "; is irreducible unless ; ∈ Z+. In the latter case, we
have a short exact sequence

0→ "−;−2 → "; → +; → 0

where +; is the irreducible finite dimensional sl2-module of highest weight ;.

Proof. Suppose"; contains a proper sub-module # . Then in particular, # is h-stable
and hence, h-diagonalizable (this can be seen by, for example, using invertibility
of Vandermonde matrix). Let ;′ = ; − 2= be the maximal weight of # . Clearly,
;′ ≠ ; since since otherwise, E; ∈ # and hence, "; = # , since "; is generated by E; .
Equivalently, we have = > 0.

Since 4E;′ can either have weight ;′ + 2 or 0, maximality of ;′ implies that 4E;′ = 0.
Thus,

4 5 =E; =
∑

1≤8≤=
5 =−8[4 , 5 ] 5 8−1E;+ 5 =4E; =

∑
1≤8≤=
(;−2(8−1)) 5 =−1E; = =(;−(=−1)) 5 =−1E; .
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This can only be 0 if ; = = − 1, which implies, in particular, that ; ≥ 0, since = > 0. In
this case, ;′ = ; − 2= = ; − 2(; + 1) = −; − 2, and it’s easy to see that the vector E−;−2
generates a module isomorphic to "−;−2. �

6.5. Irreducible quotients of Verma modules.

Proposition 6.5.1. "� admits a unique irreducible quotient.

Proof. Let # ⊂ "� be a proper sub-module. Then,

# '
⊕
�<�

#(�),

where #(�) is the weight space associated to weight �; in particular, #(�) ⊂ "�(�).
Let "0

� be the union of all of those # above, then we still have "0
�(�) = 0. Hence,

"0
� is a proper sub-module of "�.
Take !� = "�/"0

�. It is clear from the construction that this is the unique
irreducible quotient. �

Corollary 6.5.2. If !� ' !�′, then � = �′.

Proof. Clear. �

6.6. Category O. Proposition 6.5.1 shows that it is beneficial to study infinite-
dimensional representations of g. On the other hand, we would want some finiteness
conditions to be able to deduce reasonable structural results. The following definition
is due to Bernstein-Gelfand-Gelfand.

Definition 6.6.1. The category O of a Lie algebra g to be the full subcategory of g-mod
consisting of representations ", which satisfy the following properties

(i) The action of n on " is locally finite, i.e. for any E ∈ ", *(n)E is finite
dimensional.

(ii) The action of h on " is locally finite and semi-simple.
(iii) " is finitely generated as a*(g)-module.

Lemma 6.6.2. Verma modules belong to the category O.

Proof. The only thing that needs to be proved is local-finiteness of the n-action. For
any � ∈ h∗, we have

"� =

⋃
:

*(g):E�

where *(g): is the :-th step in the PBW filtration. It suffices to show that *(g): is
stable under n. For any G ∈ *(g): and D ∈ n, we have

DGE� = [D, G]E� + GDE� = [D, G]E�.
But it is clear that [D, G] ∈ *(g): , and hence, we are done. �

Remark 6.6.3. In a precise sense, O is generated by Verma modules, see Proposi-
tion 6.6.10.

Lemma 6.6.4. O is stable under taking submodules and quotient modules. Moreover O is
Noetherian.
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Proof. This follows from the fact that*(g) is Noetherian. �

We will shortly prove that O is Artinian, i.e. every object has finite length; see
Theorem 8.1.4. Note that we have already encountered a category of geometric
origin with this property: the category of holonomic D-modules.

Let us recall Lie’s and Engel’s theorems.
Theorem 6.6.5 (Lie’s theorem). Let g be a solvable Lie algebra and + ∈ g-mod that is
finite dimensional. We have the following equivalent statements:

(i) + has a non-zero invariant g-vector.
(ii) There exists a basis of + such that all elements of g get sent to an upper-triangular

matrix.
(iii) There a filtration of + such that successive quotient are one-dimensional.

Theorem 6.6.6 (Engel’s theorem). A Lie algebra g is nilpotent if and only if for every
G ∈ g, ad G ∈ End(g) is nilpotent.
Remark 6.6.7. It is natural to ask if there’s an analog of Lie’s theorem for nilpotent
Lie algebras with upper-triangular replaced by strictly upper-triangular. The answer
is no. For example, one can take a commutative Lie algebra acting diagonally on a
vector space.

Note that this is very different from the case of groups. Gm and Ga have very
different representation categories. However, Lie(Gm) ' Lie(Ga).

Back to the study of category O.
Lemma 6.6.8. The action of n on any object of O is locally nilpotent.

Proof. Let " be an object in the category O and E ∈ ". It suffices to show that there
exists a finite dimensional n-stable subspace, containing E admitting an n-stable
filtration whose successive quotients are trivial n-modules.

Indeed, consider , = *(b)E. Then, we know that , is a finite dimensional
n-stable subspace of ". By Lie’s theorem, as a*(b)-module,, admits a filtration
whose associated graded are one-dimensional. The action of n = [b, b] on these
subquotients are necessarily trivial. And hence, we are done. �

Remark 6.6.9. In the last step of the proof above, we show that the actions of b on all
the successive quotients factors through b� h = b/n = b/[b, b].

We are now ready to show that the category O is generated by Verma modules.
Proposition 6.6.10. Every object in the category O is a quotient of a finite successive
extension of Verma modules.

Proof. Let" be anobject ofO and, afinite dimensional subspace of" that generates
". Consider, ′ = *(b), , then by assumption,, ′ is also finite dimensional.

Consider the g-module
"′ = *(g) ⊗*(b), ′,

then we have a surjection of g-module "′� ". It suffices to show that "′ is finite
successive extension of Verma modules. By Remark 6.6.9, we see that as a b-module,
, ′ admits a finite filtration whose associated are of the form C�. Thus, "′ also
admits a filtration whose associated graded are Verma modules. �
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Corollary 6.6.11. For " ∈ O, and " = ⊕�"(�) be the decomposition of " into weight
spaces. Then, " is finite dimensional.

Proof. This follows directly from Proposition 6.6.10 and Corollary 6.3.3. �

Corollary 6.6.12. Any object of O admits a non-zero map from some "�.

Corollary 6.6.13. All irreducible objects of O are of the form !� for some � ∈ h∗.

Proof. Let ! be an irreducible object of O. Then by the corollary above ! admits a
non-zero map from a Verma module "� � !. This map is necessarily surjective
since ! is irreducible. Thus, ! ' !� by Proposition 6.5.1. �

7. Center of*(g) and blocks in O

Let � be an algebra, and G ∈ /(�) a central element. For an �-module", assume
that G is semi-simple on " and has finite-dimensional eigenspaces "�, � ∈ Λ. Then
" =

⊕
�"� as an �-module, and Hom("� , "�′) = 0 for � ≠ �′. We see that the

category �-mod′ (of �-modules such that the action of G is semi-simple) is thus
broken up into “blocks” �/〈G −�〉-mod, which do not interact with each other. Thus,
in order to understand the structure of category O, we first need to compute the
center /(g) of the universal enveloping algebra*(g).

7.1. The Chevalley isomorphism. We begin with the commutative version of this
question to warm up. Namely, consider the space Fun(g) = Sym(g∗) of polynomial
functions on g. The Lie group � acts on Fun(g) by conjugation, and g acts on it by
the dual of Lie bracket. Since we assume � to be connected, the space of invariants
Fun(g)� is the same as the space of g-invariants Fun(g)g.

We identify g with g∗ via the Killing form. Under this identification, we have
b∗ ' g/n ' b−, and the projection b� h corresponds to the embedding of algebras
Sym(h) ↩→ Sym(b−).

Let 0 ∈ Fun(g)�, and consider its restriction to b. Since Sym(b−) ' Sym(h) ⊗
Sym(n−) and 0 is �-invariant, we see that 0 |b belongs to Sym(h). We thus obtain a
homomorphism Fun(g)� → Fun(h), which sends 0 to its restriction to h.

Recall that the Weyl group of � is defined as, = #�(�)/�. The action of #�(�)
on Fun(g) restricts to Fun(h). Moreover, since � is commutative the action of � on
Fun(h) by conjugation is trivial, so that the action of #�(�) factors through, . In
particular, the restriction Fun(g)� → Fun(h) factors as follows:

Fun(g)� Fun(h)

Fun(g)#�(�) Fun(h),

We have therefore obtained a map )2; : Fun(g)� → Fun(h), .

Theorem 7.1.1 (Chevalley isomorphism). The map )2; is an isomorphism.

Proof. Suppose 0 ∈ Fun(g)� vanishes on h. Then 0 also vanishes on �.h, which is
Zariski dense in g. Thus 0 = 0, which proves that )2; is injective.
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For surjectivity, let us consider two families of functions. First, for any � ∈ %+
consider the corresponding finite dimensional representation !� with highest weight
�, and let

0�,= ∈ Fun(g)� , 0�,=(G) = Tr(G= , !�).
Second, let

1�,= ∈ Fun(h), , 1�,=(G) =
∑
F∈,

F.�(G)= .

It is clear that the functions 1�,= span Sym=(h∗), . In effect, since , is finite, it
suffices to prove that the elements �(−)= span Sym=(h∗). This in turn follows from
the following easy fact:

Question 7.1.2. Any homogeneous polynomial ?(G) ∈ C[G1 , . . . G<] of degree = can be
expressed as a linear combination of functions (∑ 28G8)= , where 28 ’s are non-negative
integers.

The surjectivity of )2; then follows from the following lemma:

Lemma 7.1.3. For some scalars 2′, we have

)2;(0�,=) =
1

| Stab, (�)|
1�,= +

∑
�′<�

2′1�′,= .

Proof. For G ∈ h, we have 0�,=(G) =
∑

� �
=(G), where the sum is taken over the set

of weights of !�, taking into account multiplicities. Since !� can be integrated to a
representation of �, this set is,-invariant. Furthermore, all weights �′ of !� satisfy
�′ ≤ �, with � appearing with multiplicity 1. The claim follows. �

�

The map )2; can be interpreted as a map of varieties g→ h/, , where we write
h/, := Spec(Fun(h), ).

Example 7.1.4. Let g = sl= . In this case Fun(h), is freely generated by =−1 elementary
symmetric functions

08 : G ↦→ Tr(G 8), 2 ≤ 8 ≤ =.
The map sl= → SpecC[02 , . . . , 0=] assigns to a matrix G its characteristic polynomial.

