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1. Introduction

Let us begin by having a glimpse at the end goal of this course. If we had to distill

representation theory to one meaningless phrase, it would be something like “the study

of homomorphisms from an algebra 𝐴 to End𝑉 , where 𝑉 is a vector space”. Adding

the adjective “geometric” would then translate to ending with “where 𝑉 is the vector

space of invariants of some geometric object 𝑋” instead. How can one produce such

homomorphisms? The easiest setting is when we take 𝑋 to be a finite set, and 𝑉 =
Fun(𝑋,C) to be the set of C-valued functions on 𝑋 . It is an easy exercise to see that

End𝑉 ≃ Fun(𝑋 × 𝑋,C), where the product is given by convolution:

(𝑓 ∗ 𝑔)(𝑥1, 𝑥2) = ∑
𝑦∈𝑋

𝑓 (𝑥1, 𝑦)𝑔(𝑦, 𝑥2).

If we have a group Γ acting on 𝑋 , then we immediately have a homomorphism

Γ → End𝑉 , 𝑔 ↦ 𝟏Graph(𝑔),

where Graph(𝑔) = {(𝑥, 𝑔𝑥) ∶ 𝑥 ∈ 𝑋 } ⊂ 𝑋 ×𝑋 . However, it is a very old observation that

interesting algebras (e.g. Hecke algebras) appear inside such convolution algebras, but

usually don’t come from symmetries of the set 𝑋 .
A souped up version of this pictuUnder some geometric assumptions, one can show

that a subvariety 𝑍 ⊂ 𝑋 × 𝑋 defines an element [𝑍] ∈ End𝐻 ∗(𝑋). Thus a very natu-

ral thing to consider, given a collection of subvarieties 𝑍𝑖 ⊂ 𝑋 × 𝑋 , the subalgebra of

End𝐻 ∗(𝑋) generated by all [𝑍𝑖]’s. We are met with a question: how to compute such

things?

A helping hand comes from symmetries. It turns out that the spaces one wants to

consider often come equipped with an action of some Lie group 𝐺. Therefore it makes

sense to consider a cohomology theory which takes into account the 𝐺-action; this is
achieved by equivariant cohomology. It shares many properties of singular cohomology:

it is functorial (for equivariant maps), has Chern classes (for equivariant vector bundles),

and fundamental classes (of 𝐺-invariant subvarieties). However, one difference is that
it is highly non-trivial even for 𝑋 = pt; in general, Λ𝐺 ∶= 𝐻 ∗

𝐺(pt) ≠ C! In particular,

the pullback map Λ𝐺 ∶= 𝐻 ∗
𝐺(pt) → 𝐻 ∗

𝐺(𝑋) endows 𝐺-equivariant cohomology of any 𝑋
with the richer structure of a Λ𝐺-algebra.

We can then try to reduce our computations of convolution algebras by restricting to

the fixed points 𝑋𝐺
. This works best when 𝐺 = 𝑇 is a torus. In nice situations, we have:

∙ The map 𝐻 ∗
𝑇 (𝑋) → 𝐻 ∗(𝑋) is surjective, and its kernel is generated by the kernel

of Λ𝑇 → C = 𝐻 ∗(pt);
∙ The pullback 𝐻 ∗

𝑇 (𝑋) → 𝐻 ∗
𝑇 (𝑋𝑇 ) is injective, and becomes an isomorphism after

inverting enough elements of Λ𝑇 . Its image can be explicitly characterized;

∙ Pushforward along a proper 𝑇 -equivariant map 𝑋 → 𝑌 can be computed via

restriction to fixed points.

All these properties can, and do, sometimes fail; for instance, the second property makes

little sense when the fixed point set is empty. Nevertheless, all of them hold true in many

common situations; for example, when 𝑋 is a nonsingular projective variety and 𝑋𝑇
is

finite. Theorems about when these properties hold constitute the localization package.
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Returning to convolution algebras, going from 𝑋 to 𝑋𝑇
at a first glance brings us back

to the simple situation of functions on finite sets. However, the presence of Λ𝐺-module

structure unleashes combinatorial mayhem. Symmetric polynomials come into play,

diagrammatics naturally appear, and representation theory becomes infinitely richer.

We will explore some of these topics in the second half of the course.
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2. Eqivariant cohomology

Througout this course, we will work with algebraic varieties over C. The original

definition of equivariant cohomology by Borel requires using infinite dimensional topo-

logical spaces; because of that, we will slightly modify it in order to remain firmly in

the algebraic realm. The advantage is that the same construction can be used verbatim

with other cohomology theories. We consider cohomology with Z-coefficients, unless

otherwise stated.

2.1. 𝐺-torsors. Let 𝐸 be a complex vector bundle of rank 𝑛 on a space 𝑌 . To it, we can

associate the frame bundle Fr(𝐸) → 𝑌 , whose fiber over a point 𝑦 ∈ 𝑌 is the set of all

ordered bases (𝑣1,… , 𝑣𝑛) of 𝐸𝑦 .
There is a natural right 𝐺𝐿𝑛-action on Fr(𝐸):

(𝑣1,… , 𝑣𝑛) ⋅ 𝑔 = (𝑤1,… , 𝑤𝑛), 𝑤𝑗 = ∑
𝑖
𝑔𝑖𝑗𝑣𝑖,

which is transitive and free on each fiber Fr(𝐸)𝑦 . Moreover, Fr(𝐸) is an open of 𝐸⊕𝑛, and
thus a locally trivial fibration over 𝑌 .

Definition 2.1. Let B be a space, and 𝐺 a Lie group. A (right) 𝐺-torsor over B is a map

𝑝 ∶ E → B with a free right 𝐺-action on E, such that B is covered by opens 𝑈 with

𝐺-equivariant isomorphisms 𝑝−1(𝑈 ) ≃ 𝑈 × 𝐺.

In particular, the frame bundle Fr(𝐸) → 𝑌 is a 𝐺-torsor, called the associated principal
bundle (or torsor) to 𝐸.

Given a right𝐺-action on 𝑌 , and a left𝐺-action on𝑋 , we denote by 𝑌 ×𝐺𝑋 the quotient

of 𝑌 × 𝑋 by the relation (𝑦𝑔, 𝑥) ∼ (𝑦, 𝑔𝑥). When 𝑌 is a 𝐺-torsor over 𝐵, this quotient is
locally on 𝐵 isomorphic to 𝑈 × 𝑋 , and is therefore “nice” (separated etc) whenever 𝐵 is.

Example 2.2. Consider the natural action of 𝐺𝐿𝑛 on C𝑛
. We have an isomorphism

Fr(𝐸) ×𝐺𝐿𝑛 C𝑛 ∼−→ 𝐸, (𝑣1,… , 𝑣𝑛) × (𝑧1,… , 𝑧𝑛) ↦ ∑
𝑖
𝑧𝑖𝑣𝑖.

In a similar way, we have

Fr(𝐸) ×𝐺𝐿𝑛 (C𝑛)∨ ≃ 𝐸∨, Fr(𝐸) ×𝐺𝐿𝑛 ∧𝑑C𝑛 ≃ ∧𝑑𝐸, Fr(𝐸) ×𝐺𝐿𝑛 Sym𝑑 C𝑛 ≃ Sym𝑑 𝐸.

Exercise 2.3. Let 𝑑 ≤ 𝑛, and consider the fiber bundle Fr(𝑑, 𝐸) → 𝑌 , with

Fr(𝑑, 𝐸)𝑦 =
{
(𝑣1,… , 𝑣𝑑) ∶ 𝑣𝑖’s are linearly independent in 𝐸𝑦

}
.

Show that Fr(𝑑, 𝐸) ×𝐺𝐿𝑑 C𝑑
is naturally identified with the tautological rank 𝑑 bundle 𝑆

on Gr(𝑑, 𝐸) = Fr(𝐸) ×𝐺𝐿𝑛 Gr(𝑑,C𝑛).

2.2. Borel construction. A naive definition of equivariant cohomology would be sim-

ply 𝐻 ∗(𝑋/𝐺). This has two immediate issues:

∙ It is not homotopy invariant. For example, compare pt/Z with R/Z;

∙ The quotient 𝑋/𝐺 is typically very nasty; e.g. the quotient of C2 ⧵ {0} by C∗
,

𝑡 ⋅ (𝑥, 𝑦) = (𝑡𝑥, 𝑡−1𝑦) is not separated.
Both or these issues can be resolved by picking a 𝐺-torsor E → B with E contractible,

and replacing 𝑋/𝐺 by E ×𝐺 𝑋 . The issue is that one cannot typically choose E to be

algebraic, the classic example being C∞ ⧵ {0} → P∞
for 𝐺 = C∗

.
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Exercise 2.4. Check that C∞ ⧵ {0} is contractible.

We sidestep this by approximating E by a sequence of 𝐺-torsors E𝑁 → B𝑁 , such that

E𝑁 is path-connected and 𝐻 𝑖(E𝑁 ) = 0 for 0 < 𝑖 < 𝑁 .

Definition 2.5. Let 𝐺 be a Lie group, and 𝑋 a 𝐺-variety. We define

𝐻 𝑖
𝐺(𝑋) ∶= 𝐻

𝑖(E𝑁 ×𝐺 𝑋) for 𝑖 < 𝑁 .

Of course, in order for this to make sense, we need to construct E𝑁 ’s, and show that

the definition is independent of choices. Existence is taken care of by the following

lemma, which we will prove in Section 2.4:

Lemma 2.6. Let 𝐺 be a complex linear algebraic group, and 𝑁 > 0. We have a 𝐺-torsor
E → B on a smooth algebraic variety B, such that E𝑁 is path-connected and 𝐻 𝑖(E𝑁 ) = 0
for 0 < 𝑖 < 𝑁 .

Onto the independence from choices:

Lemma 2.7. If E → B, E′ → B′ are two path-connected 𝐺-torsors with 𝐻 𝑖(E) =
𝐻 𝑖(E′) = 0 for 0 < 𝑖 < 𝑁 , then there are canonical isomorphisms

𝐻 𝑖(E ×𝐺 𝑋) ≃ 𝐻 𝑖(E′ ×𝐺 𝑋)

for all 𝑖 < 𝑁 , compatible with cup product in this range.

Proof. Consider the product E × E′
with the diagonal 𝐺-action. We have a commuting

diagram

E × 𝑋 E × E′ × 𝑋 E × 𝑋

E ×𝐺 𝑋 (E × E′) ×𝐺 𝑋 E′ ×𝐺 𝑋

The horizontal maps are locally trivial fibrations, with fibers E and E′
. Recall Leray

spectral sequence:

𝐻𝑝(𝑋,𝐻 𝑞(𝐹)) ⇒ 𝐻𝑝+𝑞(𝑌 ) for a fibration 𝑌 → 𝑋 with fiber 𝐹 .

As easy consequence is that when 𝐹 is path-connected and 𝐻 𝑖(𝐹) = 0 for 0 < 𝑖 < 𝑁 , we

have 𝐻 𝑖(𝑋) ∼−→ 𝐻 𝑖(𝑌 ), with the map being pullback. We obtain

𝐻 𝑖(E ×𝐺 𝑋) ∼−→ 𝐻 𝑖((E × E′) ×𝐺 𝑋) ∼←− 𝐻 𝑖(E′ ×𝐺 𝑋)

for 𝑖 < 𝑁 , and these maps are compatible with cup product because pullbacks are. □

Any 𝐺-equivariant map 𝑓 ∶ 𝑋 → 𝑌 determines a map E ×𝐺 𝑋 → E ×𝐺 𝑌 , so we get

pullbacks

𝑓 ∗ ∶ 𝐻 𝑖
𝐺(𝑌 ) → 𝐻 𝑖

𝐺(𝑋).
In particular, the pullback along 𝑋 → pt defines a ring homomorphism

Λ𝐺 ∶= 𝐻 ∗
𝐺(pt) → 𝐻 ∗

𝐺(𝑋),

which makes 𝐻 ∗
𝐺(𝑋) into a graded-commutative Λ𝐺-algebra.

Exercise 2.8. Check that the isomorphisms from Lemma 2.7 are functorial, i.e. commute

with pullbacks.
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Summarizing, we have constructed a functor

𝐻 ∗
𝐺 ∶ 𝐺-spaces → Λ𝐺-algebras.