In general, Fun(h), is a polynomial algebra on dim h generators.

7.2. The Harish-Chandra homomorphism. Let us return to the study of /(g). It is
easy to see that

/(g) = {D ∈ *(g) | [G, D] = 0,∀G ∈ g} = *(g)g.
The PBW filtration on g produces the following short exact sequences of finite-
dimensional g-modules:

0→ *(g)8−1 → *(g)8 → Sym8(g) → 0.

Let /(g)8 = /(g) ∩*(g)8 . Since the category Rep(�) is semi-simple, the short exact
sequence above gives rise to isomorphisms /(g)8//(g)8−1 ' Sym8(g)g. In particular,
we have an isomorphism of algebras gr/(g) ' Sym(g)g.
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Thanks to the triangular decomposition (6.1.1), we have a map

*(g)� *(g)/(n−*(g) +*(g)n) = *(h).
Let us denote its restriction /(g) → *(h) to the center of*(g) by ).

Proposition 7.2.1. The map ) is a homomorphism of algebras.

Proof. Let ℎ+=−G+ H=+, ℎ′+=′−G′+ H′=′+ be two elements in /(g), where ℎ, ℎ′ ∈ *(h),
=− , =′− ∈ n−, =+ , =′+ ∈ n+, and G, H, G′, H ∈ *(g). We have the following chain of
equalities in*(g)/(n−*(g) +*(g)n):
(ℎ + =−G + H=+)(ℎ′ + =′−G′ + H′=′+) = (ℎ + =−G + H=+)(ℎ′ + =′−G′)

= (ℎ + =−G + H=+)ℎ′ = ℎℎ′ + H=+ℎ′ = ℎℎ′ + Hℎ̃′=+ = ℎℎ′,

where ℎ̃′ ∈ *(h). This proves our claim. �

Lemma 7.2.2. For any 0 ∈ /(g), � ∈ %+, we have 0.E = )(0)(�)E for any E ∈ "�.

Proof. Consider the composition /(g) = *(g)g ↩→ *(g) � *(g)/*(g)n. Since
[0, h] = 0, the image of 0 lies in*(h) = *(b)/*(b)n ⊂ *(g)/*(g)n.

Let E� ∈ "� be the highest weight vector. By definition of Verma modules, the
map

*(g) → "� , G → GE�

factors through *(g)/*(g)n. In particular, 0E� = )(0)E� = )(0)(�)E�. Since "� is
generated by E� as a *(g)-module and 0 is central, we conclude that 0 acts by the
scalar )(0)(�) on the whole "�. �

7.3. The dot action of Weyl group. By Chevalley isomorphism, we know that
im)2; = Sym(h), . However, observe that while )2; preserves the natural gradings,
/(g) is not a graded algebra, so that im) is not necessarily a graded submodule of
*(h).

Example 7.3.1. Let g = sl2, and � = 4 5 + 5 4 + ℎ2/2 ∈ /(sl2). Then )(�) = )(2 5 4 +
ℎ + ℎ2/2) = ℎ + ℎ2/2 is not a homogeneous element.

Thus we see that im) ≠ *(h), . In a sense this is not surprising, because there
exist many ,-actions on *(h), which recover the usual one after passing to the
associated graded. Let us consider one in particular.

Definition 7.3.2. The dot action of, on*(h) is given by

F · G = F(G) + 〈�, F(G) − G〉, G ∈ *(h).

Note that the dot action is not additive.

Remark 7.3.3. The dot action is intertwined with the usual action by means of the
automorphism of algebras

*(h) → *(h), ℎ ↦→ ℎ − 〈�, ℎ〉, ℎ ∈ h.
Geometrically, the dot action on h∗ = Spec*(h) is given by

F · � = F(� + �) − �.
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Theorem 7.3.4 (Harish-Chandra isomorphism). The map ) defines an isomorphism

/(g) → Sym(h),,·.

Proof. Let us first show that ) lands in Sym(h),,·. Let 0 ∈ /(g). By Lemma 7.2.2, it
suffices to show that for any simple reflection B8 ∈, , the action of 0 on"� and"B8 ·�
is given by the same scalar. It is enough to prove this for a Zariski dense subset of
weights, which we take to be %+. Our assertion then follows from the lemma below.

Lemma 7.3.5. Let � ∈ %+, 
8 a simple root, and assume that 〈� + �, 
̌8〉 ∈ Z+. Then "�

contains "B8 ·� as a submodule.

Proof. Set = = 〈�+�, 
̌8〉, and note that B8 ·� = �−=
8 . The proof is a straightforward
generalization of the computation in Proposition 6.4.1.

Consider the vector 5 =
8
E� ∈ "�. It is non-zero and has weight � − =
8 . It remains

to check that n( 5 =
8
E�) = 0. Since n is generated as a Lie algebra by simple coroots, it

is enough to show that 4 9 5 =8 E� = 0. For 8 ≠ 9 we have [4 9 , 58] = 0, so this is obvious.
For 8 = 9, we conclude by the same computation as in Proposition 6.4.1.7 �

From Definition 7.3.2, it is easy to see that the dotted action of , on *(h) is
compatible with the PBW filtration, and hence, it induces an action on the associated
graded. It is easy to see that this induced action is the usual action of, on Sym h.
In fact, the image of the map

) : /(g) → *(h),,·

under the functor of taking associated graded is simply

)2; : Sym(g)g → Sym(h), ,
which is an isomorphism. Since taking associated-graded is conservative, this
implies that ) itself is also an isomorphism and the proof concludes. �

8. Further properties of O

8.1. Decomposition of the category O. With a description of /(g) in place, we can
now break the category O into smaller pieces.

Lemma 8.1.1. Let " ∈ O. The action of /(g) on " factors through a finite-dimensional
quotient.

Proof. Thanks to Proposition 6.6.10, it suffices to assume that " = "� is a Verma
module for some � ∈ h∗. But in this case, the action of /(g) factors through �:

/(g) ' Sym(h),,· ↩→ Sym(h) �−→ C.

�

Corollary 8.1.2. Every object " ∈ O splits into a direct sum

" '
⊕

"∈Spec/(g)
"" ,

7one can say that we apply the proof of Proposition 6.4.1 to the sl2-triple 48 , 58 , ℎ8
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where for each " the action of /(g) on "" factors through /(g)/"= for some =. Moreover,
for any ", # ∈ O we have Hom(", #) =

⊕
" Hom("" , #").

Thus the category O splits into a direct sum of blocks O", parameterized by points
of Spec/(g). Here, O" ⊂ O is the full subcategory consisting of modules, on which
the center /(g) acts by the generalized character ".

Let us denote the algebraic variety Spec
(
Sym(h),,·) ' Spec/(g) by h//, , and let

+ : h→ h//, be the natural map. Recall that the C-points of h//, are in bĳection
with (,, ·)-orbits in h 8 , and the map + is finite. Note that for any � ∈ h we have
"� ∈ O+(�).

Lemma 8.1.3. If !� is isomorphic to a subquotient of "�, then � = F · � for some F ∈, .

Proof. !� is a subquotient of both "� and "�, and therefore lies in O+(�) ∩ O+(�).
This implies that +(�) = +(�). �

Now we are ready to prove that O is an Artinian category.

Theorem 8.1.4. Every object of O has finite length.

Proof. By Proposition 6.6.10, it suffices to prove the claim for Verma modules "�.
By Lemma 8.1.3, all irreducible subquotients of "� are of the form !F·� for F ∈, .
Hence, it is enough to show that for each � and each filtration " 8

� of "�, the
number of indices such that !� is a subquotient of " 8

�/"
8−1
� is bounded. In effect,

!�(�) ' C, so that the multiplicity above cannot exceed dim"�(�), which is finite
by Corollary 6.3.3. �

8.2. Dominant and anti-dominant weights.

Definition 8.2.1. A weight � ∈ h∗ is said to be dominant if F(�) − � ∉ &+ \ {0} for
any F ∈, . � is said to be anti-dominant if −� is dominant.

Theorem 8.2.2. A weight � is dominant if and only if for all 
 ∈ Δ+, we have 〈�, 
̌〉 ≠
−1,−2, . . . I.e. 〈�, 
̌〉 ∉ Z<0.

Note that there are certain (non-)integrality built into the definition.

Example 8.2.3. Consider the case of sl2. In this case, & = 2Z, &+ = 2Z+. The set of
dominant weights is thus

C \ {−1,−2, . . . } ⊂ C ' h∗.

We will only give some indication for why Theorem 8.2.2 is true.
First, let � be a dominant weight. We want to show that 〈�, 
̌〉 ∉ Z<0 for any


 ∈ Δ+. Indeed, suppose there exists 
 ∈ Δ+ such that 〈�, 
̌〉 = −= for some = ∈ Z>0.
Then

B
(�) = � + =

and hence

B
(�) − � = =
 ∈ &+ \ {0},
which contradicts the dominant condition. Thus, 〈�, 
̌〉 ∉ Z<0.

8if, were a reductive group of positive dimension, this set would parameterize closed orbits in h.
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The main point of Theorem 8.2.2 is thus that dominance can be checked by only
looking at reflections in, . Let us give some indication for why this is true.

Suppose that � is integral such that 〈�, 
̌〉 ∉ Z<0 ,∀
 ∈ Δ+. Then � belongs to the
dominant Weyl chamber, i.e. 〈�, 
̌〉 ≥ 0,∀
 ∈ Δ+. We will show that in this case
F(�) − � ∉ &+ \ {0}.

We will prove this by contradiction. Suppose otherwise that there exists F ∈,
such that F(�) = � + �with � ∈ &+. Let (−,−) denote an,-invariant inner product
on h. Then

(�,�) = (F(�), F(�)) = (� + �,� + �) = (�,�) + (�, �) + 2(�, �),
and hence

(�, �) + 2(�, �) = 0.
Since (�, �) > 0, we will derive a contradiction by showing that (�, �) ≥ 0. Since � is
a positive combination of positive roots, it suffices to show that (�, 
) ≥ 0,∀
 ∈ Δ+.
But

(Lemma 8.2.4) 〈�, 
̌〉 = 2 (�, 
)(
, 
) ,

Thus, (�, 
) ≥ 0 since 〈�, 
̌〉 ≥ 0 by assumption. We thus get the desired contradic-
tion.