Let us consider the simple, and most important for us, example of𝐺 = C∗
. Take E𝑁 =

C𝑁 ⧵ {0}, with C∗
-action by scaling. This action is free, and the quotient is B𝑁 = P𝑁−1

.

Since E𝑁 is homotopic to S2𝑁−1
, and 𝐻 𝑖(S2𝑁−1) = 0 unless 𝑖 = 0, 2𝑁 −1, for any C∗

-space

𝑋 we have

𝐻 𝑖
C∗(𝑋) = 𝐻 𝑖((C𝑁 ⧵ {0}) ×C∗

𝑋) for 𝑖 < 2𝑁 − 1.
In particular, 𝐻 𝑖

C∗(pt) = 𝐻 𝑖(P𝑁−1) for 𝑖 < 2𝑁 − 1. Since we have a ring isomorphism

𝐻 ∗(P𝑁−1) ≃ Z[𝑡]/(𝑡𝑁 ), deg 𝑡 = 2 for all 𝑁 , this shows us that

ΛC∗ ≃ Z[𝑡].

Similarly, for an algebraic torus 𝐺 = 𝑇 = (C∗)𝑚, taking products of everything above

we get Λ𝑇 ≃ Z[𝑡1,… , 𝑡𝑚].

2.3. Chern classes and fundamental classes. Let 𝐺 be an algebraic group, and 𝑋 a

𝐺-space. A 𝐺-equivariant vector bundle on 𝑋 is a vector bundle 𝐸 → 𝑋 with a 𝐺-action
making the projection equivariant, such that for any 𝑔 ∈ 𝐺, 𝑥 ∈ 𝑋 the induced maps

𝑔 ∶ 𝐸𝑥 → 𝐸𝑔𝑥 are linear. An equivariant vector bundle gives rise to an ordinary vector

bundle E×𝐺 𝐸 → E×𝐺𝑋 . Choosing E appropriately, we can then define the equivariant

Chern classes of 𝐸:

𝑐𝐺𝑘 (𝐸) ∶= 𝑐𝑘(E ×𝐺 𝑋) in 𝐻 2𝑘
𝐺 (𝑋) = 𝐻 2𝑘(E ×𝐺 𝑋).

Assume 𝑋 is smooth. Then similarly, a 𝐺-invariant subvariety 𝑉 ⊂ 𝑋 of codimension 𝑑
gives rise to a subvariety E ×𝐺 𝑉 ⊂ E ×𝐺 𝑋 of codimension 𝑑. We define the equivariant

fundamental class by

[𝑉 ]𝐺 ∶= [E ×𝐺 𝑉 ] in 𝐻 2𝑑
𝐺 (𝑋) = 𝐻 2𝑑(E ×𝐺 𝑋).

In the future, we will often drop the superscripts 𝐺.

Exercise 2.9. Show that these definitions are independent of E.

Let us summarize some useful properties of Chern classes and fundamental classes;

they are proved exactly in the way you can guess they are.

∙ Additivity: 𝑐1(𝐿 ⊗ 𝑀) = 𝑐1(𝐿) ⊕ 𝑐1(𝑀) for line bundles 𝐿, 𝑀 ;

∙ Whitney formula: 𝑐(𝐸) = 𝑐(𝐸′)𝑐(𝐸′′) for an exact sequence 0 → 𝐸′ → 𝐸 → 𝐸′′ →
0;

∙ Let 𝐸 → 𝑋 be a vector bundle of rank 𝑟 , 𝑠 ∶ 𝑋 → 𝐸 a 𝐺-equivariant section, and
consider the zero locus 𝑍(𝑠) ⊂ 𝑋 . If codim𝑍(𝑠) = 𝑟 , then [𝑍(𝑠)] = 𝑐𝑟(𝐸);

∙ Let 𝑉 ,𝑊 ⊂ 𝑋 be two invariant subvarieties with proper intersection. If 𝑉 ⋅
𝑊 = ∑𝑚𝑖𝑍𝑖 as cycles, then all 𝑍𝑖’s are invariant as long as 𝐺 is connected. Then

[𝑉 ][𝑊 ] = ∑𝑚𝑖[𝑍𝑖] in 𝐻 ∗
𝐺(𝑋). In particular, if the intersection is empty, then

[𝑉 ][𝑊 ] = 0.

Exercise 2.10. Let C∗
act on C in a standard way, and let 𝑜 ⊂ C be the origin. Check that

[𝑜]2 ≠ 0 in 𝐻 ∗
C∗(C).
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Let us now look at some examples, beginningwith𝑋 = pt. In this case a𝐺-equivariant
vector bundle is nothing else than a representation of 𝐺, and so each representation 𝑉
has Chern classes 𝑐𝑖(𝑉 ) ∈ Λ2𝑖

𝐺.

Example 2.11. Let 𝐺 = C∗
, and consider the 1-dimensional representations C𝑎, 𝑎 ∈ Z.

We have the isomorphisms

(C∗ ⧵ 0) ×C∗
C1 O(−1)

(C∗ ⧵ 0) ×C∗ pt P𝑁−1

∼

∼

and so, taking 𝑡 = 𝑐1(C1), we see that ΛC∗ is generated by the Chern class of the standard

representation. This gives us a canonical choice of a generator forΛC∗ . Note that we have

𝑐1(C𝑎) = 𝑎𝑡 by additivity.

Example 2.12. Similarly, let 𝑇 = (C∗)𝑛 act on 𝑉 = C𝑛
by scaling coordinates. For 1 ≤

𝑖 ≤ 𝑛, we have a 1-dimensional representation C𝑡𝑖 of 𝑇 , which only remembers the 𝑖-th
component of 𝑇 . Let us denote 𝑡𝑖 = 𝑐1(C𝑡𝑖); then we have Λ𝑇 = Z[𝑡1,… , 𝑡𝑛]. By Whitney

formula,

𝑐𝑖(𝑉 ) = 𝑒𝑖(𝑡1,… , 𝑡𝑛),
where 𝑒𝑖 is the 𝑖-th elementary symmetric polynomial.

Now let 𝑉 be a representation of 𝐺 of dimension 𝑛. Then 𝐺 acts on P(𝑉 ), the tauto-
logical subbundle O(−1) and its dual O(1). Let 𝜁 = 𝑐1(O(1)) ∈ 𝐻 2

𝐺(P(𝑉 )).

Proposition 2.13. We have a ring isomorphism

𝐻 ∗
𝐺(P(𝑉 )) = Λ𝐺[𝜁 ]/(𝜁 𝑛 + 𝑐1𝜁 𝑛−1 + … + 𝑐𝑛),

where 𝑐𝑖 = 𝑐𝑖(𝑉 ) ∈ Λ𝐺 are the Chern classes.

Proof. Note that E ×𝐺 P(𝑉 ) can be identified with the projective bundle P(E ×𝐺 𝑉 ), in
such a way that O(1) goes to O(1). Then the claim results from a general formula for

cohomology of projective bundle in terms of cohomology of the base. □

For example, let 𝑇 = (C∗)𝑛 act on 𝑉 = C𝑛
in the standard way. Then

𝐻 ∗
𝑇 (P(𝑉 )) = Z[𝑡1,… , 𝑡𝑛, 𝜁 ]/∏

𝑖
(𝜁 + 𝑡𝑖).

Similarly, let 𝐺 = 𝐺𝐿(𝑉 ) act on 𝑉 . We will see in the next section that Λ𝐺 =
Z[𝑐1,… , 𝑐𝑛], and so we get

𝐻 ∗
𝐺(P(𝑉 )) = Z[𝑐1,… , 𝑐𝑛, 𝜁 ]/(𝜁 𝑛 + 𝑐1𝜁 𝑛−1 + … + 𝑐𝑛).

2.4. The general linear group. Let 𝐺 = 𝐺𝐿(𝑉 ) act on 𝑉 , dim𝑉 = 𝑛, and consider the
Chern classes 𝑐𝑖 = 𝑐𝑖(𝑉 ) ∈ Λ2𝑖

𝐺.

Proposition 2.14. We have Λ𝐺 = Z[𝑐1,… , 𝑐𝑛].

Proof. We begin by constructing an explicit collection of approximating varieties E𝑁 for

𝐺𝐿(𝑉 ); by restriction, this will also show their existence for any linear group. Let𝑁 > 𝑛,
and consider E𝑁 ∶= Emb(𝑉 ,C𝑁 ), the space of embeddings 𝑉 ↪ C𝑁

. It is clearly open



8 ALEXANDRE MINETS

in the vector space of all linear mapsHom(𝑉 ,C𝑁 ), with the complement being the locus

𝑍𝑛−1 of all maps with non-trivial kernel. Consider the vector bundle 𝐾 → P(𝑉 ), whose
fiber at a line 𝐿 ⊂ 𝑉 is the space of maps 𝐴 ∈ Hom(𝑉 ,C𝑁 ) such that 𝐿 ⊂ Ker𝐴. We have

a surjective map

𝐾 → 𝑍𝑛−1, (𝐿, 𝐴) ↦ 𝐴,
which is one-to-one on the generic locus of 𝑍𝑛−1 of maps of rank 𝑛 − 1. Therefore 𝑍𝑛−1
is irreducible, and dimC 𝑍𝑛−1 = (𝑛 − 1) + (𝑛 − 1)𝑁 = 𝑛𝑁 − (𝑁 − 𝑛 + 1).

Lemma 2.15. We have 𝐻 𝑖(E𝑁 ) = 0 for 0 < 𝑖 ≤ 2(𝑁 − 𝑛).

Proof. From the long exact sequence in cohomology, we have

𝐻 𝑖(E𝑁 ) = 𝐻 𝑖+1(Hom(𝑉 ,C𝑁 ),E𝑁 ).

Recall that 𝑍𝑛−1 has real codimension 2(𝑁 − 𝑛 + 1). When 𝑖 ≤ 2(𝑁 − 𝑛), we have 𝑖 + 1 <
2(𝑁 − 𝑛 + 1), so that the relative cohomology group above vanishes. □

Observe that B𝑁 = E𝑁/𝐺𝐿𝑛 = Gr(𝑛,C𝑁 ). Moreover, the map E𝑁 → B𝑁 is the frame

bundle Fr(𝑆) associated to the tautological bundle 𝑆 on Gr(𝑛,C𝑁 ). Therefore the vector
bundle E𝑁 ×𝐺𝐿(𝑉 ) 𝑉 identifies with 𝑆 by Exercise 2.3, and so the Chern classes 𝑐𝑖(𝑉 )
identify with Chern classes 𝑐𝑖(𝑆).

Exercise 2.16. Let 𝑆 be the tautological rank 𝑛 vector bundle on Gr(𝑛,C𝑁 ), and let 𝑄 be

the quotient bundle C𝑁/𝑆. Then

𝐻 ∗(Gr(𝑛,C𝑁 )) = Z[𝑐1(𝑆),… , 𝑐𝑛(𝑆), 𝑐1(𝑄),… , 𝑐𝑁−𝑛(𝑄)]/(𝑐(𝑆)𝑐(𝑄) = 1).

Hint: use the variety of partial flags {C𝑛 ⊂ C𝑛+1 ⊂ C𝑁 }, and proceed by induction on 𝑛.

Unraveling the relations, we have one relation in each (even) degree. However, the

first 𝑁 −𝑛 relations simply express 𝑐𝑖(𝑄)’s in terms of 𝑐𝑖(𝑆)’s. Thus we can remove these

relations together with 𝑐𝑖(𝑄)’s, and the remaining relations between 𝑐𝑖(𝑆)’s have degree
at least 2(𝑁 − 𝑛 + 1). Choosing 𝑁 big enough, we see that each Λ2𝑖

𝐺 is freely generated

by 𝑐𝑖(𝑆)’s. □

Note that for 𝑇 = (C∗)𝑛, we now have two choices of approximating spaces. On one

hand, we have E𝑁 = (C𝑁 ⧵ 0)𝑛, which is identified with 𝑁 × 𝑛 matrices with non-zero

columns. On the other hand, we can embed 𝑇 ⊂ 𝐺𝐿𝑛, and consider E′
𝑁 = Emb(𝑉 ,C𝑁 ),

which is identified with 𝑁 × 𝑛 matrices with linearly independent columns. We have a

commutative diagram

E′
𝑁 E𝑁

Grsplit(𝑛,C𝑁 ) (P𝑁−1)𝑛

where Grsplit(𝑛,C𝑁 ) parameterizes subspaces 𝑉 ⊂ C𝑁
together with a decomposition

into lines 𝑉 = 𝐿1 ⊕ … ⊕ 𝐿𝑛. We have an obvious forgetful map 𝜋 ∶ Grsplit(𝑛,C𝑁 ) →
Gr(𝑛,C𝑁 ).

Exercise 2.17. The pullback 𝜋∗
induces the inclusion

Λ𝐺𝐿𝑛 = Z[𝑐1,… , 𝑐𝑛] → Z[𝑡1,… , 𝑡𝑛] = Λ𝑇 ,
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defined by 𝑐𝑖 ↦ 𝑒𝑖(𝑡1,… , 𝑡𝑛).

Remark 2.18. The map 𝜋 can be understood as the “universal map for the splitting prin-

ciple”. Namely, given a vector bundle 𝐸 → 𝑋 of rank 𝑛 and 𝑑 ≤ 𝑛, we can consider

Grsplit(𝑑, 𝐸) = Fr(𝐸) ×𝐺𝐿𝑛 Grsplit(𝑑,C𝑛).

When 𝑑 = 𝑛, the pullback of 𝐸 along 𝑋 ′ ∶= Grsplit(𝑛, 𝐸) → 𝑋 splits into line bundles,

and embeds 𝐻 ∗(𝑋) into 𝐻 ∗(𝑋 ′).

Remark 2.19. Let 𝐺 be a reductive group. We always have a map Λ𝐺 → Λ𝑊𝑇 ; however,

it is neither surjective nor injective in general. For example, Λ𝑃𝐺𝐿𝑛 is not completely

known! Nevertheless, we will see that this map is an isomorphism over Q, and return

to its description over Z later in the course.

Example 2.20. WehaveΛ𝑆𝐿𝑛 = Z[𝑐2,… , 𝑐𝑛], andΛ𝑆𝑝2𝑛 = Z[𝑐2, 𝑐4,… , 𝑐2𝑛]. Λ𝑆𝑂𝑛 is typically
not generated by the Chern classes of the standard representation.

2.5. Changing 𝐺. We have already shown that a 𝐺-equivariant map 𝑓 ∶ 𝑋 → 𝑋 ′

induces a pullback 𝑓 ∗ ∶ 𝐻 ∗
𝐺(𝑋 ′) → 𝐻 ∗

𝐺(𝑋). Let us extends this slightly by allowing 𝐺 to

vary. Namely, let 𝜑 ∶ 𝐺 → 𝐺′
be a group homomorphism, and suppose 𝐺 acts on 𝑋 , 𝐺′

acts on 𝑋 ′
.

Definition 2.21. A map 𝑓 ∶ 𝑋 → 𝑋 ′
is equvariant with respect to 𝜑 if

𝑓 (𝑔𝑥) = 𝜑(𝑔)𝑓 (𝑥) for all 𝑔 ∈ 𝐺, 𝑥 ∈ 𝑋 .

Given such a map, we define a pullback 𝑓 ∗ ∶ 𝐻 ∗
𝐺′(𝑋 ′) → 𝐻 ∗

𝐺(𝑋). More precisely, let

E → B, E′ → B′
be approximation bundles with 𝐻 𝑖(E) = 𝐻 𝑖(E′) = 0 for 0 < 𝑖 <

𝑁 . Then 𝐺 acts on E × E′
diagonally: (𝑒, 𝑒′)𝑔 = (𝑒𝑔, 𝑒′𝜑(𝑔)). The projection to E′

is

equivariant, and so we have maps

(E × E′) ×𝐺 𝑋 → (E × E′) ×𝐺 𝑋 ′ → E′ ×𝐺
′
𝑋 ′.

The action of 𝐺 on E×E′
is free, 𝐻 𝑖(E×E′) = 0 for 0 < 𝑖 < 𝑁 , and so 𝐻 ∗

𝐺(𝑋) = 𝐻 ∗((E×
E′) ×𝐺 𝑋) for 𝑖 < 𝑁 . Taking pullbacks, we get the desired map 𝑓 ∗ ∶ 𝐻 ∗

𝐺′(𝑋 ′) → 𝐻 ∗
𝐺(𝑋).

Exercise 2.22. Check that when 𝐺 = 𝐺′
, 𝜑 = id this map agrees with our old pullback.

Check that this pullback is functorial.

If 𝐸′ → 𝑋 ′
is a 𝐺′

-equivariant vector bundle, its pullback 𝑓 ∗𝐸′ is a 𝐺-equivariant
vector bundle on 𝑋 , and we have 𝑓 ∗(𝑐𝑘(𝐸′)) = 𝑐𝑘(𝐸).

Example 2.23. Let 𝑋 = 𝑋 ′ = pt, and 𝜑 ∶ 𝐺 → 𝐺′
. Pullback gives us a homomorphism

Λ𝐺′ → Λ𝐺. In particular, for 𝐺 = 𝑇 ⊂ 𝐺𝐿𝑛 = 𝐺′
we recover the map from Exercise 2.17.

Example 2.24. Let 𝐺 act freely on 𝑋 , 𝑋 ′ ∶= 𝐺\𝑋 . The quotient map is equivariant with

respect to 𝜑 ∶ 𝐺 → {𝑒}, and the pullback 𝐻 𝑖
𝐺(𝑋) → 𝐻 𝑖(𝐺\𝑋) is an isomorphism. Indeed,

the pullback along E ×𝐺 𝑋 → 𝐺\𝑋 is a locally trivial fibration with fiber E. Choosing

E acyclic enough, Leray spectral sequence shows this is an isomorphism on 𝐻 𝑖
.

Example 2.25. Let𝐺 act trivially on𝑋 . IfΛ𝐺 is free overZ, we have𝐻 ∗
𝐺(𝑋) = Λ𝐺⊗𝐻 ∗(𝑋).

Indeed, we have E ×𝐺 𝑋 ≃ B ×𝑋 , and so 𝐻 ∗
𝐺(𝑋) ≃ 𝐻 ∗(𝐵 ×𝑋). We conclude by Künneth

isomorphism, which holds under our assumptions. In particular, Λ𝐺⊗Λ𝐺′ ≃ Λ𝐺×𝐺′ when

Λ𝐺 is free over Z.
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We have Mayer-Vietoris sequence in equivariant cohomology:

⋯ → 𝐻 𝑘
𝐺(𝑈 ∪ 𝑉 ) → 𝐻 𝑘

𝐺(𝑈 ) ⊕ 𝐻
𝑘
𝐺(𝑉 ) → 𝐻 𝑘

𝐺(𝑈 ∩ 𝑉 ) → 𝐻 𝑘+1
𝐺 (𝑈 ∪ 𝑉 ) → ⋯

Exercise 2.26. Let C∗
act on P1

by 𝑧[𝑎∶𝑏] = [𝑎∶𝑧𝑏]. Glue together the two fixed points

0 and ∞ to obtain a nodal curve 𝑋 . Show that

𝐻 ∗
C∗(𝑋) ≃ ΛC∗[𝛼]/(𝛼2, 𝑡𝛼),

where deg𝛼 = 1, and ΛC∗ = Z[𝑡].

Proposition 2.27. Let 𝑓 ∶ 𝑋 → 𝑋 ′, 𝜑 ∶ 𝐺 → 𝐺′ as before. Assume that the pullbacks
𝐻 𝑖(𝐺′) → 𝐻 𝑖(𝐺), 𝐻 𝑖(𝑋 ′) → 𝐻 𝑖(𝑋) are isomorphisms for 𝑖 < 𝑁 . Then 𝑓 ∗ ∶ 𝐻 𝑖

𝐺′(𝑋) →
𝐻 𝑖
𝐺(𝑋) is an isomorphism for 𝑖 < 𝑁 .

Proof. First, let us consider the case 𝐺 = 𝐺′
, 𝜑 = id. In this case we need to prove

𝐻 𝑖(E ×𝐺 𝑋) ≃ 𝐻 𝑖(E ×𝐺 𝑋 ′). Both spaces are locally trivial fibrations over B, which

is proper by our construction in Section 2.4. If the fibrations are trivial, the statement

is obvious; otherwise we pick a finite trivializing cover of B and conclude by Mayer-

Vietoris.

Let us apply this to any approximation space E → B for𝐺. We get that𝐻 𝑖(E×𝐺𝐺′) →
𝐻 𝑖(E) is an isomorphism for 𝑖 < 𝑁 , and so E ×𝐺 𝐺′

is an approximation space for 𝐺′
.

Finally, in the general case we get

𝐻 𝑖
𝐺′(𝑋 ′) ≃ 𝐻 𝑖((E ×𝐺 𝐺′) ×𝐺

′
𝑋 ′) ≃ 𝐻 𝑖(E ×𝐺 𝑋 ′) ≃ 𝐻 𝑖

𝐺(𝑋
′) ≃ 𝐻 𝑖

𝐺(𝑋),

and so we’re done. □

Corollary 2.28. If 𝑓 , 𝜑 are homotopy equivalences, then 𝐻 ∗
𝐺′(𝑋 ′) ≃ 𝐻 ∗

𝐺(𝑋).

Example 2.29. Let 𝐺 be a linear algebraic group acting on 𝑋 . It has a maximal unipotent

subgroup, called the unipotent radical 𝑅𝑢(𝐺) ⊂ 𝐺. We have an exact sequence

1 → 𝑅𝑢(𝐺) → 𝐺 → 𝐺red → 1,

where 𝐺red
is reductive. Any unipotent group is isomorphic to an affine space, so that

𝐺 → 𝐺red
is a homotopy equivalence, and 𝐻𝐺(𝑋) ≃ 𝐻𝐺red(𝑋). For instance, this applies

to 𝐺 = 𝐵 ⊂ 𝐺𝐿𝑛 standard Borel, and 𝐺red = 𝑇 maximal torus.

2.6. Gysin pushforward. Let 𝑓 ∶ 𝑋 → 𝑌 be a proper morphism of smooth algebraic

varieties over C. Recall that in this situation, we have pullback in compactly supported

cohomology, and so pushforward in cohomology by Poincaré duality:

𝐻 ∗(𝑋) ≃ 𝐻 2 dim𝑋−∗
𝑐 𝑋∨ (𝑓 ∗)∨−−−−→ 𝐻 2 dim𝑋−∗

𝑐 𝑌 ∨ ≃ 𝐻 ∗+2(dim 𝑌−dim𝑋).

Note that the sign of this morphism in principle depends on the choice of orientations

on 𝑋 , 𝑌 . Here we induce them from the complex structure.

Using our usual strategy of replacing 𝐻 ∗
𝐺(𝑋) with 𝐻 ∗(E ×𝐺 𝑋), we obtain a pushfor-

ward 𝑓∗ ∶ 𝐻 ∗
𝐺(𝑋) → 𝐻 ∗

𝐺(𝑌 ) when 𝑓 is 𝐺-equivariant. Let us recall the usual properties:

(1) Functoriality: (𝑔𝑓 )∗ = 𝑔∗𝑓∗ for 𝑋
𝑓−→ 𝑌 𝑔−→ 𝑍 ;

(2) Projection formula: 𝑓∗(𝑓 ∗(𝛽) ∪ 𝛼) = 𝛽 ∪ 𝑓∗(𝛼). In particular, 𝑓∗ is Λ𝐺-linear (set
𝛽 ∈ Λ𝐺);
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(3) Base change: for a fiber square of equivariant maps

𝑋 ′ 𝑋

𝑌 ′ 𝑌

𝑔′

𝑓 ′ 𝑓

𝑔

with 𝑓 proper and dim 𝑌 − dim𝑋 = dim 𝑌 ′ − dim𝑋 ′
, we have 𝑔∗𝑓∗ = 𝑓 ′

∗ (𝑔 ′)∗;
(4) Self-intersection: if 𝜄 ∶ 𝑋 ↪ 𝑌 is a closed immersion of codimension 𝑑, we have

𝜄∗𝜄∗(−) = 𝑐𝑑(𝑁𝑋𝑌 ) ∪ −;
(5) Image of subvarieties: let 𝑉 ⊂ 𝑋 closed irreducible, and 𝑊 = 𝑓 (𝑉 ) ⊂ 𝑌 . Then

𝑓∗([𝑉 ]) = deg(𝑉/𝑊 )[𝑊 ] if dim𝑉 = dim𝑊 , and zero otherwise.