Lemma 8.2.4. Let (−,−) be a,-invariant inner product on h. Then, for any 
 ∈ Δ, we
have

〈�, 
̌〉 = 2 (�, 
)(
, 
) .

Proof. By,-invariant, we have

(�, 
) = (B
(�), B
(
)) = (� − 〈�, 
̌〉
,−
) = −(�, 
) + 〈�, 
̌〉(
, 
),
from which the desired assertion is clear. �

Finally, to get a hint for what the proof of the general case of Theorem 8.2.2 looks
like, we assume that 〈�, 
̌〉 ∉ Z. We claim that in this case, F(�) − � ∉ & for any
F ∈, .

We will now study how the behavior of "� depends on �.

Proposition 8.2.5. Let � ∈ h∗.
(i) Assume that � + � is anti-dominant. Then the Verma module "� is irreducible.
(ii) Assume that � + � is dominant. Then the Verma module"� is a projective object of

O.

Proof. First, suppose that�+� is anti-dominant, i.e. for allF ∈, ,F(�+�)−(�+�) ∉
−(&+ \ {0}). We will show that "� is irreducible. Suppose otherwise, "� has at
least one irreducible submodule !� for some � ≠ �. Then, we know that � = F · �
for some F ∈, . In other words

� = F(� + �) − �
an and hence

� + � = F(� + �).
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By construction � ∈ � − (&+ \ {0}), and hence,

F(� + �) − (� + �) = � + � − (� − �) ∈ −(&+ \ {0}),

which contradicts the fact that �+ � is anti-dominant. This concludes the proof of (i).
Now, suppose that�+� is dominant, i.e. for allF ∈, ,F(�+�)−(�+�) ∉ &+\{0}.

We will show that "� is projective, i.e. we will prove that any surjectionM� "�

splits, whereM ∈ O. To show that this map splits, it suffices to show that there exists
a vector E of weight � inside M that is annihilated by n+ and that has image E� in
"�.

Since the action of h on M is semi-simple, there exists a vector E ∈ M of weight �
whose image in "� is E�. We claim that E is automatically annihilated by n+. By the
block decomposition of O, without loss of generality, we can assume that /(g) acts
on M by the same generalized central character as that of "�, i.e. M ∈ O+(�).

Suppose otherwise that n+ doesn’t annihilate E. Then, since *(n+) acts on M

locally nilpotently, *(n+)E as a vector E′ of weight � > � that is annilhilate by n+.
We thus obtain a non-zero map "� → M. But this means that +(�) = !(�), i.e.
� = F · � for some F ∈, and hence, �+ � = F(�+ �). But then, from the above, we
have F(� + �) = � + � ∈ � + � + (&+ \ {0}), which contradicts the fact that � + � is
dominant. �

Example 8.2.6. Consider the case g = sl2. Then � + � is anti-dominant iff

� ∈ C \ Z≥0.

Moreover, � + � is dominant iff

� ∈ C \ Z≤−2.

8.3. Behavior of O" for various ".

8.3.1. The case " = +(−�). Observe that −� + � = 0 is both dominant and anti-
dominant. Thus "−� is both irreducible and projective. Moreover,, · (−�) = −�,
which means that "−� is the only Verma module of O" in this case. Thus, it’s also
the only irreducible module. As a result, O+(−�) is equivalent to the category of finite
dimensional vector spaces. Note that under this equivalence, "−� corresponds to C.

8.3.2. The case " = +(�) with 〈�, 
̌〉 ∉ Z,∀
 ∈ Δ+. Let � ∈, · �. We will show that
〈�, 
̌〉 ∉ Z,∀
 ∈ Δ+. Since, is generated by reflection, it suffices to prove it for the
case where � = B8 · � where B8 is the (simple) reflection associated to the simple root

8 .

Recall the following lemma from the theory of root system.

Lemma 8.3.3. Let 
8 be a simple root and B8 the associated reflection. Then B8 sends 
8 to
−
8 (as usual) and permutes Δ+ \ {
8}.

Corollary 8.3.4. Let 
8 be a simple root and B8 the associated reflection. Then

B8(�) = � − 
8 .

Equivalently, 〈�, 
̌8〉 = 1.
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Thus,

〈B8 · �, 
̌〉 = 〈B8(� + �) − �, 
̌〉 = 〈B8(�) − 
8 , 
̌〉 = 〈�, B8(
̌)〉 − 〈
8 , 
̌〉 ∉ Z.

In particular, all of these weights are distinct and moreover, �+ � are all dominant
and anti-dominant for all � ∈, · �. Thus, "� are all irreducible and projective. As
a result, O+(�) is equivalent to a direct sum of |, | copies of the category of finite
dimensional vector spaces.

8.3.5. The case " = +(�) where 〈�, 
̌〉 ∈ Z≥0 ,∀
 ∈ Δ+. In this case, � + � is a regular
dominant weight, where regular means that the statbilizer of � + � in, is trivial. In
particular, !� are all distinct for all � ∈, · �.

Proposition 8.3.6. Under the above circumstances, the category O" is indecomposible, i.e.
it cannot be non-trivially written as a direct sum of abelian subcategories.

Proof. In general, if C is an abelian category such that C ' C1 ⊕ C2, then Irr(C) =
Irr(C1) t Irr(C2), where Irr(C) denotes the set of irreducible objects. Suppose C is
Artinian, then any object admits a finite filtration with irreducible associated graded
subquotients. Moreover, if " ∈ C is an indecomposable object, the irreducible
subquotients belong to either Irr(C1) or Irr(C2), but not both.

Now, suppose that O" ' C1 ⊕ C2. Note that "� is indecomposable since it has
a unique irreducible quotient !�. Suppose that !� ∈ C1, then so are !� for any
� ∈ , · �, by the remark above and Lemma 8.3.7. Thus Irr(C1) = Irr(C) and hence,
C ' C1. �

Lemma 8.3.7. (i) The object "� contains every other "� as a sub-module.
(ii) Every "� contains "F0� as a sub-module, where F0 is the longest element of the

Weyl group.

Proof. See Lemma 7.3.5. Induct on length of F. �

8.4. Contragredient duality. Let g-modh-ss be the full-subcategory of g-mod consist-
ing of objects, on which the action of h is semi-simple. IfM is such a module then,
we write M =

⊕
�M(�) its decomposition into weight spaces. We will use M∗ to

denote the linear dual ofM. It is naturally a g-module.

Lemma 8.4.1. (i) For any M ∈ g-mod and l ⊆ g, the maximal subspace of M, on
which the action of l is locally finite, is g-stable.

(ii) ForM ∈ g-modh-ss, the maximal subspace ofM∗ on which the action of h is locally
finite is ⊕�"(�)∗.

Proof. For the first part, it suffices to show that if + ⊆ M is a finite dimensional
l-stable subspace of M, then l acts on *(g)+ locally finitely.9 Since *(g)8+ is finite
dimensional for each 8, it suffices to show that it is l-stable for each 8. This is a
straightforward computation using commutation relations.

The second part is left as an exercise. �

9Note that it is obviously l-stable, since*(g)+ is even g-stable.



D-MODULES IN REPRESENTATION THEORY 56

Let � be the Cartan involution of g. This is a unique automorphism of g, which
acts as −1 on h, and maps b to b−. For example, when g = sl= , �(") = −") .

For M ∈ g-modh-ss, we define M∨ =
⊕

�M(�)∗ ∈ g-modh-ss with the action of g
twisted by �. Note that the h-weight ofM(�)∗ is still �, i.e. "∨(�) ' "(�)∗. Moreover,
it is clear thatM ↦→M∨ is an exact contravariant functor from g-mod to itself.

Theorem 8.4.2. IfM belongs to O, then so doesM∨.

Consider the following full-subcategory g-modh-ss,fd ⊂ g-modh-ss spanned by M

such thatM(�)’s are finite dimensional. Clearly, this sub-category is preserved by
(−)∨ and moreover ((−)∨)∨ ' id on g-modh-ss,fd.

Since O ⊂ g-modh-ss,fd, the theorem above implies that (−)∨ is an auto-equivalence
of O.

The proof of Theorem 8.4.2 makes use of the following result.

Proposition 8.4.3. For any � ∈ h∗, there exists an isomorphism !∨� ' !�.

Proof. Since (−)∨ is an auto-equivalence, !∨� is irreducible. Thus, it suffices to show
that there is a surjection "� � !∨� . This is equivalent to finding a vector E� inside
!∨� of weight � that is annihilated by n. But recall that !∨�(�) ' !�(�)∗ ' C. Let
E� ∈ !∨�(�) \ {0}. Since the weights that appear in !∨� are the same as those appearing
in !�, � is also the highest weight of !∨� and hence, E� must be annihilated by n and
we are done. �

Proof of Theorem 8.4.2. LetM ∈ O. Then, we’ve seen above that the action of h onM∨

is locally finite and semi-simple. It remains to show that M∨ is finite generated as a
g-module and moreover, the action of n on it is locally finite. Both of these properties
are preserved under extensions. Thus, we are done by the proposition above and
the fact that any element in O is a finite filtration whose associated graded pieces are
of the form !�. �

8.5. Dual Verma modules.

8.5.1. Invariant and co-invariant. For any Lie algebra g and a g-module ", we define

"g = Homg(C, ") and "g = C ⊗*(g) " ' "/g"

to be the space of g-invariants (resp. g-coinvariants) of ". Note that these are right
(resp. left) adjoint to the functor

triv : Vect→ g-mod

obtained by restriction of scalars along*(g) → C.

Question 8.5.2. Let g and " be as above. Show that

("g)∗ ' ("∗)g.

It is easy to see that (+ ⊗*(g))g ' + .
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8.5.3. Functorial description of "∨� .

Lemma 8.5.4. Let M ∈ g-modh-ss. Then the space Homg-mod(M, "∨� ) is canonically
isomorphic to the space of functionalsMn−(�) → C. In other words, this space is isomorphic
to the space of functionalsM→ C� which are b−-invariant.

Proof. We have,

Homg-mod(M, "∨� ) ' Homg("� ,M
∨) ' (M∨)n+(�) 'Mn−(�)∗.

�

Theorem 8.5.5. (i) The module "∨� has a unique irreducible sub-module.
(ii) Homg-mod("� , "

∨
� ) ' C such that 1 ∈ C corresponds to the decomposition

"� � !� ↩→ "∨� .