Exercise 2.30. Let 𝑓 ∶ 𝑋 → 𝑌 proper 𝐺-equivariant, and 𝜑 ∶ 𝐺′ → 𝐺 a group homo-

morphism. Then the following diagram commutes:

𝐻 ∗
𝐺(𝑋) 𝐻 ∗

𝐺′(𝑋)

𝐻 ∗
𝐺(𝑌 ) 𝐻 ∗

𝐺′(𝑌 )

𝑓∗ 𝑓∗

Example 2.31. Let a torus 𝑇 act on P1
via characters 𝜒1 ≠ 𝜒2, that is

𝑧[𝑎∶𝑏] = [𝜒1(𝑧)𝑎∶𝜒2(𝑧)𝑏].

Denote Λ = Λ𝑇 = Z[𝑇 ∨]. Recall that

𝐻 ∗
𝑇 (P

1) ≃ Λ[𝜁 ]/(𝜁 + 𝜒1)(𝜁 + 𝜒2),

where 𝜁 = 𝑐1(O(1)). Let us denote the fixed points 0 = [1∶0],∞ = [0∶1], and 𝜒 = 𝜒2−𝜒1,
and the inclusion 0 ∪∞ ⊂ P1

by 𝜄 = (𝜄0, 𝜄∞). Since 𝑧[1∶𝑏] = [𝜒1(𝑧)∶𝜒2(𝑧)𝑏] = [1∶𝜒 (𝑧)𝑏],
the tangent space 𝑇0P1

has weight 𝜒 , and similarly 𝑇∞P1 has weight −𝜒 . Since O(1) is
the dual of tautological line bundle, we have

𝜄∗0𝜁 = −𝜒1, 𝜄∗∞𝜁 = −𝜒2.

In particular, the pullback 𝜄∗ is injective. By self-intersection, 𝜄∗0[0] = 𝜒 and 𝜄∗∞[∞] = −𝜒 .
Furthermore, by base change 𝜄∗0[∞] = 𝜄∗∞[0] = 0. Putting everything together, we have

𝜄∗[0] = 𝜄∗𝜁 + 𝜒2, 𝜄∗[∞] = 𝜄∗𝜁 + 𝜒1, and so by injectivity of 𝜄∗

[0] = 𝜁 + 𝜒2, [∞] = 𝜁 + 𝜒1.

What have we learned? Let us write the Λ-linear maps 𝜄∗, 𝜄∗ explicitly:

𝜄∗ ∶Λ[𝜁 ]/(𝜁 + 𝜒1)(𝜁 + 𝜒2) → Λ ⊕ Λ, 𝜁 ↦ (−𝜒1,−𝜒2);
𝜄∗ ∶Λ ⊕ Λ → Λ[𝜁 ]/(𝜁 + 𝜒1)(𝜁 + 𝜒2), (𝑎, 𝑏) ↦ 𝑎𝜒2 + 𝑏𝜒1 + (𝑎 + 𝑏)𝜁 .

Both these maps are injective, and both become isomorphisms as soon as we invert

𝜒 = 𝜒1 − 𝜒2. Moreover, the image of 𝜄∗ is precisely the pairs (𝑎, 𝑏) where the difference
𝑎 − 𝑏 is divisible by 𝜒 .
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3. Eqivariant localization

Our main goal for now is to prove localization theorem, that is an isomorphism

𝑆−1𝐻 ∗
𝑇 (𝑋) ≃ 𝑆

−1𝐻 ∗
𝑇 (𝑋

𝑇 )

for some multiplicative subset 𝑆 ⊂ Λ𝑇 . We will first deal with the simpler case of a

smooth variety 𝑋 , where we have stronger results. But first, we will need some prepa-

ration.

3.1. Local structure of group actions. In differential geometry, we have the following

simple result:

Lemma 3.1. Let 𝐾 be a compact Lie group acting on a smooth manifold 𝑋 , and O ⊂ 𝑋 a
𝐾 -orbit. There exist 𝐾 -invariant neighborhoods 𝑈 , 𝑉 of O in 𝑋 , 𝑁O𝑋 respectively, together
with a 𝐾 -equivariant isomorphism 𝑈 ≃ 𝑉 , which restricts to identity on O.

Proof. Choose a 𝐾 -invariant metric on 𝑋 (such metric always exists by averaging, since

𝐾 is compact), and take 𝑈 to be a tubular neighborhood of O in 𝑋 . □

Now let 𝐺 be a linear algebraic group acting on a smooth variety 𝑋 . In algebraic

geometry, the topology is much coarser, so we will need additional hypotheses.

Luna’s slice theorem. Let 𝑋 = Spec𝐴 be a smooth affine variety, 𝐺 a reductive group
acting on 𝑋 , and O = 𝐺𝑥 a closed 𝐺-orbit. Then there exists an étale neighborhood 𝑈 of O
in 𝑋 , which is isomorphic to an étale neighborhood 𝑉 of O in 𝑁O𝑋 .

Sketch of proof. Let us denote by 𝐺𝑥 the stabilizer of 𝑥 ∈ O. Since O is closed and 𝑋 is

affine, we immediately see that 𝐺/𝐺𝑥 is affine. By Matsushima’s criterion, this implies

that 𝐺𝑥 is reductive.
Let m ⊂ 𝐴 be the maximal ideal of 𝑥 , and consider the projection m ↠ m/m2

. Since

𝐺𝑥 is reductive, it admits a 𝐺𝑥-equivariant section. In particular, this provides us with

a map Spec Sym(m/m2) → m ⊂ 𝐴, and so with a map 𝜁 ∶ 𝑋 → 𝑇𝑥𝑋 , which is by

construction étale at 𝑥 . Using reductiveness of 𝐺𝑥 again, we can split 𝑇𝑥𝑋 = 𝑇𝑥O⊕𝑁 in

a 𝐺𝑥-equivariant way. Denoting𝑊 = 𝜁 −1(𝑁 ), we can extend the inclusion𝑊 ⊂ 𝑋 to a

𝐺-equivariant map 𝐺 ×𝐺𝑥 𝑊 → 𝑋 via 𝐺-action. At the same time, 𝜁 gives rise to a map

𝐺 ×𝐺𝑥 𝑊 → 𝐺 ×𝐺𝑥 𝑁 . Both of these maps are étale at 𝑥 ∈ O.

We omit the proof of the following lemma of Luna:

Lemma 3.2. Let 𝜑 ∶ 𝑋 → 𝑌 be a 𝐺-equivariant map of smooth affine 𝐺-varieties, and
O ⊂ 𝑋 a closed 𝐺-orbit. Assume that 𝜑 is étale at a point 𝑥 ∈ O, 𝜑(O) is closed in 𝑌 , and 𝜑
is injective onO. Then there exists opensO ⊂ 𝑈 ⊂ 𝑋 , 𝜑(O) ⊂ 𝑉 ⊂ 𝑌 , such that 𝜑 ∶ 𝑈 → 𝑉
is étale. □

This lemma applies to both maps 𝐺 ×𝐺𝑥 𝑊 → 𝑋 , 𝐺 ×𝐺𝑥 𝑊 → 𝐺 ×𝐺𝑥 𝑁 , and so we may

conclude. □

What about the case when the variety is not affine? Luckily, we can get around this

requirement in the cases we need.

Sumihiro’s linearization. Let 𝑋 be a normal quasi-projective 𝐺-variety, where 𝐺 is a
connected linear algebraic group. There exists a locally closed embedding 𝑋 ↪ P𝑁 together



EQUIVARIANT METHODS IN REPRESENTATION THEORY 13

with a group homomorphism 𝜑 ∶ 𝐺 → 𝑃𝐺𝐿𝑁+1, such that the 𝐺-action on 𝑋 is induced
from the natural 𝑃𝐺𝐿𝑁+1-action onP𝑁 . Moreover, when𝑋 is only normal, each point 𝑥 ∈ 𝑋
admits a 𝐺-invariant quasi-projective neighborhood.

We will not prove this theorem, and instead deduce the result we need.

Corollary 3.3. Let 𝐺 be a reductive group, 𝑋 a smooth 𝐺-variety, 𝑥 ∈ 𝑋𝐺 a fixed point.
Then 𝑥 has a 𝐺-invariant affine neighborhood.

Proof. By Sumihiro’s result, we can assume that 𝑋 is a locally closed subvariety of P(𝑉 ),
where 𝑉 is a𝐺-representation. Since 𝑥 is a fixed point and𝐺 is reductive, we can further

assume that 𝑉 = 𝐿 ⊕ 𝑉 ′
as a 𝐺-representation, where 𝑥 = [𝐿].

If 𝑋 is closed in P(𝑉 ), we obtain the desired affine neighborhood as the complement

ofP(𝑉 ′)∩𝑋 . Otherwise, let 𝑌 = 𝑋⧵𝑋 , and it suffices to find a homogeneous𝐺-invariant
function 𝑓 on P(𝑉 ), such that 𝑓 |𝑌 = 0 and 𝑓 (𝑥) ≠ 0. Let 𝑥0,… , 𝑥𝑁 be the homogeneous

coordinates on P(𝑉 ), where 𝑥0 corresponds to the line 𝐿. Let 𝐼 be the homogeneous

ideal of 𝑌 , and 𝐽 = (𝑥1,… , 𝑥𝑁 ) the homogeneous ideal of 𝑥 = [𝐿]. Since 𝑥 ∉ 𝑌 , for any
homogeneous function ℎ on P(𝑉 ) of positive degree we can find 𝑘 ∈ N and ℎ1 ∈ 𝐼 ,
ℎ2 ∈ 𝐽 such that 𝑓 𝑘 = ℎ1+ℎ2. Furthermore, since𝐺 is reductive we have a𝐺-equivariant
projector map 𝜋 ∶ C[𝑥0,… , 𝑥𝑁 ] → C[𝑥0,… , 𝑥𝑁 ]𝐺. Let ℎ = 𝑥0. By the above, we have

𝑥𝑘0 = 𝜋(𝑥𝑘0 ) = 𝜋(ℎ1) + 𝜋(ℎ2),

and we can set 𝑓 = 𝜋(ℎ1). □

Remark 3.4. A similar proof shows that any affine 𝐺-orbit in 𝑋 has a 𝐺-invariant affine

neighborhood.

3.2. Localization theorem for smooth varieties. Let us begin with a local charac-

terization of fixed points.

Lemma 3.5. Let 𝐺 be a connected reductive group acting on a smooth variety 𝐺, and
𝑝 ∈ 𝑋𝐺. Then 𝑝 is an isolated fixed point iff the 𝐺-representation 𝑇𝑝𝑋 does not contain the
trivial representation.

Proof. By Luna’s slice theorem and Corollary 3.3, we can assume that 𝑝 is the origin in

a 𝐺-representation 𝑋 . The lemma easily follows. □

In other words, when𝐺 = 𝑇 is torus the lemma tells us that 𝑝 is isolated iff 𝑐top(𝑇𝑝𝑋) =
0.

Remark 3.6. Note that the condition of 𝐺 being reductive is crucial for the lemma to

hold. Indeed, let the additive group C act on P1
via 𝑡[𝑎∶𝑏] = [𝑎∶𝑏 + 𝑡𝑎]. Then the

only fixed point is [0∶1], but C does not admit non-trivial one-dimensional algebraic

representations.

Theorem 3.7. Let 𝑋 be smooth, and 𝑇 an algebraic torus acting on 𝑋 . Assume that 𝑋𝑇

is finite, and denote 𝑒 = ∏𝑝∈𝑋𝑇 𝑐top(𝑇𝑝𝑋). Suppose that we have a collection of 𝑚 ≤ #𝑋𝑇

classes in 𝐻 ∗
𝑇 (𝑋), which restrict to a basis of 𝐻 ∗(𝑋). Then 𝑚 = #𝑋𝑇 , and both maps

𝑖∗ ∶ 𝐻 ∗
𝑇 (𝑋) → 𝐻 ∗

𝑇 (𝑋
𝑇 ), 𝑖∗ ∶ 𝐻 ∗

𝑇 (𝑋
𝑇 ) → 𝐻 ∗

𝑇 (𝑋)

become isomorphisms upon inverting 𝑒. Furthermore, 𝑖∗ is injective.
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Proof. Let 𝑛 = #𝑋𝑇
, and write

Λ⊕𝑛𝑇 = 𝐻 ∗
𝑇 (𝑋

𝑇 ) 𝑖∗−→ 𝐻 ∗
𝑇 (𝑋)

𝑖∗−→ 𝐻 ∗
𝑇 (𝑋

𝑇 ) = Λ⊕𝑛𝑇 .

By the self-intersection property of Gysin map, the composition 𝑖∗𝑖∗ ∈ EndΛ𝑇 (Λ⊕𝑛𝑇 ) can
be represented as a diagonal matrix with entries {𝑐top(𝑇𝑝𝑋) ∶ 𝑝 ∈ 𝑋𝑇 }. Thus det(𝑖∗𝑖∗) =
𝑒, which implies that 𝑖∗ is injective, and 𝑖∗ becomes surjective upon inverting 𝑒. The

condition on a collection of classes in 𝐻 𝑇
∗ (𝑋) shows (say, by graded Nakayama lemma)

that 𝐻 𝑇
∗ (𝑋) is generated by 𝑚 elements as a Λ𝑇 -module. From the injectivity of 𝑖∗ we

conclude that 𝑚 = 𝑛, and 𝐻 𝑇
∗ (𝑋) is a free Λ𝑇 -module of rank 𝑛. Thus 𝑖∗ becomes an

isomorphism after inverting 𝑒, and so does 𝑖∗.
Finally, for the injectivity of 𝑖∗ look at the following commutative square:

𝐻 ∗
𝑇 (𝑋) 𝐻 ∗

𝑇 (𝑋𝑇 )

𝐻 ∗
𝑇 (𝑋)[𝑒−1] 𝐻 ∗

𝑇 (𝑋𝑇 )[𝑒−1]

𝑖∗

The vertical maps are injective, therefore the horizontal one is as well. □

Example 3.8. Let 𝑋 = Gr(𝑑,C𝑛), together with an action of 𝑇 = (C∗)𝑛, induced from its

action on C𝑛
with 𝑛 distinct characters 𝜒1,… , 𝜒𝑛. We write C𝑛 = ⨁𝑛

𝑖=1 𝐿𝑖, where 𝑇 acts

on the line 𝐿𝑖 via the character 𝜒𝑖. In this case the fixed points are just the coordinate

subspaces:

𝑋𝑇 = {𝑉𝐼 ∶ 𝐼 ⊂ [1, 𝑛], #𝐼 = 𝑑}, 𝑉𝐼 = ⨁
𝑖∈𝐼
𝐿𝑖.

Furthermore, the tangent spaces are given by

𝑇𝑉𝐼 = Hom(𝑉𝐼 ,C𝑛/𝑉𝑖) = ⨁
𝑖∈𝐼
𝑗∉𝐼

𝐿∨𝑖 ⊗ 𝐿𝑗 ,

and so

𝑐top(𝑇𝑉𝐼 ) = ∏
𝑖∈𝐼
𝑗∉𝐼

(𝜒𝑗 − 𝜒𝑖).

Thus in localization theorem, we need to invert Van der Monde determinant 𝑒 = Δ𝑛 =
∏𝑖<𝑗(𝜒𝑖 − 𝜒𝑗). Finally, in order to check the basis condition, recall that 𝐻 ∗(Gr(𝑑,C𝑛)) is
generated by the Chern classes of the tautological vector bundle 𝑆. We can thus pick

a basis of 𝐻 ∗(𝑋) monomial in 𝑐𝑖(𝑆)’s, and lift it to equivariant Chern classes in 𝐻 ∗
𝑇 (𝑋).

Thus Theorem 3.7 applies.

In fact, we can rather easily get rid of the condition that 𝑋𝑇
is finite.

Lemma 3.9 (Iversen). Let 𝐺 be reductive. Then for any smooth 𝐺-variety 𝑋 , the fixed
locus 𝑋𝐺 is smooth.

Proof. Omitted; the idea is to use splitting as in the proof of Luna’s slice theorem, but

for all powers of m. □

Remark 3.10. It is not hard to show that the property above characterizes reductive

groups. More precisely, whenever 𝐺 is not reductive, one can find a smooth 𝐺-variety
𝑋 such that 𝑋𝐺

is not reduced.
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Lemma 3.11. Let 𝑇 be an algebraic torus, 𝑋 a smooth 𝑇 -variety, 𝑍 ⊂ 𝑋𝑇 a connected
component of fixed locus, and denote 𝑑 = codim𝑍 . Then there exists a collection of non-
zero characters 𝜒1,… , 𝜒𝑑 of 𝑇 , such that for any 𝑝 ∈ 𝑍 the 𝑇 -action on the fiber of the
normal bundle 𝑁𝑍(𝑋)|𝑝 is by these weights. Moreover, 𝑇 acts trivially on 𝑇𝑝𝑋 .

Proof. Use Luna’s slice theorem as in Lemma 3.5. □

As before, self-intersection formula implies that 𝑖∗𝑖∗(−) = 𝑐𝑑(𝑁𝑍𝑋) ∪ −, where 𝑖 ∶
𝑍 ↪ 𝑋 is the inclusion of a fixed locus component. By e.g. splitting principle for Chern

classes, we have

𝑐𝑑(𝑁𝑍𝑋) = 𝜒1 … 𝜒𝑑 +
𝑑

∑
𝑖=1
𝑎𝑑−𝑖𝛾𝑖, 𝑎𝑖 ∈ Λ2𝑖

𝑇 , 𝛾𝑖 ∈ 𝐻
2𝑖(𝑍).

Since the classes 𝛾𝑖 are all nilpotent, the class 𝑐𝑑(𝑁𝑍𝑋) is a non-zero divisor, and becomes

invertible after inverting 𝑒𝑍 ∶= 𝜒1 … 𝜒𝑑 . Thus the same proof as before yields

Theorem 3.12. Let 𝑋 be smooth, and 𝑇 an algebraic torus acting on 𝑋 . Let 𝑆 ⊂ Λ𝑇
be a multiplicative subset, which contains 𝑒𝑍 for each 𝑍 ⊂ 𝑋𝑇 . Assume that we have a
collection of 𝑚 classes in 𝐻 ∗

𝑇 (𝑋) restricting to a basis of 𝐻 ∗(𝑋), with 𝑚 ≤ ∑𝑍⊂𝑋𝑇 rk𝐻 ∗(𝑍).
Then 𝑚 = ∑𝑍⊂𝑋𝑇 rk𝐻 ∗(𝑍), the maps

𝑖∗ ∶ 𝑆−1𝐻 ∗
𝑇 (𝑋) → 𝑆−1𝐻 ∗

𝑇 (𝑋
𝑇 ), 𝑖∗ ∶ 𝑆−1𝐻 ∗

𝑇 (𝑋
𝑇 ) → 𝑆−1𝐻 ∗

𝑇 (𝑋)

are isomorphisms, and 𝑖∗ ∶ 𝐻 ∗
𝑇 (𝑋) → 𝐻 ∗

𝑇 (𝑋𝑇 ) is injective. □

Exercise 3.13. Let 𝑇 = (C∗)𝑛 act on C𝑛
via 𝑘 distinct characters 𝜒1,… , 𝜒𝑘, and write

C𝑛 = ⨁𝑛
𝑖=1 𝑉𝑖, where 𝑉𝑖 is the isotypic component for the character 𝜒𝑖. Show that

𝑋𝑇 = ⨆
∑𝑖 𝑑𝑖=𝑑
𝑑𝑖≤dim𝑉𝑖

Gr(𝑑1, 𝑉1) ×⋯ × Gr(𝑑𝑘, 𝑉𝑘).

Compute the classes 𝑒𝑍 for every fixed component of 𝑋𝑇
.

3.3. Equivariant formality. The condition on lifting a basis of 𝐻 ∗(𝑋) to 𝐻 ∗
𝑇 (𝑋) is an-

noying to check. Fortunately, it holds in many situations of interest for general reasons.

Let us begin by encapsulating this condition into a definition, where we for once em-

phasize the dependence on the ring of coefficients.

Definition 3.14. Let 𝑋 be a 𝐺-variety. 𝑋 is called equivariantly formal over a ring 𝑅 if

for all 𝑖 > 0
∙ 𝐻 𝑖(𝑋, 𝑅) is finitely generated and free over 𝑅;
∙ There exists a finite collection of classes 𝑥𝑖𝑗 ∈ 𝐻 𝑖

𝐺(𝑋, 𝑅) restricting to a basis of

𝐻 𝑖(𝑋, 𝑅).

Proposition 3.15. Let 𝑋 be equivariantly formal. Then 𝐻 ∗
𝐺(𝑋, 𝑅) is a free Λ𝐺-module

with basis {𝑥𝑖𝑗 }, and the forgetful map 𝐻 ∗
𝐺(𝑋, 𝑅) ⊗Λ𝐺 𝑅 → 𝐻 ∗(𝑋, 𝑅) is an isomorphism.

Moreover, for any group homomorphism 𝐺′ → 𝐺 the map 𝐻 ∗
𝐺(𝑋, 𝑅)⊗Λ𝐺 Λ𝐺′ → 𝐻 ∗

𝐺′(𝑋, 𝑅)
is an isomorphism as well.

Proof. Recall that equivariant cohomology can be computed from the Leray spectral se-

quence associated to fibration E ×𝐺 𝑋 → B with fiber 𝑋 . The formality condition is

equivalent to asking that this spectral sequence degenerates at the 𝐸2-page. □
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We have a very powerful theorem which describes the topology of 𝑋 in terms of its

torus fixed points.

Theorem 3.16 (Białynicki-Birula). Let 𝑇 be an algebraic torus acting on 𝑋 , where 𝑋 is a
smooth proper variety. Then there exists a filtration of𝑋 by 𝑇 -invariant closed subvarieties

𝑋 = 𝑋𝑛 ⊃ 𝑋𝑛−1 ⊃ … ⊃ 𝑋1 ⊃ ∅,

where 𝑛 is the number of connected components of 𝑋𝑇 , and an ordering of said connected
components 𝑍𝑖, such that 𝑋𝑖 ⧵ 𝑋𝑖−1 is an affine fibration over 𝑍𝑖 for all 𝑖. □

In particular, assume that 𝑋 is smooth, proper, and has finitely many fixed points.

Then Białynicki-Birula theorem tells us that 𝑋 stratifies into a union of affine cells:

𝑋 = ⨆𝑈𝑖, 𝑈𝑖 ≃ A𝑛𝑖 .

Moreover, by the long exact sequence in cohomology the classes [𝑈𝑖] provide a basis

of both 𝐻 ∗(𝑋) and 𝐻 ∗
𝑇 (𝑋), and both of these cohomology groups are even. Thus 𝑋 is

equivariantly formal over Z, and so localization theorem applies.

Remark 3.17. If we don’t care about torsion in cohomology, we can further lift the re-

striction of 𝑋 having finitely many fixed points. Namely, we implicitly used the fact the

cohomology of each connected component of 𝑋𝑇
is even, in order to split the long exact

sequences. If we work with Q-coefficients, there is a additional piece of structure one

can introduce to cohomology groups, namely "mixed Hodge structure". Working in this

richer framework, one can replace our parity argument with a "purity" argument, and

show that the long exact sequences split. This implies equivariant formality over Q for

any smooth proper 𝑇 -variety.

3.4. Poincaré duality. Before continuing with localization theorems, let’s pause for a

quick interlude about equivariant Poincaré duality.