(iii) For � ≠ �,
Homg-mod("� , "

∨
� ) ' 0.

(iv) Ext1
O
("� , "

∨
� ) ' 0,∀�, �.

Proof. The first part follows from the fact that (−)∨ is a contravariant autoequivalence
of g-modh-ss,fd. Note that ("�)n− ' "�(�), and when � ≠ �, ("�)n−(�) = 0. The
lemma above implies that

Homg-mod("� , "
∨
� ) ' (("�)n−(�))∗ '

{
"�(�)∗ ' C, � = �,

0, otherwise.

This finishes (iii) and the first part of (ii). In the case � = �, let"� → "∨� denote the
map correspoding to 1. This map is determined by the image of the highest weight
vector E�, which is also the highest weight vector of E′� ∈ "

∨
� . From (i), we know

that*(g)E′� = !�, and hence, the non-zero map necessarily factors through

"� � !� ↩→ "∨� .

For (iv), suppose we have a short exact sequence of objects in O

0→ "∨�
80−→ N→ "� → 0.

We want to show that this sequence splits. By Lemma 8.5.4, the identity map id"∨�
induces a linear functional "∨� → C� that is b−-invariant. Let N′ denote its kernel.
We obtain the following exact sequence of b−-modules

(8.5.6) 0→ C
� 8−→ N/N′

?
−→ "� → 0.

Note that by Lemma 8.5.4, a retraction of N/N′ onto C� is equivalent to a retraction
of N onto "∨� . It thus suffices to split (8.5.6), i.e. find a section to ?. But now, such a
section is given by a vector of weight � in N/N′. This is possible since the action of h
on everything is semi-simple. �
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We will now describe how"∨� looks like as a vector space with n+-action, parallel
to the description of "� as*(n−) as an n−-module.

Let# be the algebraic group corresponding ton. The categoryof#-representations
is equivalent to the full subcategory of n-modules consisting of locally nilpotent
representations. Let Fun(#) = O# be the space of regular functions on # ; this is an
#-representation by translation. For any + ∈ Rep(#), we have

Hom#+(+, Fun(#+)) ' HomVect(+,C).
Proposition 8.5.7. For any �, we have an isomorphism of n+-modules

"∨� ' Fun(#).

8.6. Projective objects inO. Recall that a category C is said to have enough projectives,
if every object of C admits a surjection from a projective one.

Let " ∈ h//, , and consider the functor

��," : O" → Vect, M ↦→M(�).
Proposition 8.6.1. The functor ��," is representable.

Proof. The proof is similar to the proof of Proposition 8.2.5.
Let*(n)+ ⊂ *(n) be the augmentation ideal, and let  � be the kernel of the map

*(h) → C, induced by the character �. We define

"�,= = *(g)/*(g)�= , �= = (*(n)+)= �.

It is easy to see that "�,= ∈ O, and moreover "�,1 = "�. For a given ", let "�,=,"

be the image of "�,= in O". We claim that for = large enough, the module "�,=,"

represents ��,".
Indeed, for anyM ∈ O the set Hom("�,= ,M) is isomorphic to the set of elements

inM(�), which are annihilated by any monomial G1 . . . G= , G8 ∈ n. We claim that this
recovers the wholeM(�), provided that = is big enough.

Let {�1 , . . . ,�:} be the set of weights with +(�8) = ", and pick a number = such
that for any 8 we have

= > 〈�8 − �, �̌〉.
Suppose that E′ = G1 . . . G=E ≠ 0 for some E ∈ M(�). Then there exists E′′ ∈ *(n)E′,
which is annihilated by n. Let �′, �′′ be the weight of E′, E′′ respectively. We have
�′′ − �′ ∈ &+ \ 0, and so 〈�′′ − �, �̌〉 > 〈�′ − �, �̌〉 ≥ =. However, we have +(�′′) = ",
so we have arrived at a contradiction. �

Corollary 8.6.2. The category O has enough projectives.

Proof. It is enough to prove the claim for each of O", so let us fix ". Since the functor
��," is exact, the object P�," representing it is projective. For anyM ∈ O", we have
a surjection of g-modules

⊕
� P�," ⊗M(�) � M by definition of P�,". However,

sinceM is finitely generated, this map will remain a surjection after restricting it to a
certain finite subset of direct summands. �

Let %� be a projective cover of !�, that is a projective object together with an
epimorphism �� : %� � !�, such that no proper submodule of %� is mapped onto
!�. Since O has enough projectives, such an object exists, and is unique up to
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a (non-unique) isomorphism. The definition easily implies that %� has a unique
maximal submodule, namely ker��. In particular, %� is indecomposable, and

(8.6.1) Hom(%� , !�) = 0, when � ≠ �.

Corollary 8.6.3. The categoryO" is equivalent to the category of finite-dimensional modules
over a finite-dimensional associative algebra.

Proof. The direct sum P =
⊕

+(�)=" %� is a projective generator of O". Thus O" '
End(P)-mod, and the latter algebra is finite-dimensional since O" is Artinian. �

Recall that by Proposition 6.6.10, every object of O is a quotient of a successive
extension of Verma modules. We say that M ∈ O admits a standard filtration, if M
itself is isomorphic to a successive extension of Verma modules.

Theorem 8.6.4. Every projective object of O admits a standard filtration.

Proof. Recall the modules "�,= . They are not in general projective; however, any
projective object in O can be realized as a direct summand of a direct sum of some
"�,= . 10

Note that "�,= admits a standard filtration. In effect, we have a sequence of
surjections

"�,= � "�,=−1 � · · ·� "�,1 = "� ,

whose kernels are given by *(g)(�:−1/�:). By definition of �: we see that �:−1/�:
is annihilated by *(n), and *(h) acts on it semisimply. In particular, ker("�,: �
"�,:−1) is a direct sum of Verma modules. Thus, it remains to show that if M1 ⊕M2
admits a standard filtration, then bothM1 and M2 do as well.

Let us begin with an auxiliary assertion. Namely, let M ∈ O admit a standard
filtration, let � ∈ h∗ be a maximal weight of M, and pick E ∈ M(�). We claim that
the corresponding map "� → M is injective, and the quotient M/"� admits a
standard filtration. Indeed, let (M8) be a standard filtration of M, and let 8 be the
minimal index for which the image of "� belongs toM8 . This implies that the map
"� →M8/M8−1 is non-zero. However, "8/M8−1 is a Verma module itself, thus the
map above is necessarily an isomorphism. Hence, we get a short exact sequence

0→M8−1 →M/"� →M/M8 → 0,

which implies our assertion.
Now, suppose that M = M1 ⊕M2 admits a standard filtration. We argue by a

decreasing induction on the length of M. Let � be a maximal weight of M. Without
loss of generality M1(�) ≠ 0, and we have a non-zero map "� → M1. By the
assertion above this map is injective, and M/"� 'M1/"� ⊕M2 admits a standard
filtration. This completes the induction step. �

Corollary 8.6.5. Let M→ "� be a surjection, and M admits a standard filtration. The
kernel of this map admits a standard filtration as well.

10This can be deduced, for example, from Corollary 8.6.3
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Proof. Let � be a maximal weight of M, and let "� ⊂ M be an embedding. If
� ≠ �, then the composition "� → M → "� is zero. Thus we have a surjection
M/"� → "�, and we argue by induction. If � = �, then ker(M→ "�) = M/"�,
and we are done by the assertion in the proof above. �

Corollary 8.6.6. Ext8("� , "
∨
� ) = 0 for all 8 > 0 and �, �.

Proof. We argue by induction on 8. By Theorem 8.5.5(iv), the assertion holds for
8 = 1. Let P be a projective module which surjects to "�, and let M be the kernel.
We have a long exact sequence

. . .→ Ext8(M, "∨� ) → Ext8+1("� , "
∨
� ) → Ext8+1(P, "∨� ) → . . .

ThemoduleMhas a standardfiltrationbyCorollary 8.6.5. Inparticular, Ext8(M, "∨� ) =
0 by the induction hypothesis. Moreover, Ext8+1(P, "∨� ) = 0 since P is projective.
Hence, Ext8+1("� , "

∨
� ) = 0. �

The property of an object in O admitting a standard filtration can be formulated
intrinsically.

Proposition 8.6.7. LetM ∈ O. The following conditions are equivalent:
(i) M admits a standard filtration;
(ii) Ext8("� , "

∨
� ) = 0 for any 8 > 0 and �;

(iii) Ext1("� , "
∨
� ) = 0 for any �.

Proof. Omitted. �

8.7. BGG reciprocity. By Theorem 8.6.4, the projective cover %� admits a filtration,
whose subquotients are isomorphic to Verma modules. Let mult("� , %�) denote the
number of occurences of"� for any such filtration. Similarly, let [!� : M] denote the
multiplicity of !� in the Jordan-Hölder series of a moduleM.

Theorem 8.7.1 (BGG reciprocity). We have mult("� , %�) = [!� : "∨� ].

Proof. Consider the vector space Hom(%� , "∨� ). On one hand, its dimension is
equal to [!� : "∨� ] by (8.6.1). On the other hand, the lemma below implies that
mult("� , %�) = dimHom(%� , "∨� ). �

Lemma 8.7.2. If M has a standard filtration, then mult("� ,M) = dimHom(M, "∨� ).

Proof. The proof is by induction on the filtration length. WhenM = "�, this follows
from Theorem 8.5.5(ii). For the induction step, consider the long exact sequence
associated with a short exact sequence 0→ N→M→ "� → 0:

0→ Hom("� , "
∨
� ) → Hom(M, "∨� ) → Hom(N, "∨� ) → Ext1("� , "

∨
� ) → . . .

The Ext-term vanishes by Corollary 8.6.6, and dimHom("� , "
∨
� ) = ���. Since

mult("� ,M) = mult("� ,N) + ���
by the choice of �, we can conclude by induction. �
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Remark 8.7.3. Consider the Grothendieck group of the category O. It has a basis,
given by the classes of irreducibles !�. Another basis is given by the classes of Verma
modules "�, and the transition matrix is triangular. BGG reciprocity then implies
that the classes of projectives %� form yet another basis, and the transition matrix
from [%�] to ["�] can be expressed in terms of the transition matrix from ["�] to
[!�].