Let us begin with the non-equivariant setting. Let 𝑓 ∶ 𝑋 → 𝑌 be a fiber bundle with a

proper fiber 𝐹 . When do we have relative Poincaré duality on 𝐻 ∗(𝑋), that is linear over
𝐻 ∗(𝑌 ) and of degree 2 dim 𝐹?

Example 3.18. Consider theHopf fibration S3 → S2
with fiber S1

; herewe have no relative

Poincaré for degree reasons.

The example above suggests that we might have better luck when at the very least

𝐻 ∗(𝑋) is a free module over 𝐻 ∗(𝑌 ).

Proposition 3.19. Assume that 𝑋 is a smooth proper 𝐺-variety, and 𝑋 is equivariantly
formal with the basis {𝛽𝑖} of 𝐻 ∗

𝐺(𝑋) as a Λ𝐺-module. Denote by 𝑝 ∶ 𝑋 → pt the projection
map. Then we have a (unique) basis {𝛾𝑖} of 𝐻 ∗

𝐺(𝑋) over Λ𝐺 with 𝑝∗(𝛽𝑖 ∪ 𝛾𝑗) = 𝛿𝑖𝑗 .

Proof. Order 𝛽𝑖’s so that the cohomological degree non-strictly decreases. Denote by 𝛾 𝑗
the Poincaré dual basis to the images of 𝛽𝑖’s in𝐻 ∗(𝑋). We will look for 𝛾𝑘’s by induction.

For 𝑘 = 1, this is the unique lift of 𝛾 1 by𝐻 0
𝐺(𝑋)

∼−→ 𝐻 0(𝑋). Now assumewe constructed

𝛾1,… , 𝛾𝑘−1; then take any lift 𝛾 ′𝑘 of 𝛾 𝑘, and set

𝛾𝑘 = 𝛾 ′𝑘 −
𝑘−1

∑
𝑗=1

⟨𝛾 ′𝑘, 𝛽𝑗⟩𝛾𝑗 .
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It is easy to check this choice works.

It remains to show that 𝛾𝑗 ’s form a basis. Consider the inclusion ofΛ𝐺-modulesΛ𝐺𝛾1⊕
… ⊕ Λ𝐺𝛾𝑛 ↪ 𝐻 ∗

𝐺(𝑋). By construction, its reduction modulo the augmentation ideal of

Λ𝐺 is onto, therefore it is itself onto by graded Nakayama lemma. □

Example 3.20. Let us return to the setup of Example 2.31, and denote by 𝑝 the projection

of P1
to a point. For any 𝑎 ∈ 𝑇 ∨

, the basis (1, 𝜁 +𝑎) satisfies the conditions of equivariant
formality, since it restricts to the basis (1, [pt]) of 𝐻 ∗(P1). Note that the Poincaré dual
basis is (𝜁 + 𝜒1 + 𝜒2 − 𝑎, 1), because, using image of subvarieties property,

𝑝∗((𝜁 + 𝑎)(𝜁 + 𝑏)) = 𝑝∗((𝑎 + 𝑏 − 𝜒1 − 𝜒2)𝜁 + 𝑎𝑏)
= 𝑝∗((𝑎 + 𝑏 − 𝜒1 − 𝜒2)([0] − 𝜒2))
= 𝑎 + 𝑏 − 𝜒1 − 𝜒2.

In particular, we do not get a self-dual basis unless 𝜒1 + 𝜒2 is divisible by 2, unlike the
non-equivariant case.

3.5. Integration formula. Let 𝑋 , 𝑌 , smooth 𝑇 -varieties, for which the localization

theorem applies. Consider a proper 𝑇 -equivariant map 𝑓 ∶ 𝑋 → 𝑌 . Each connected

component 𝑃 ⊂ 𝑋𝑇
gets sent to some component 𝑄 ⊂ 𝑌 𝑇 ; let us denote by 𝑓𝑃 ∶ 𝑃 → 𝑄

the restriction of 𝑓 . We further consider the closed embeddings 𝑖𝑃 ∶ 𝑃 → 𝑋 , 𝑖𝑄 ∶ 𝑄 → 𝑌 ;
we will sometimes denote the pullback along these maps as restrictions: 𝑖∗𝑃(−) = (−)|𝑃 .
Since both 𝑓 and 𝑓𝑃 are proper, we have the following (non-commutative!) square:

𝐻 ∗
𝑇 (𝑋) 𝐻 ∗

𝑇 (𝑃)

𝐻 ∗
𝑇 (𝑌 ) 𝐻 ∗

𝑇 (𝑄)

𝑓∗

𝑖∗𝑃

(𝑓𝑃 )∗
𝑖∗𝑄

Proposition 3.21. For any 𝑢 ∈ 𝐻 ∗
𝑇 (𝑋), we have

𝑓∗(𝑢)|𝑄 = 𝑐top(𝑁𝑄𝑌 ) ∑
𝑓 (𝑃)⊂𝑄

(𝑓𝑃)∗ (
𝑢|𝑃

𝑐top(𝑁𝑃𝑋))
.

Remark 3.22. Note that a priori, this equation lives in the localization 𝑆−1𝐻 ∗
𝑇 (𝑄) for some

multiplicative set 𝑆 ⊂ Λ𝑇 . However, 𝐻 ∗
𝑇 (𝑄) obviously embeds into 𝑆−1𝐻 ∗

𝑇 (𝑄). In particu-

lar, a part of the theorem above is that the right-hand side takes values in 𝐻 ∗
𝑇 (𝑄), which

implies various divisibility properties!

Proof. By localization theorem, we can replace 𝐻 ∗
𝑇 (𝑋) by 𝑆−1𝐻 ∗

𝑇 (𝑋𝑇 ), and so by linearity
it is enough to check the formula for 𝑢 = (𝑖𝑃)∗(𝑧), 𝑧 ∈ 𝐻 ∗

𝑇 (𝑃). On the left-hand side, we

have

𝑓∗(𝑢)|𝑄 = 𝑖∗𝑄𝑓∗(𝑖𝑃)∗(𝑧) = 𝑖
∗
𝑄(𝑖𝑄)∗(𝑓𝑃)∗(𝑧) =

{
𝑐top(𝑁𝑄𝑌 ) ∪ (𝑓𝑃)∗(𝑧) if 𝑓 (𝑃) ⊂ 𝑄,
0 otherwise.

By self-intersection formula, we have

𝑢|𝑃 = 𝑖∗𝑃(𝑖𝑃)∗(𝑧) = 𝑐top(𝑁𝑃𝑋) ∪ 𝑧,
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and so

𝑐top(𝑁𝑄𝑌 ) ∑
𝑓 (𝑃)⊂𝑄

(𝑓𝑃)∗ (
𝑢|𝑃

𝑐top(𝑁𝑃𝑋))
= 𝑐top(𝑁𝑄𝑌 )(𝑓𝑃)∗ (

𝑖∗𝑃(𝑖𝑃)∗(𝑧)
𝑐top(𝑁𝑃𝑋))

= 𝑐top(𝑁𝑄𝑌 ) ∪ (𝑓𝑃)∗(𝑧),

which allows us to conclude. □

In particular, if 𝑋 is proper and 𝜋 ∶ 𝑋 → pt is the projection to a point, we get the

integration formula:

∫
𝑋
𝑢 ∶= 𝜋∗(𝑢) = ∑

𝑃⊂𝑋𝑇
∫
𝑃 (

𝑢|𝑃
𝑐top(𝑁𝑃𝑋))

.

If 𝑋 has finitely many fixed points, this assumes a particularly simple form:

∫
𝑋
𝑢 = ∑

𝑝∈𝑋𝑇

𝑢|𝑃
𝑐top(𝑇𝑝𝑋)

.

One can write a similar simplified form for a more general proper map between two

varieties with finitely many fixed points.

Example 3.23. Let 𝑇 act on P𝑛−1
via distinct characters 𝜒1,… , 𝜒𝑛, and let 𝜁 = 𝑐1(O(1)) as

usual. From basic geometry, we know that

∫
P𝑛−1

𝜁 𝑘 =

{
1 if 𝑘 = 𝑛 − 1,
0 otherwise.

On the other hand, the integration formula tells us that

∫
P𝑛−1

𝜁 𝑘 =
𝑛

∑
𝑖=1

−𝜒 𝑘𝑖
∏𝑗≠𝑖(𝜒𝑗 − 𝜒𝑖)

.

In particular, for 𝑘 = 𝑛 − 1 one essentially recovers the inductive formula for Van der

Monde determinant.

Example 3.24. Consider 𝑇 = C∗
acting on P2

by 𝑡[𝑎∶𝑏∶𝑐] = [𝑎∶𝑡𝑏∶𝑡2𝑐]. The fixed

points are coordinate lines 𝐿1, 𝐿2, 𝐿3. Given a class 𝑢 ∈ 𝐻 ∗
𝑇 (P2), denote 𝑢𝑖 = 𝑢|𝐿𝑖 . Then

the integration formula says

∫
P2
𝑢 =

𝑢1
𝑡 ⋅ 2𝑡

+
𝑢2

(−𝑡) ⋅ 𝑡
+

𝑢3
2𝑡 ⋅ 𝑡

=
𝑢1 − 2𝑢2 + 𝑢3

2𝑡2
.

Thus 𝑢1 − 2𝑢2 + 𝑢3 must be divisible by 2𝑡2!

Remark 3.25. Integration formula can also be used to formally define integration map

for non-proper maps. Namely, assume that 𝑓 ∶ 𝑋 → 𝑌 is not proper, but its restriction

𝑋𝑇 → 𝑌 𝑇 is. Then we can define

𝑓∗(𝑢) ∶= ∑
𝑄⊂𝑌 𝑇
𝑓 (𝑃)⊂𝑄

(𝑖𝑄 ◦ 𝑓𝑃)∗ (
𝑢|𝑃

𝑐top(𝑁𝑃𝑋))
∈ 𝑆−1𝐻 ∗

𝑇 (𝑌 ).

Note that in this case we cannot expect any divisibility properties to hold. For example,

for 𝑇 = C∗
acting on C with character 𝜉 we get 𝑓∗(1) = 1/𝜉 .
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Example 3.26. Let us compute the number of lines in P3
meeting 4 general lines. Lines

in P3
are parameterized by points in 𝑋 = Gr(2, 4). Let a torus 𝑇 act on it via the action

on C4
by distinct characters 𝜒1,… , 𝜒4. We denote 𝐸𝑖𝑗 = span(𝑣𝑖, 𝑣𝑗), where 𝑣𝑖 is the 𝜒1-

eigenvector. Fix a line 𝐿 = 𝐸12; then the subvariety of lines meeting 𝐿 is

Ω = {𝐸 ∈ Gr(2, 4) ∶ dim(𝐸 ∩ 𝐸12) ≥ 1}.

Alternatively, Ω is given by the condition rk(𝑆 → C4/𝐸12) ≤ 1, or Λ2𝑆 → Λ2(C4/𝐸12) is
a zero map; here 𝑆 is the tautological vector bundle on Gr(2, 4). This tells us that Ω is

the zero set of a section of

Hom(Λ2𝑆,Λ2(C4/𝐸12)) = Λ2𝑆∨ ⊗ C𝜒3+𝜒4 ,

and so [Ω] = 𝑐1(Λ2𝑆∨ ⊗ C𝜒3+𝜒4). We want to compute ∫𝑋 [Ω]
4
using integration formula.

Recall that the fixed points of 𝑋 are precisely 𝐸𝑖𝑗 , and

𝑐1(Λ2𝑆∨ ⊗ C𝜒3+𝜒4)|𝐸𝑖𝑗 = 𝜒3 + 𝜒4 − 𝜒𝑖 − 𝜒𝑗 .

Putting everything together, integration formula yields

∫
𝑋
[Ω]4 = ∑

1≤𝑖<𝑗≤4

(𝜒3 + 𝜒4 − 𝜒1 − 𝜒2)4

(𝜒𝑘 − 𝜒𝑖)(𝜒𝑘 − 𝜒𝑗)(𝜒𝑙 − 𝜒𝑖)(𝜒𝑙 − 𝜒𝑗)
.