The following result, whichwe statewithout proof, gives a necessary and sufficient
condition for [!� , "�] to be non-zero.
Theorem 8.7.4. The following conditions are equivalent:

(i) "� contains "� as a submodule;
(ii) "� contains !� as a subquotient;
(iii) there exists a sequence of weights � = �0 , �1 , . . . , �= = �, such that �8+1 = B�8 · �8

for some � ∈ Δ+, and 〈�8 , �̌8〉 ∈ Z≥0.

Question 8.7.5. Deduce that the conditions of Proposition 8.2.5 are necessary and
sufficient.

The precise values of the numbers [!� , "�] are highly non-trvial, and constitute
the main object of Kazhdan-Lusztig conjecture.

8.8. Translation functors. Let E be a finite-dimensional g-module. We can consider
the functor

)+ : g-mod→ g-mod, M ↦→M ⊗ +.
This functor is exact, preserves O, and has an adjoint (both left and right) given by
)+∗ .

For "1 , "2 ∈ h//, , consider the composition
)"1 ,+ ,"2 : O"1 ↩→ O

)+−−→ O� O"2 .

This functor is also exact, and its adjoint is given by )"2 ,+∗ ,"1 .
Lemma 8.8.1. Let "8 = +(�8). Then )"1 ,+ ,"2 = 0 unless there exists F1 , F2 ∈ , and
� ∈ h∗ with +(�) ≠ 0, such that F1 · �1 = F2 · �2 + �.

Let� be dominant, and � a dominant integral weight. Set "1 = +(�), "2 = +(�+�),
and consider the irreducible finite-dimensional g-module !�.
Theorem 8.8.2. The translation functors define mutually quasi-inverse equivalences

)"1 ,!� ,"2 : O"1 � O"2 : )"2 ,(!�)∗ ,"1 .

9. Localization

The theory of D-modules is intimately related to the theory of representations of
Lie algebras. More precisely, let - be a variety with an action of an algebraic group
�. Then, we have a map of algebras*(g) → D(-) = Γ(-,D-). In particular, for any
D--module ", Γ(-, ") acquires the structure of a D--module, and hence, also a
*(g)-module.

Localization is the other direction. Namely, if # is a g-module, we can induce up
to obtain a D--module

D- ⊗*(g) ",
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where ? : - → SpecC is the structure map.
The goal of this section is to explain the above in more details.

9.1. D- and Lie algebras revisited. We start with the case of Lie algebras. Let �
be an affine algebraic group11 with identity 1 ∈ �. Let O(�) be the Hopf algebra
associated to � and m1 the maximal ideal associated to 1. Then, for any positive
integer =, O(�)/m=

1 is a finite dimensional Hopf algebra and hence, so is its dual
(O�/m=

1 )∗. Note that (O�/m=
1 )∗ is co-commutative.

Proposition 9.1.1. The map g = (m1/m2
1)∗ → (O�/m2

1)∗ is a map of Lie algebras. Note
that here, we view the RHS as an associative algebra, and hence, also as a Lie algebra with the
Lie bracket given by commutators.

Proof (sketch). Since any finite dimensional affine algebraic group has a finite di-
mensional faithful representation, we can embed � → GL3 for some 3. Thus, we
immediately reduce to the case where � = GL3.

In general, g = Lie� = ker(�(C[�]/�2) → �(C)). For GL3, an element in gl3 =
LieGL3 has the form 1 + &" and Lie bracket given by the commutators. Chasing
the definitions, we see that the multiplication structure used in these commutators
coincide with the ring structure of (O�/m2

1)∗. Thus, we are done. �

Let Dist(�) = colim=(O�/m=
1 )∗, then Dist(�) has a natural structure of a Hopf

algebra. Dist(�) is called the Hopf algebra of distributions on � (supported at 1).

Corollary 9.1.2. We have a natural isomorphism of Hopf algebras

*(g) ' Dist(�).

Proof (sketch). The map of Lie algebras above gives a map of Lie algebras g→ Dist(�)
and hence, a homomorphism*(g) → Dist(�).

By construction Dist(�) has a natural filtration whose associated graded is Sym g.
*(g) has a PBW filtration whose associated graded is also Sym g. It is easy to see that
the map*(g) → Dist(�) is compatible with these filtrations. Upon taking associated
graded, the resulting map is an isomorphism. Thus we are done. �

We will now move to the case of the ring of differential operatorsD- on a smooth
variety -. Since we work locally, we will assume that - is affine, i.e. - = SpecO(-).
Consider the diagonal embedding Δ : - → - × -, which realizes - as a closed
subscheme of - × - given by an ideal �Δ. Note that �Δ is generated by elements of
the form 0 ⊗ 1 − 1 ⊗ 0 for 0 ∈ O(-).

The role of g is given by (�Δ/�2Δ)∨, where (−)∨ is to be understood as O(-)-linear
dual. The role of infinitesimal neighborhoods around 1 ∈ � is now played by
O(- × -)/�=

Δ
as well as its dual (O(- × -)/�=

Δ
)∨.

Proposition 9.1.3. We have a non-degenerate O--bilinear pairing

D≤=
-
× O(- × -)/�=+1

Δ
→ O-

given by
� × ( 5 ⊗ 6 mod �=+1

Δ
) ↦→ 5 �6.

11The statements proved here should hold more generally.
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Proof. Exercise. �

Corollary 9.1.4. For any closed point G ∈ -, we have

�G = CG ⊗O- D- ' (D-)1 ' colim
=
(O(-)/m=

G )∗.

Proof. This follows directly from the fact that O(- × -)/(�=
Δ
,mG) ' O(-)/m=

G . �

Corollary 9.1.5. We have

*(g) ' Dist(�) ' CG ⊗O- D- .

9.2. Equivariant quasi-coherent sheaves. Throughout, as above, we let � be an
affine algebraic group and - a scheme equipped with a �-action, i.e. we have a map
� × - → -.

9.2.1. The case of O- . Differentiating this map, we obtain )� ×)- → )- and hence,
g×- → )-. This is the same as giving g→ Γ(-, )-) = Vect(-), the space of vector
fields on -. In particular, we can associate to each element of g a degree 1 differential
operator of O(-), i.e. we get a map g→ D- .

To talk about algebra structures, we will take the point of view of the preceeding
subsection. For each non-negative integer =, consider �(=) = SpecO(�)/m=

1 , the =-th
infinitesimal neighborhood around 1 ∈ �. The action of � on - induces an action of
�(=) on -. In particular we obtain a map of sheaves on -

O- → O(�)/m=
1 ⊗C O- .

Dualizing, we obtain
(O�/m=

1 )
∗ ⊗C O- → O- ,

and hence,
*(g) ⊗C O- → O- ,

by passing to the colimit. Thus, we obtain a map of algebras

*(g) → EndC(O-).
Since g ↦→ Vect(-), we see that thismap factors through an algebra homomorphism

*(g) → D- ⊂ EndC(O-).

9.2.2. The general case. Let- and� be as above. Aquasi-coherent sheaf" ∈ QCoh(-)
is called �-equivariant if we are given an isomorphism

)" : act∗(") ' ?∗2(")
that satisfies the following conditions

(i) the restriction of )" to 1 × - ⊂ � × - is the identity map " → ";
(ii) the following diagram of sheaves on � × � × - commutes

(id� × act)∗ act∗" (id� × act)∗?∗2" ?∗3"

(< × id-)∗ act∗" (< × id-)∗?∗2- ?∗3"

'

' '

'
' '
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Here, it is helpful to keep in mind the following commutative diagram

� × � × - � × -

� × - -

<×id-

id�×act

act
act

Remark 9.2.3. The map )" captures the following idea: for any G ∈ - and 6 ∈ �, we
are given an isomorphism "6G ' "G . From this perspective, the second condition
above then says that for any G ∈ - and 6, ℎ ∈ �, the following diagram commutes

"6(ℎG) "6G

"(6ℎ)G "G

'

'

'
'

Question 9.2.4. Show that the category of �-equivariant sheaves on � is equivalent
to the category of vector spaces.

Let " be a �-equivariant sheaf on -. We say that a global section < ∈ Γ(-, ") is
�-invariant if its image under

Γ(-, ") → Γ(� × -, act∗") ' Γ(�,O�) ⊗ Γ(-, ")
equals 1 ⊗ <.

Question 9.2.5. Show that for - = �, the functor" ↦→ "1 is equivalent to the functor
of taking �-invariant global sections.

Given a�-equivariant quasi-coherent sheaf" on-, our goal now is to differentiate
the � action. First, note that " is also a �(=) = SpecO(�)/m=

1 -equivariant sheaf on
-. WLOG, we will assume that - is affine. We have the following sequence of
morphisms (by abuse of notation, we will use the same notation as those used for �
here)

Γ(-, ") → Γ(�(=) × -, act∗") ' O(�)/m=
1 ⊗C Γ(-, ")

and hence
(O(�)/m=

1 )
∗ → EndC(").

Passing to the colimit, we get a map of algebras

*(g) → EndC("),
or equivalently, a map of Lie algebras

0" : g→ EndC(").
Note that the target for 0" is EndC(") and not EndO- ("), i.e. we don’t get

O- -linear map. To see how 0" interacts with O- -linear structure of ", consider the
following map on O-×-

O- �" → Δ∗".

It is easy to see that both terms are �-equivariant with respect to the action of � on
- × -.
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Functoriality of the construction above then say that this map is a map of g-
modules. In particular, for each 5 ∈ O- , < ∈ ", and � ∈ g, we have (note that we
still assume that - is affine here)

0"(�)( 5 <) = 0O(�)( 5 )< + 5 0"(�)(<).
In particular,

0"(�)( 5 <) − 5 0"(�)(<) = (0O(�)( 5 ))<
which means that 0"(�) ∈ D-(",") is a twisted differential operator of degree 1.
Equivalently, we have a map of algebras

*(g) → D-(",").
When " = O- we recover the map*(g) → D- constructed above.

9.2.6. The case of D- . We claim, without proving, that the sheaf of differential
operators D- itself is �-equivariant. The discussion above then implies that g acts
on D- . Moreover, for each � ∈ g and for each local section � of D- , we have

0D(�)(�) = 0O(�)� − �0O(�).

9.3. Localization. Let - be a smooth variety. Then, we have the following pair of
adjoint functors

D- ⊗D(-) − : D(-)-mod� D- -mod : Γ(-,−).
Now, let - be a smooth variety equipped with an action of an affine algebraic

group �. Then, we’ve seen above that we have a map of algebras*(g) → D(-). In
particular, we have a pair of adjoint functors

D(-) ⊗*(g) − : g-mod� D(-)-mod : res*(g)→D(-) .

Combining these two pairs of adjoint functors, we obtain the following pair of
adjoint functors

Loc = D- ⊗*(g) − : g-mod� D- -mod : Γ(-,−)

9.4. The flag variety. We will now specialize to the case where � is a semi-simple
affine algebraic group and- = �/� its flag variety. Our goal is to prove the following
theorem.

Theorem 9.4.1.
(i) The homomorphism/(g) → D(�/�) factors through the character "0, corresponding

to the trivial g-module.
(ii) The resulting homomorphism *(g)"0 = *(g) ⊗/(g) C"0 → D(�/�) is an isomor-

phism.
(iii) The functor Γ : D�/�-mod→ *(g)"0-mod is exact and faithful.
(iv) The functor Γ and its adjoint Loc are mutually inverse equivalences of categories.

From Proposition 5.3.2, we see that (ii) and (iii) imply (iv). The rest of this section
will be dedicated to the proofs of (i) and (ii). The proof of part (iii) will need input
from the theory of category O.
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9.5. Fibers of localization. Let - be a smooth variety with a transitive action of
�. Let " be a g-module and G ∈ -. We want to understand the fiber Loc(")G of
Loc(") at G. Let gG denote the (infinitesimal) stabilizer of G, i.e.

gG = ker(g→ )G-).
Proposition 9.5.1. For " ∈ g-mod, we have a canonical isomorphism

Loc(")G ' "gG ,

where, by definition, "gG := " ⊗*(gG) C is the gG-coinvariant part of ".

Proof. Observe that

Loc(")G ' CG ⊗O- D- ⊗*(g) " ' �G ⊗*(g) ",

which commutes with colimits in the variable". It’s also clear that the construction
"gG also commutes with colimits in the variable ". Thus, resolving " by free
*(g)-modules, we reduce to the case where " = *(g). Namely, it remains to show
that we have a canonical isomorphism

*(g) ⊗*(gG) C
'−→ Γ(-, �G).

We have the following commutative diagram

*(g) D(-) CG ⊗O- D- Γ(-, �G)

g Vect(-) )G- )G-

gG 0

'

which implies that the map *(g) → Γ(-, �G) factors through *(g) ⊗*(gG) C →
Γ(-, �G).

Both sides of this morphism have natural filtrations and the map above is
compatible with the filtration. Thus, to show that this map is an isomorphism,
it suffices to show that it is so after taking associated graded. But after taking
associated graded, the resulting map is simply

Sym(g/gG) → Sym()G-),
which is an isomorphism since g surjects to )G- with kernel gG . �

We will need the following result from commutative algebra.
Proposition 9.5.2. Let � be a reduced ring, which is a finitely generated :-algebra, and "
a locally free �-module. Let < ∈ " such that <G ∈ "/mG" vanishes for all closed point
G ∈ Spec�. Then, < = 0.

Proof. By gluing, without loss of generality, we can assume that" is free, i.e. " ' ��
for indexing set �. By projecting onto the summands, we immediately reduce to the
case where |� | = 1, i.e. " ' �.

Now, suppose 0 ∈ � such that 0G = 0 for all closed point G ∈ Spec�. Then,
0 ∈ ⋂

mG = Nil(�) = 0. Here, the second equality is a consequence of Hilbert’s
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nullstellensatz and the third is by the assumption that � is reduced. Thus we are
done. �

Proof of Theorem 9.4.1 (i). By Proposition 9.5.2, it suffices to show that for any D ∈
ker("0), the image of D in the fiber of D�/� at any point G ∈ �/� is 0. This is
applicable since D�/� a locally free sheaf on �/�.

For any G ∈ �/�, Proposition 9.5.1 says that the map*(g) → Γ(-, �G) is identified
with the quotient map *(g) → *(g) ⊗*(gG) C. Note that gG = G(b)G−1, so for this
choice of the Borel subalgebra,*(g) ⊗*(gG) C ' "0, the Verma module associated to
the zero character. But the action of /(g) on "0 is given by the same character as on
C, which is "0. Thus we are done. �

9.6. Proof of Theorem9.4.1 (ii). Themap*(g)"0 → D(�/�) is evidently compatible
with filtrations on both sides. We will start by analyzing the associated graded level.

Lemma 9.6.1. For any smooth algebraic variety -, there is a natural embedding

grD(-) ↩→ Γ(-, SymO-
Vect-) ' Γ()∗(-),O)∗-).

Proof. Since taking global section is left exact, the following exact sequence of sheaves

0→ (D-)≤=−1 → (D-)≤= → Sym=
O-

Vect- → 0

induces a left exact sequence

0→ D(-)≤=−1 → D(-)≤= → Γ(-, Sym=
O-

Vect- .

This, in turn induces an injection gr= D(-) → Γ(-, Sym=
O-

Vect-). �

Recall that gr(/(g)) ' Sym(g)�. Let
Sym(g)�+ = ker(Sym(g)� ↩→ Sym(g) → C).

The map

(9.6.2) Sym(g) → Γ(-, SymO-
Vect-)

induced by g→ Vect(-) is the associated graded form of of the map*(g) → D(-)
considered above.

Theorem 9.6.3 (Kostant). When - = �/�, the map (9.6.2) annihilates Sym(g)�+ and the
resulting map

Sym(g)/Sym(g) Sym(g)�+ → Γ(�/�, SymO�/�
Vect�/�)

is an isomorphism.

This is a non-trivial result, which we will prove in the next section. Now, we will
see how this implies Theorem 9.4.1 (ii).

Proof of Theorem 9.4.1 (ii). It suffices to show that gr(*(g)"0) → gr(D(�/�)) is an
isomorphism. We have the following sequence of morphisms

Sym(g)/Sym(g) Sym(g)�+
'−→ gr(*(g)"0) → gr(D(�/�)) ↩→ Γ(�/�, SymO�/�

Vect�/�).
The composition is an isomorphism and hence, each of the map is an isomorphism.
Hence we are done by Theorem 9.6.3. �
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10. Kostant’s theorem

In this section, we will prove Kostant’s theorem, Theorem 9.6.3.

10.1. Chevalley map.
Proposition 10.1.1. (i) The variety h/, is smooth.

(ii) The map + : h→ h/, is flat.

Proof. Note that part (ii) follows from part (i) by the following result: any finite
map between smooth varieties of the same dimension is flat. This is called miracle
flatness.

Part (i) is a general result and holds for any finite group action where the action is
generated by reflections. �

Corollary 10.1.2. The map )2; : g→ h/, is flat.

Proof. We need to prove that Sym g is flat over Sym(g)� = Sym(h), . We will in fact
show that Sym g is in fact flat over Sym n⊗C (Sym g)�. But this is equivalent to Sym g/n
being flat over (Sym g)� ' (Sym h), . Now, Sym g/n is free (hence flat) over Sym h.
Since Sym h→ (Sym h), is flat, by the preivous proposition, we are done. �

Corollary 10.1.3. *(g) is flat over /(g).
10.2. Grothendieck’s alteration. Consider the adjoint representations b, g of �, �
respectively. Since the inclusion b ⊂ g is clearly �-equivariant, we have a proper map

� : g̃ := � ×� b→ g.

In other words, � sends a pair (G, b′), where b′ ∈ �/� is a Borel and G ∈ b′, to G ∈ g.

Definition 10.2.1. The map � is called Grothendieck’s simultaneous resolution, or
Grothendieck’s alteration.

Let us study the fibers of �, that is the sets �−1(G) = {b′ ∈ �/� : b′ 3 G}, G ∈ g.
10.2.2. Regular semisimple. Let gAB ⊂ g denote the locus of regular semisimple
elements, and let G ∈ gAB . The centralizer of G is a Cartan subalgebra hG ⊂ g. In
particular, any Borel subalgebra b′ ⊂ g containing G has to contain hG as well. The set
of such Borels consists of |, | elements, on which the Weyl group, acts transitively.
In other words, the restriction �−1(gAB) → gAB is an étale cover with Galois group, .

10.2.3. Nilpotent. LetN ⊂ g be the nilpotent cone, and consider the preimage �−1(N).
Since n consists precisely of nilpotent elements in b, we have �−1(N) ' � ×� n. On
the other hand,

)∗4 �/� = (g/b)∗ ' n.
Since �/� is a homogeneous �-space and )∗�/� is �-equivariant, we see that

)∗�/� ' � ×� n ' �−1(N).
The map Ñ := )∗�/� → N is called the Springer resolution. Later we will show

that generically it is an isomorphism.

Remark 10.2.4. The map � : )∗�/�→ g can be thought of as a semi-classical limit of
the homomorphism*(g) → D(�/�).
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Since the adjoint action of � on h ' b/[b, b] is trivial, we have the following short
exact sequence of vector bundles on �/�:

0→ � ×� n→ � ×� b→ �/� × h→ 0.

In particular, we obtain a smooth map @ : g̃ ' � ×� b→ h. Recall also that Chevalley
isomorphism provides us with a map )2; : g→ g/� ' h/, .

Lemma 10.2.5. The following square is commutative (but not Cartesian):

(10.2.1)
g̃ h

g h/,
�

@

�

)2;

Proof. The definition of themap)2; in Section 7.1 can be summarized by the following
commutative diagram:

C[g] C[b]

C[g]� C[h],

res

8 9

We can read it in another way. Namely, any �-invariant function 5 on b produces a
�-invariant function 5ind on � ×� b = g̃ by induction. In particular, if we start with a
function 5 ∈ C[h], , the diagram above tells us that

�∗ ◦ 8( 5 ) = (9( 5 ))ind.
Note that 8 = )∗

2;
, and (� ◦ @)∗ coincides with (9(−))ind. This proves the statement of

lemma on rings of functions; since all varieties in the square except for g̃ are affine,
we may conclude. �

Recall that Theorem 9.6.3 claims that

Sym(g)/Sym(g) Sym(g)�+ → Γ(�/�, SymO�/�
Vect�/�).

Thanks to the diagram (10.2.1), LHS is equal to C[)−1
2;
(0)] = ON, and RHS is equal

to �∗OÑ
. We therefore need to prove that the natural map ON → �∗OÑ

is an
isomorphism.