Since the answer is a number, we can substitute 𝜒𝑖 with any numbers such that the

denominators do not vanish, for example 𝜒𝑖 = 𝑖. Doing this, we obtain:
44

12
−
34

3
+
24

4
+
24

4
−
14

3
−

04

12
=

64
3

− 27 + 4 + 4 −
1
3
= 21 − 19 = 2.

The answer is two lines!

Exercise 3.27. Compute the number of lines in P4
meeting 6 generic planes.

3.6. General localization theorem. Now let us assume 𝑋 is any 𝑇 -variety, not nec-
essarily smooth or proper. Let 𝐿 be a subgroup of the character lattice 𝑇 ∨

, and define

𝑇 (𝐿) = ⋂
𝜒∈𝐿

ker 𝜒 .

Furthermore, let 𝑆(𝐿) ⊂ Λ𝑇 be the multiplicative set generated by the complement 𝑇 ∨⧵𝐿.
We will prove a general version of localization theorem:

Theorem 3.28. Let 𝑖 ∶ 𝑋𝑇 (𝐿) ↪ 𝑋 be the inclusion of 𝑇 (𝐿)-fixed points. Then the restric-
tion map

𝑖∗ ∶ 𝑆(𝐿)−1𝐻 ∗
𝑇 (𝑋) → 𝑆(𝐿)−1𝐻 ∗

𝑇 (𝑋
𝑇 (𝐿))

is an isomorphism.

Let us begin with a couple of useful lemmas. The first lemma is a straightforward

corollary of Λ𝑇 -linearity of the pullback.

Lemma 3.29. Let 𝑌 ′ → 𝑌 be a 𝑇 -equivariant map. If 𝑐 ∈ Λ𝑇 annihilates 𝐻 ∗
𝑇 (𝑌 ), then it

also annihilates 𝐻 ∗
𝑇 (𝑌 ′). □

Lemma 3.30. There exists a 𝑇 -invariant open 𝑈 ⊂ 𝑋 such that all points have the same
stabilizer 𝑇 ′ ⊂ 𝑇 . Moreover, one can assume that 𝑈 ≃ 𝑈 ′ × 𝑇/𝑇 ′.

Proof. Without loss of generality, we can assume that 𝑋 smooth and affine. By Sumi-

hiro’s linearization,𝑋 can be 𝑇 -equivariantly embedded into a linear representation𝑉 of
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𝑇 . The latter only has finitely many classes of stabilizers (namely, various intersections

of ker 𝜒𝑖’s, where 𝜒𝑖’s are the characters appearing in 𝑉 ), so the first claim follows.

For the second claim, use Sumihiro’s linearization again to embed 𝑈 into a 𝑇/𝑇 ′
-

representation 𝑉 ′
. Decompose 𝑉 ′ = ⨁𝑖 𝑉 ′

𝑖 into the isotypic components. The comple-

ment of coordinate planes is clearly a 𝑇/𝑇 ′
-torsor over ∏𝑖 P(𝑉 ′

𝑖 ), and so we can pick

an open 𝑈 ′
inside the image of 𝑈 over which this torsor is trivial. □

Proof of Theorem 3.28. Using Lemma 3.30 recursively, we obtain the following filtration

of 𝑋 :
𝑋𝑇 (𝐿) = 𝑋0 ⊂ 𝑋1 ⊂ … ⊂ 𝑋𝑘 = 𝑋, 𝑋𝑖 ⧵ 𝑋𝑖−1 = 𝑈𝑖 × 𝑇/𝑇𝑖,

where 𝑈𝑖 has trivial 𝑇 (𝐿)-action, and 𝑇𝑖 ⊂ 𝑇 (𝐿) is a torus. Reasoning by Noetherian

induction, it suffices to show that the pullback

𝑆(𝐿)−1𝐻 ∗
𝑇 (𝑋𝑖) → 𝑆(𝐿)−1𝐻 ∗

𝑇 (𝑋𝑖−1)

is an isomorphism, which by the long exact sequence in cohomology is equivalent to

the vanishing of relative cohomology 𝐻 ∗
𝑇 (𝑋𝑖, 𝑋𝑖−1). Let us pick an approximating space

E → B for 𝑇 . Then by tautness,

𝐻 𝑘
𝑇 (𝑋𝑖, 𝑋𝑖−1) = 𝐻

𝑘(E ×𝑇 𝑋𝑖,E ×𝑇 𝑋𝑖−1)

= lim
𝑉⊃E×𝑇𝑋𝑖−1

𝐻 𝑘(E ×𝑇 𝑋𝑖, 𝑉 )

= lim
𝑉⊃E×𝑇𝑋𝑖−1

𝐻 𝑘(E ×𝑇 (𝑈𝑖 × 𝑇/𝑇𝑖), 𝑉 ⧵ (E ×𝑇 𝑋𝑖−1)).

Let 𝜒 ∈ 𝑇 ∨
be a character with 𝜒 |𝑇𝑖 = 0, and 𝜒 |𝑇 (𝐿) ≠ 0. It is clear that such 𝜒 ∈ 𝑆(𝐿)

annihilates 𝐻 ∗
𝑇 (𝑇/𝑇𝑖), and so we have

𝑆(𝐿)−1𝐻 ∗(E ×𝑇 (𝑈𝑖 × 𝑇/𝑇𝑖)) = 𝐻 ∗(𝑈𝑖) ⊗ 𝑆(𝐿)−1𝐻 ∗
𝑇 (𝑇 (𝐿)/𝑇

′) = 0.

By Lemma 3.29, this also means that 𝐻 𝑘(𝑉 ⧵ (E ×𝑇 𝑋𝑖−1)) = 0, and so in particular all the

relative cohomology groups above vanish. □

Remark 3.31. Note that during the proofwe only needed to invert a finite set of characters
{𝜒𝑖}, such that stabilizers in the complement𝑋 ⧵𝑋𝑇 (𝐿)

all lie in⋃𝑖 ker 𝜒𝑖. We can therefore

replace 𝑆(𝐿) by a smaller, finitely generated multiplicative set.

3.7. Description of the image. Let us begin with a very general, and not very explicit,
description of the image of localization map.

We say that and element 𝑓 ∈ Λ𝑇 is an irreducible factor if it is either a prime inZ = Λ0
𝑇 ,

or a primitive character 𝜒 ∈ Λ2
𝑇 . Given an irreducible factor 𝑓 , we will write 𝐿𝑓 ⊂ 𝑇 ∨

for the sublattice of characters divisible by 𝑓 , and 𝑇 (𝑓 ) = 𝑇 (𝐿𝑓 ). When 𝑓 ∈ Λ2
, then

𝑇 (𝑓 ) ⊂ 𝑇 is a codimension 1 subtorus; when 𝑓 ∈ Z, 𝑇 (𝑓 ) is the finite subgroup of order

𝑝 elements.

Theorem 3.32 (Chang-Skjelbred). Assume that 𝐻 ∗(𝑋𝑇 , 𝑅) is a free 𝑅-module, and that
𝐻 ∗
𝑇 (𝑋, 𝑅) is a freeΛ𝑇 -module. Then 𝛼 ∈ 𝐻 ∗

𝑇 (𝑋𝑇 , 𝑅) belongs to the image of 𝑖∗ ∶ 𝐻 ∗
𝑇 (𝑋, 𝑅) →

𝐻 ∗
𝑇 (𝑋𝑇 , 𝑅) iff it lies in the image of 𝐻 ∗

𝑇 (𝑋𝑇 (𝑓 ), 𝑅) → 𝐻 ∗
𝑇 (𝑋𝑇 , 𝑅) for all irreducible factors 𝑓 .

Proof. Since 𝑋𝑇 (𝑓 ) ⊃ 𝑋𝑇
, the “only if” direction is clear. For the other direction, assume

that 𝛼 ∈ 𝐻 ∗
𝑇 (𝑋𝑇 ) lies in the image of all 𝐻 ∗

𝑇 (𝑋𝑇 (𝑓 )). We can find an element 𝑔 ∈ 𝑆 such
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that 𝑔𝛼 ∈ 𝐻 ∗
𝑇 (𝑋) by localization theorem. Suppose it’s minimal, that is for any 𝑔 ′ proper

divisor of 𝑔 , we have 𝑔 ′𝛼 ∉ 𝐻 ∗
𝑇 (𝑋).

Write 𝑔𝛼 = ∑𝑖 𝑎𝑖𝑒𝑖, where {𝑒𝑖} is an 𝑅-basis of 𝐻 ∗
𝑇 (𝑋) over Λ𝑇 . Suppose 𝛼 does not

belong to the image of 𝐻 ∗
𝑇 (𝑋); then 𝑔 ∈ Λ𝑇 is not a unit. Let 𝑓 be an irreducible factor

of 𝑔 , then by minimality of 𝑔 we can assume that 𝑎1 is relatively prime to 𝑓 .
By the general localization theorem, 𝑆(𝑓 )−1𝐻 ∗

𝑇 (𝑋) = 𝑆(𝑓 )−1𝐻 ∗
𝑇 (𝑋𝑇 (𝑓 )), where 𝑆(𝑓 ) is

the multiplicative set generated by characters not divisible by 𝑓 . Then 𝜓𝑓𝛼 ∈ 𝐻 ∗
𝑇 (𝑋)

for some 𝜓𝑓 ∈ 𝑆(𝑓 ). Write 𝜓𝑓𝛼 = ∑𝑖 𝑏𝑖𝑒𝑖. Then on one hand, the coefficient of 𝑒1 in
(𝑔𝜓𝑓 )𝛼 is 𝜓𝑓 𝑎1 relatively prime to 𝑓 , and on the other 𝑔𝑏1 divisible by 𝑓 . We arrive at a

contradiction. □

Let us now assume that 𝑋 is smooth. Denote by S ⊂ 𝑇 ∨
the finite set of all non-

trivial characters occuring as weights of 𝑇𝑝𝑋 , 𝑝 ∈ 𝑋𝑇
. For any irreducible factor 𝑓 , we

can divide S = S +
𝑓 ⊔S −

𝑓 , where S +
𝑓 are the characters divisible by 𝑓 . Define further

𝑇𝑓 ∶= ⋂
𝜒∈S +

𝑓

ker 𝜒 , 𝑋 𝑓 ∶= 𝑋𝑇𝑓 .

Then carefully looking at the proof of both Theorem 3.28 and Theorem 3.32, it suffices

to take only 𝑓 ∈ S , and replace 𝑋𝑇 (𝑓 )
by 𝑋 𝑓

.

Corollary 3.33. Let 𝑋 be smooth, and 𝐻 ∗
𝑇 (𝑋) a free Λ𝑇 -module. Assume that for any

irreducible factor 𝑓 , the fixed locus 𝑋 𝑓 is compact and 𝐻 ∗
𝑇 (𝑋 𝑓 ) is free over Λ𝑇 . Then an

element (𝛼𝑍)𝑍⊂𝑋𝑇 belongs to 𝐻 ∗
𝑇 (𝑋) if and only if we have

∑
𝑍⊂𝑋𝑇

𝛼𝑍𝛽|𝑍
𝑐top(𝑁𝑍𝑋 𝑓 )

∈ Λ𝑇

for all irreducible factors 𝑓 and 𝛽 ∈ 𝐻 ∗
𝑇 (𝑋 𝑓 ).

Proof. The condition is necessary by the integration formula. For sufficiency, we only

need to prove that 𝛼 = (𝛼𝑍) lifts to 𝐻 ∗
𝑇 (𝑋 𝑓 ) for all 𝑓 . Let {𝑥𝑖} be a Λ𝑇 -basis of 𝐻 ∗

𝑇 (𝑋 𝑓 ),
and {𝑦𝑖} the Poincaré dual basis. Write 𝛼 = ∑ 𝑎𝑖𝑥𝑖, for 𝑎𝑖 ∈ 𝑆−1Λ𝑇 . By Poincaré duality

and integration formula, we have

𝑎𝑖 = ∫
𝑋 𝑓
𝛼𝑦𝑖 = ∑

𝑍⊂𝑋𝑇

𝛼𝑍𝑦𝑖|𝑍
𝑐top(𝑁𝑍𝑋 𝑓 )

,

and so all 𝑎𝑖’s belong to Λ𝑇 . □

Thus, the motto is “image of localization map is determined by divisibilities from in-

tegration formula”.