10.3. Nilpotent orbits. In order to proceed, we need to recall some properties of
�-orbits in N.

Question 10.3.1. Let � ∈ g∗, and denote the orbit of � under the coadjoint �-action by
O�. Define a 2-form $ on O� by

$�(-̂ , .̂) = −�([-,.]),

where -̂ is the tangent vector at � ∈ O� given by the infinitesimal action of - ∈ g.
Show that $ is a symplectic form.

In particular, any coadjoint orbit in g has even complex dimension.

Proposition 10.3.2. For any coadjoint orbit O ⊂ g, we have dim(O ∩ b) ≥ (dimO)/2.
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Proof. We have the following Cartesian diagram:

O ∩ b 0 b

O n∗ g∗<

Here, the map < can be interpreted as the moment map for the Hamiltonian action
# y O. However, it is known that for solvable groups, the preimage <−1(0) is
always a coisotropic subvariety; see [CG, Theorem 1.5.7]. This implies the desired
inequality. �

Let us consider the Steinberg variety Z := Ñ ×N Ñ.

Lemma 10.3.3. Each irreducible component of Z has dimension 2 dim(�/�).

Proof. Recall Bruhat’s decomposition � =
⊔
F∈, �F�. It induces a stratification of

�/� × �/� into |, | strata, where for any F ∈ , the stratum ΩF parameterizes
the pairs of Borel subalgebras in relative position F. We have a natural map
Z→ �/� × �/�; let us denote the preimage of ΩF by ZF . It is clear that ZF → ΩF

is a vector bundle with fiber n∩F.n. An easy computation concludes that dimZF =

2 dim�/�. �

Theorem 10.3.4. The nilpotent cone N has finitely many �-orbits.

Proof. Given a �-orbit O ⊂ N, consider its preimage Õ = � ×� (O ∩ b) ⊂ Ñ under �.
Its dimension is dim�/� + dim(O ∩ b). In particular,

dim(Õ ×O Õ) ≥ 2(dim�/� + dim(O ∩ b)) − dimO ≥ 2 dim�/�
by Proposition 10.3.2. Hence, Õ ×O Õ is a union of irreducible components of Z;
in particular, the inequality above turns into an equality. Since Z has finitely many
irreducible components, we conclude that N has finitely many �-orbits. �

Note that

2 dim n = dim Ñ ≥ dimN ≥ dim g − dim h = 2 dim n

Thus dimN = 2 dim n.

Corollary 10.3.5. The Springer resolution is a resolution of singularities.

Proof. It remains to prove that � : Ñ→ N is birational.
Since N is irreducible and a union of finitely many �-orbits, it contains a unique

open dense �-orbit O. Let G ∈ O. We have

dim/(G) = dim� − dimN = dim g − 2 dim n = rk g.

Thus G is regular, and all regular nilpotent elements are conjugate. Therefore it
suffices to prove that �−1(G) consists of one point for one specific regular G.

Let G = �1 + . . . + �rk g. One can easily write down a regular semisimple element
ℎ ∈ h with [ℎ, G] = G (exercise). This implies that each point of �−1(G) is a Borel
containing G and ℎ. Using relations in *(g), one can deduce that this Borel can to
contain all Chevalley generators �8 , and thus has to be the standard Borel. �



D-MODULES IN REPRESENTATION THEORY 71

10.4. Proof of Kostant’s theorem. Let gA ⊂ g denote the locus of regular elements,
and write g̃A = �−1(gA). We have the following refinement of Lemma 10.2.5.

Proposition 10.4.1. The following square is cartesian:

g̃A h

gA h/,
�

@

�

)2;

Proof. Since the map g̃A → gA ×h/, h is proper, it suffices to show that the tangent
spaces to its fibers vanish. One can check that for (b′, �) ∈ g̃A , the tangent space to
the fiber is given by elements � ∈ gmodulo b, such that [�, �] ∈ n.

Using an induction on rk g, one can assume that � in regular nilpotent. As in
Corollary 10.3.5, we can assume that � =

∑
8 �8 , and [ℎ, �] = �. Then the subspaces

n−, h, n of g are precisely the sums of negative, zero, positive eigenspaces of ℎ
respectively. This shows that if [�, �] ∈ n, then � ∈ b. �

Corollary 10.4.2. The map )2; : gA → h/, is smooth.

Proof. @ is smooth, � is flat, and smoothness is a local property. �

Let us state a couple of classical results (in very weak forms) without proofs.

Theorem 10.4.3 (Serre’s criterion). Let- be a scheme. Suppose that- is Cohen-Macaulay,
and codim(- \ -sm) > 1. Then - is normal.

Theorem 10.4.4 (Zariski’s main theorem). Let 5 : - → . be a birational proper
morphism of integral schemes, where . is normal. Then the fibers 5 −1(H), H ∈ . are
connected.

Question 10.4.5. Let . be affine. Show that under the conditions of Zariski’s main
theorem, one has 5∗O- = O. .

Proof of Theorem 9.6.3. By Corollary 10.1.2 and Proposition 10.1.1, the scheme N is a
complete intersection, and hence Cohen-Macaulay. Corollary 10.4.2 implies that
Nreg = greg ×h/, 0 is smooth, so that N is reduced. Moreover, by Question 10.3.1
and Theorem 10.3.4 we have codim(N \Nreg) ≥ 2. By Serre’s criterion, the nilpotent
coneN is normal. We conclude by applying Question 10.4.5 and Corollary 10.3.5. �

Remark 10.4.6. Passing through another proof, which relies on Borel-Weil-Bott
theorem, one can show that �∗OÑ

= '�∗OÑ
.

11. Equivariant D-modules

In order to continue with the proof of Theorem 9.4.1 (and to generalize it later on),
we need to introduce another point of view on D-modules on �/�.
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11.1. Definitions. Let - be a variety, equipped with an action of an algebraic group
�.

Definition 11.1.1. Aweakly �-equivariantD-module on- is aD-module � ∈ D- -mod,
equipped with a �-equivariant structure as a quasi-coherent sheaf, such that the
action map

D. ⊗O. �→ �

is �-equivariant.

It is clear that weakly equivariant D-modules form a category.
Recall (see Section 9.2) that for any �-equivariant quasi-coherent sheaf" we have

a map of Lie algebras
0" : b→ EndC(").

In addition, the map *(b) → D- induces another map of Lie algebras 0O : b →
EndC("). We denote 0♮ = 0" − 0O.

Lemma 11.1.2. 0♮ defines a homomorphism of Lie algebras b→ EndD-
(").

Proof. We have

0♮(�)(�<) = 0"(�)(�<) − ��<
= 0D-

(�)(�)< + �0"(�)(<) − ��<
= ([�, �] − ��)< + �0"(�)(<)
= �(0"(�) − �)< = �0♮(�)<.

�

Definition 11.1.3. A weakly �-equivariant D-module " is strongly �-equivariant if
0♮ = 0.

Strongly equivariantD-modules form a full subcategory in weakly equivariant
D-modules. We will denote this subcategory by D- -mod�.

Example 11.1.4. (1) Let " = O- . Then by definition 0" = 0O, and so O- is
strongly �-equivariant.

(2) Let " = D- . It has a natural equivariant structure, compatible with product;
thus, D- is weakly �-equivariant. On the other hand,

0♮(�)(�) = 0D-
(�)(�) − 0O(�)(�) = (0O(�)� − �0O(�)) − 0O(�)�

= −�0O(�),

and so D- is not strongly equivariant.

11.2. Equivalence. Let us specialize thediscussion above to the casewhen� : - → .

is a principal �-bundle.

Proposition 11.2.1. The pullback functor" ↦→ �∗(") defines an equivalence of categories
D.-mod ∼−→ D- -mod�.
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Proof. Note that the following diagram commutes:

� × - -

- .

act

?2 �

�

In particular, we have a natural isomorphism act∗(�∗(")) ' ?∗2(�∗(")), which equips
�∗(")with �-equivariant structure.

Let us prove that this equivariant structure is compatible with D--action. This
amounts to checking that the following diagram commutes:

act∗(D- ⊗O- �∗(")) ?∗2(D- ⊗O- �∗("))

act∗(�∗(")) ?∗2(�∗("))

Since the question is local in ., we can assume that - ' . × �. In this case, we have
�∗(") ' " � O�, where the first factor has trivial �-equivariant structure. Thus, we
are in the situation of the first part of Example 11.1.4. In particular, �∗(") is strongly
equivariant.

We have constructed a functor D.-mod→ D- -mod�. Let us prove that it is fully
faithful. This question is again local in ., so it suffices to show that

HomD.
("1 , "2) ' HomD.

("1 , "2) ⊗ HomD�-mod�(O� ,O�),

which is clear.
It remains to show that �∗ is essentially surjective. Since D-modules can be glued,

it suffices to show it for - ' . × �. Let # be a weakly �-equivariant D--module.
As a quasi-coherent sheaf, + is isomorphic to " � O�, where " = Γ(-,+)�; see
Question 9.2.4. Since D. ⊂ (D. ⊗ D�)�, we see that " is naturally a D.-module.

In order to prove that # ' " � O� as �-equivariant D-modules, it remains
to analyze the D�-module structure on O�. It suffices to compute the action of
left-invariant vector fields on �, which are identified with � ∈ b. We have

0O�(�)( 5 ) = �( 5 ) + 0♮(�)( 5 ).

Thus we get the correct action if and only if + is strongly �-equivariant. �

The proof above implies that on the level of O-modules, the inverse equivalence
D- -mod� → D.-mod is given by taking invariants " ↦→ "�. Let us describe the
action of D. on "�. Consider the D--module

D-,b := D-/D- · b.

It clearly inherits weakly �-equivariant structure. Moreover, the second part of
Example 11.1.4 implies that it is strongly equivariant.

Lemma 11.2.2. We have D-,b ' �∗D. . Moreover, we have natural isomorphisms

D
op
.
' EndD- -mod�(D-,b) ' (D-/D- · b)� .
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Proof. We have seen that �∗D. ' D-/D- · )(-/.), where )(-/.) is the sheaf of
vertical vector fields. This implies the first isomorphism. The second one follows
from Proposition 11.2.1. �

Note that at the end of the proof of Proposition 11.2.1, the failure of a weakly
equivariant D-module to be strongly equivariant is measured by

0♮ : b→ EndD�
(O�) ' C,

that is a character of b. Inspired by the lemma above, let us define for any such
character �

D�
-,b := D-/D- · (1 − �(1), 1 ∈ b), D�

. ' EndD- -mod�,�(D�
-,b)

op ,

whereD- -mod�,� is the category of weakly �-equivariantD- -modules, with 0♮ = −�.
The algebra D�

.
will play an important role in formulating the general case of

Beilinson-Bernstein localization.

11.3. Exactness. Recall that in order to finish the proof of Theorem 9.4.1, we need to
prove that the functor

Γ : D�/�-mod→ *(g)"0-mod

is exact and faithful.

Proposition 11.3.1. Γ is exact.

Proof. For the purposes of exactness, we can replace the target of Γ by Vect. In view
of Proposition 11.2.1, Γ decomposes as

D�/�-mod
�∗−−→ D(�)-mod�

�-inv−−−−→ Vect.

For a D(�)-module ", let us regard the space Γ(�, ") as a g-module via the map
0O : g → D(�). By Proposition 11.2.1, for any "′ ∈ D�/�-mod the action of g on
Γ(�,�∗("′)) is such that its restriction to b comes from an action of the algebraic
group �. In particular, this assures that first two axioms of category O are satisfied
for Γ(�,�∗("′)).

Let us denote by O the category of g-modules which are unions of modules in the
category O. Thus the functor Γ factors further as

D�/�-mod
�∗−−→ D(�)-mod�

Γ−→ O
b-inv−−−−→ Vect,

and the first two functors are exact. Furthermore, the functor " ↦→ "b on O can be
also described as

" ↦→ Hom(M0 , ").
SinceM0 is projective in O by Proposition 8.2.5(ii), the functor b-inv is exact.

�

11.4. Faithfulness. As in the proof of Theorem 5.3.3, since Γ is already exact, its
faithfulness is equivalent to conservativity. It thus remains to show that Γ is
conservative. We will, in fact, sketch two proofs, the first one being more geometric
and the second one more algebraic.
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11.4.1. An approach via Lie-cohomology. First, recall that #-orbits of the flag variety
- = �/� are in canonical bĳection with elements of the Weyl group, . For each
F ∈ , , we denote by �, : -F → - the embedding of the corresponding locally
closed subvariety into -. Recall that we also have the following pair of adjoint
functors

triv : �(Vect)� �(g-mod) : (−)g

where (−)g is the derived functor of taking g-invariants. For " ∈ g-mod, it is also
customary to write H∗(g, ") instead of H∗("g), and call it the Lie cohomology of gwith
coefficients in". This cohomology can be computed using an explicit chain complex,
called the Chevalley complex. However, we won’t need this for our purposes.

Given a b-module ", we obviously have " ∈ n-mod. Moreover, the cohomology
H∗(n, ") acquires a natural structure of an h-module.

Lemma 11.4.2. (i) For any D-module F on -F , there exists a canonical isomorphism

H∗(n, Γ(-, �F∗,dRF)) ' H∗+ℓ (F)dR (-F ,F).

(ii) The h-action on the LHS is given by the character −F(�) − �.
We will now give a proof of conservativity using this lemma. But first, we need to

recall a certain construction for filtered varieties. Let - be a filtered algebraic variety,
that is

∅ = -−1 ⊂ -0 ⊂ -1 ⊂ · · · ⊂ -= = -,
where -: ’s are closed subvarieties of -. For each :, let �: : -: \ -:−1 → - and
8: : -: → - denote the embeddings. Then any F in the derived category of
D-modules on - is equipped with a filtration

(11.4.3) 0→ (80)∗(80)!F→ (81)∗(81)!F→ · · · → (8=−1)∗(8=−1)!F→ F,

whose associated graded (obtained by taking the cone of each map) is given by⊕
:(�:)∗(�:)!F.
Unless F = 0, there exists a (not necessarily closed) point G ∈ - such that �!GF ≠ 0.

From now until the rest of the proof, our zoo of Borel subgroup �, b = Lie �, Cartan
subalgebra h, and the nilradical n ⊂ bwill be the one associated to G.

The flag variety - has Bruhat stratification - =
⊔
F∈, -F , and hence a filtration

given by
- : =

⊔
ℓ (F)≤:

-F ; - : \ - :−1 =
⊔

ℓ (F)=:
-F .

Applying (−)n ◦ Γ to the filtration (11.4.3), we get a filtration on Γ(-,F)n, whose
associated graded pieces are given by⊕

ℓ (F)=:
Γ(-, �F∗,dR�

!
FF)n.

Thus, we obtain a spectral sequence converging to H8(n, Γ(-,F)), with second page
is given by

�
9:

2 =

⊕
ℓ (F)=:

H9(n, Γ(-, �F∗,dR�
!
FF)).
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Now, this spectral sequence is compatible with the h-action. By weight considera-
tions, we see that all differentials vanish, and we obtain a direct sum decomposition

H8(n, Γ(-,F)) '
⊕
F∈,

H8+ℓ (F)
dR (-F , �!FF).

The term corresponding toF = 1 is simply �!GF ≠ 0. Thus the LHS, and hence Γ(-,F)
is non-trivial. This concludes the proof of Theorem 9.4.1.

11.4.4. A remark on Lemma 11.4.2. We will now give some simple computations that
illustrate part (i) of Lemma 11.4.2.

Consider the open cell of the flag variety. In this case, we have the following

Lemma 11.4.5. Let F be a D-module on # . Then,

H∗(n, Γ(#,F)) ' H∗+dim#
dR (#,F).

Proof. We have the following diagram of adjoint functors

�(#) Vect

n-mod

ΓdR[dim#]
Γ

?![−dim#]

triv

Loc (−)n

where ? : # → SpecC. Note that the underlying functor of ?![−dim#] at the level
of quasi-coherent sheaves is just the pullback of quasi-coherent sheaves. It is easy to
see that Loc ◦ triv ' ?∗. Thus, ΓdR[dim#] ' (−)n ◦ Γ and we are done. �

Now, let us consider the opposite case, the smallest cell -1 ' pt of the flag variety.
From the proof of Proposition 9.5.1, we see that

Γ(-, �∗,dRC) ' "0 ,

where"0 is the Verma module corresponding to the trivial character of b. The claim
is thus that

("0)n ' C.

Let us compute explicitly why this holds for SL2, - = SL2/� ' P1. In this case,
�∗,dRC = C〈C , %〉/C〈C , %〉C ' C[%]. Moreover, the generator of n = 〈4〉 acts by C2%.
A quick computation shows that this is given precisely (up to rescaling) by the
derivative %. It is easy to check that the Lie cohomology of this object is indeed C.

11.4.6. An approach via block decomposition of the categoryO. Recall that Borel–Weil–Bott
theorem starts with the following commutative diagram for each character � of �:

�/� �� �Gm

pt ��

?

@

?′

�

@′

where the square is a pull-back square. The line bundle L� on �/� is defined by
pulling back the universal line bundle Luniv from �Gm.
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From now on we assume that � is anti-dominant (i.e. −� is dominant). In this
case, we use +� to denote the irreducible representation of � with lowest weight �.
By Borel–Weil, we have

+� = Γ(�/�,L�) = @∗?∗�∗Luniv ' @′∗?′∗�∗Luniv.

One can show that when � is anti-dominant, L� is ample.
Let V� = ?∗+�. It has a natural �-equivariant structure. To see this, first note

that a quasi-coherent �-equivariant sheaf on �/� is the same as a quasi-coherent
sheaf on ��, or equivalently, a �-representation. Now, V� could be alternatively
constructed as follows:

V� = @
∗?′∗?′∗�

∗L� ' @∗?′∗+�.
In the last term, we view +� as a quasi-coherent sheaf on ��.

Lemma 11.4.7. (i) There exists a natural �-equivariant morphism

V� → L�.

(ii) The �-equivariant coherent sheaf V� admits a filtration whose sub-quotients are
isomorphic to L�′, with multiplicity given by dim(+�)(�′). Moreover, the map in
the previous part is projecting to the last quotient.

Proof. The first part follows from adjunction.
For the second part, we operate at the level of ��. As a �-representation, ?′∗+�

is just +� with the �-action given by � → �. Now, any finite dimensional �-
representation has a finite filtration with 1-dimensional associated graded pieces
essentially by Lie’s theorem. We conclude by pulling this filtration back from �� to
�/�. �

For any D-module F on the flag variety -, we have a map of quasi-coherent
sheaves

(11.4.8) F ⊗O- V� → F ⊗O- L�.

Lemma 11.4.9. The map (11.4.8) admits a C-linear splitting.

Proof. The LHS admits a filtration whose associated graded is of the form F ⊗O- L�′ ,
where �′ is a weight of V�. The center /(g) acts on F ⊗O- L�′ via the character +(�′).
It remains to show that

+(�′) ≠ +(F0�)
when �′ ≠ �.12 Indeed, this means that �′ = F · � = F(F0� + �) − � for some F ∈, ,
or equivalently

F0� − F−1�′ = F−1� − �.
Thus, F0� − F−1�′ ∈ &+. Since � is regular dominant, this implies that F = 1. In
particular, � = �′ and so we are done. �

12Note that F0� appears on the RHS since +� is a representation of lowest weight �, and hence, of
highest weight F0�.
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Second proof of conservativity. Showing that Γ(-,F) does not vanish is equivalent to
showing that Γ(-,F) ⊗ +� does not vanish for some �. By projection formula, we
have

Γ(-,F) ⊗ +� ' Γ(-,F ⊗O- V�).
By the lemma above, the RHS surjects to Γ(-,F ⊗O- L�). Pick a weight � such that
−� is sufficiently positive. Then F ⊗O- L� is generated by global sections, and hence
Γ(-,F ⊗O- L�) ≠ 0. �

11.5. General case of Beilinson–Bernstein. For any character � of h, we have
previously defined

D�
�,b = D�/D�(1 − �(1), 1 ∈ b)

and
D�
�/� = EndD�-mod�,�(D�

-,b)
op.

Theorem 11.5.1 (Beilinson–Bernstein localization). (i) Themap*(g)" → Γ(-,D�
-
)

is an isomorphism, where " = +(�).
(ii) If � + � is dominant, then the functor Γ : D�

-
-mod→ Vect is exact.

(iii) If � is dominant, then Γ is conservative (and hence, faithful).
(iv) Under the assumption of (iii), Γ induces an equivalence of categories D�-mod→

*(g)"-mod.
In terms of techniques, essentially the same proof as for " = "0 goes through.
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