3.8. GKM varieties. When 𝑋 is smooth with isolated fixed points, the description of

image drastically simplifies.

Definition 3.34. A 𝑇 -curve 𝐶 ⊂ 𝑋 is the closure 𝑇 ⋅ 𝑥 of a one-dimensional 𝑇 -orbit in
𝑋 . Each 𝑇 -curve has the associated non-zero character ±𝜒 , obtained from the orbit 𝑇 ⋅𝑥
itself; sign comes from the choice of an identification of 𝑇 ⋅ 𝑥 with C∗

.

Note that by definition every 𝑇 -curve is rational. The only normal rational curve with

torus action having 2 fixed points is P1
, so every 𝑇 -curve connecting two fixed points
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gives a 𝑇 -equivariant embedding P1 → 𝑋 . By Example 2.31, the character 𝜒 can be

expressed as 𝜒 = 𝜒2 − 𝜒1, where 𝑇 acts on P1
with the characters 𝜒1, 𝜒2.

We can have infinitely many 𝑇 -curves, even when the fixed locus is finite.

Exercise 3.35. List all 𝑇 -curves in Example 3.24. In particular, show that there are infin-

itely many 𝑇 -curves between 𝐿1 and 𝐿3.

Exercise 3.36. We say that two characters 𝜒1, 𝜒2 are parallel if 𝜒1 = 𝑐1𝜂, 𝜒2 = 𝑐2𝜂, with
𝜂 primitive, and 𝑐1, 𝑐2 ∈ Z. Let 𝑝 ∈ 𝑋𝑇

be an isolated fixed point. Using Sumihiro’s

linearization, show that there are finitely many 𝑇 -curves through 𝑝 if and only if no two

weights of 𝑇𝑝𝑋 are parallel.

Lemma 3.37. Suppose𝑋 is smooth, 𝑋𝑇 is finite, and𝐻 ∗
𝑇 (𝑋) is free overΛ𝑇 . Assume that at

each 𝑝 ∈ 𝑋𝑇 the weights of 𝑇𝑝𝑋 are relatively prime. If 𝑓 is a character, 𝑋 𝑓 is the union of
all 𝑇 -curves whose character is divisible by 𝑓 , together with all fixed points 𝑝 ∈ 𝑋𝑇 where
no weight is divisible by 𝑓 .

Proof. First of all, note that every connected component of 𝑋 𝑓
must contain a 𝑇 -fixed

point, otherwise the localization map cannot be injective. Furthermore, by Lemma 3.9

the fixed locus𝑋 𝑓
is a smooth variety. By the condition on tangent weights, at each fixed

point we can have at most one line which can be tangent to 𝑋 𝑓
. Thus 𝑋 𝑓

must consist

of 𝑇 -curves and 𝑇 -fixed points.

It is clear that all 𝑇 -fixed points belong to𝑋 𝑓
. For the curves, a 𝑇 -curve with character

𝜒 belongs to 𝑋 𝑓
iff 𝑇 𝑓 ⊂ ker 𝜒 iff 𝜒 belongs to the lattice 𝐾 = ⟨S +

𝑓 ⟩ ⊂ 𝑇 ∨
. If 𝜒 is

divisible by 𝑓 it belongs to S +
𝑓 by definition; if it is not, it does not belong to 𝐾 because

all elements of 𝐾 are divisible by 𝑓 . □

Corollary 3.38. Let 𝑋 be a smooth variety with 𝑋𝑇 finite, and assume 𝐻 ∗
𝑇 (𝑋) is free

over Λ𝑇 . Suppose that for each 𝑝 ∈ 𝑋𝑇 , the weights on 𝑇𝑝𝑋 are relatively prime. Then
(𝑢𝑝)𝑝 ∈ 𝐻 ∗

𝑇 (𝑋𝑇 ) lies in the image of 𝐻 ∗
𝑇 (𝑋) iff for each 𝑇 -curve 𝐶𝑝𝑞 ≃ P1 connecting

𝑝 ≠ 𝑞 ∈ 𝑋𝑇 , the difference 𝑢𝑝 − 𝑢𝑞 is divisible by the character ±𝜒𝑝𝑞 of 𝐶𝑝𝑞 .

Proof. The condition is necessary, because for any 𝑇 -curve {𝑝, 𝑞} → P1 → 𝑋 we can

factor the restriction map through P1
and apply Example 2.31. For sufficiency, by our

refinement of Theorem 3.32 we only need to prove that (𝑢𝑝) lifts to 𝐻 ∗
𝑇 (𝑋 𝑓 ), for each

character 𝑓 . By Lemma 3.37, 𝑋 𝑓
is a disjoint union of 𝑇 -curves whose character is di-

visible by 𝑓 , together with some isolated fixed points. Classes of isolated fixed points

clearly lift, so we are only concerned with 𝑇𝑓 -curves containing a fixed point. Each such

𝑇 -curve contains a fixed point, so must be either P1
or C. The first case follows from

Example 2.31, and in the second case the pullback map is an isomorphism by homotopy

invariance. □
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Example 3.39. Let 𝑋 = Gr(2, 4) again. We have already computed the weights at fixed

points in Example 3.26, and this is enough to determine the characters of 𝑇 -curves:

𝐸12

𝐸23 𝐸13

𝐸24 𝐸14

𝐸34

𝜒
3 − 𝜒

1

𝜒 3
−
𝜒 2

𝜒 4
−
𝜒 2

𝜒2 − 𝜒1

𝜒
4 −

𝜒
1

𝜒4 −
𝜒3

Let us again consider the subvariety

Ω = {𝐸 ∈ Gr(2, 4) ∶ dim(𝐸 ∩ 𝐸12) ≥ 1}.

We know that 𝐸34 ∉ Ω, and 𝐸24 is a non-singular point with normal character 𝑡3− 𝑡2. This
tells us that [Ω]|𝐸34 = 0, [Ω]|𝐸24 = 𝑡3 − 𝑡2. The rest of the restrictions we can recover from

divisibility conditions!

Exercise 3.40. Let 𝑇 act on P1
by characters 𝜒1, 𝜒2, and consider the diagonal action of

𝑇 on P1 × P1
. Check that this action has 4 fixed points, but infinitely many 𝑇 -curves.

What is the image of the localization map?
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4. Cohomology of toric varieties

In this section we will study the situation when a variety𝑋 has a dense 𝑇 -orbit, where
𝑇 is a torus. This case allows us to reduce everything there is to know about 𝐻 ∗

𝑇 (𝑋) to
the combinatorics of convex polyhedra. These varieties are quite special, but one cares

about them much in the same way human doctors care about lab rat biology.

4.1. Motivating example. Let us begin by considering a familiar example. Take 𝑋 =
P2

, together with an action of a two-dimensional torus 𝑇 . We have one dense 𝑇 -orbit,
three 𝑇 -curves, and three 𝑇 -fixed points:

[1∶0∶0]

[0∶1∶0]

[0∶0∶1]

[𝑥
∶𝑦
∶0
]

[𝑥∶0∶𝑧]

[0∶𝑦∶𝑧][𝑥∶𝑦∶𝑧]

Let [𝑥∶𝑦∶𝑧] be homogeneous coordinates on P2
. The projective plane is covered by

three charts isomorphic to C2
, which we obtain by throwing out each 𝑇 -curve, i.e. by

declaring each coordinate is non-zero:

𝑈𝑥𝑦 = {𝑧 ≠ 0} = SpecC[𝑋, 𝑌 ], 𝑋 = 𝑥/𝑧, 𝑌 = 𝑦/𝑧,

𝑈𝑦𝑧 = {𝑥 ≠ 0} = SpecC[𝑦/𝑥, 𝑧/𝑥] = SpecC[𝑌𝑋−1, 𝑋−1],

𝑈𝑥𝑧 = {𝑦 ≠ 0} = SpecC[𝑋𝑌 −1, 𝑌 −1].

Note that each chart is a monoid ring of some monoid of monomials in 𝑋±1
, 𝑌 ±1

. Let

us identify 𝑋𝑚𝑌 𝑛 with an integral point (𝑚, 𝑛) ∈ Z2
on a plane, and draw these rings:

𝜎𝑥𝑦

𝜎𝑥𝑧

𝜎𝑦𝑧

These are all polyhedral cones, which contain the origin, and the slopes of all faces

are rational. In order to get an even nicer picture, let us take a dual of each cone:

𝜎∨ = {𝑢 ∈ Z2 ∶ ⟨𝑢, 𝑣⟩ ≥ 0 for all 𝑣 ∈ 𝜎}.

Let us denote 𝑒1 = (1, 0), 𝑒2 = (0, 1). Then it is clear that the duals are as follows:

𝜎∨
𝑥𝑦 = 𝜎𝑥𝑦 , 𝜎∨

𝑦𝑧 = Z[𝑒2,−𝑒1 − 𝑒2], 𝜎∨
𝑥𝑧 = Z[𝑒1,−𝑒1 − 𝑒2].
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𝜎∨
𝑥𝑦

𝜎∨
𝑥𝑧

𝜎∨
𝑦𝑧 𝜎∨

𝑥𝑦 = 𝜎𝑥𝑦

𝜎∨
𝑦𝑧 = Z[𝑒2,−(𝑒1 + 𝑒2)]

𝜎∨
𝑥𝑧 = Z[𝑒1,−(𝑒1 + 𝑒2)]

In the picture above, the intersections of closed cones 𝜎∨
1 ∩𝜎∨

2 correspond to cones gen-

erated by unions ⟨𝜎∨
1 , 𝜎∨

2 ⟩, so we can easily read off how these charts glue. For instance,

the origin is the open dense 𝑇 -orbit, rays are C∗ × C and so on. We can further identify

every stratum with one particular 𝑇 -orbit. This picture is somewhat confusing though,

because the “biggest” orbit corresponds to the “smallest” stratum. We remedy this by

taking the intersection of normal cones, which swaps dimension with codimension:

⇝

[0∶0∶1][1∶0∶0]

[0∶1∶0]

4.2. Crash course into toric geometry. It turns out we can play the same game with

every (normal) variety with a dense 𝑇 -orbit. The easiest place to make the definitions

from is from the middle of our example, namely the partitions of the plane. We begin

with 𝑁 = Z𝑛
a lattice.

Definition 4.1. A fan is a collection Δ of strongly convex rational polyhedral cones

𝜎 ⊂ 𝑁 ⊗Z R with apex at the origin, such that every face of a cone in Δ lies in Δ, and
the intersection of two cones 𝜎1 ∩ 𝜎2 is a face of both of them.

Let us unwind this definition slightly. Polyhedral is just piecewise linear; rational
means that the cone is generated by some vectors in 𝑁 (so, of rational slope). Finally,

strongly convex means that we disallow cones containing a whole line (because in this

case, the dual cone would not have full dimension).

Definition 4.2. Let Δ be a fan, and 𝜎 ∈ Δ a cone. Consider the sub-monoid 𝑆𝜎 ⊂ 𝑁 ∨ =∶
𝑀 , given by

𝑆𝜎 = 𝜎∨ ∩𝑀 = {𝑢 ∈ 𝑀 ∶ ⟨𝑢, 𝑣⟩ ≥ 0 for all 𝑣 ∈ 𝜎}.
We call the affine variety 𝑈𝜎 ∶= SpecC[𝑆𝜎] the toric chart associated to 𝜎.
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Note that by definition, for every inclusion of cones 𝜏 ⊂ 𝜎 we have a canonical open

embedding of charts 𝑈𝜏 ⊂ 𝑈𝜎. Therefore all toric charts glue together, and we obtain the

toric variety 𝑋(Δ) associated to Δ. One can show that this is a normal variety. Further-

more, we can identify the lattice 𝑀 with the character lattice 𝑇 ∨
of a torus 𝑇 = (C∗)𝑛.

The natural inclusionsC[𝑆𝜎] ⊂ C[𝑀] give rise to 𝑇 ∨
-grading onC[𝑆𝜎], and so a 𝑇 -action

on 𝑈𝜎, together with an open dense free 𝑇 -orbit SpecC[𝑀] ⊂ 𝑈𝜎. This glues together
to a 𝑇 -action on 𝑋(Δ).

Definition 4.3. A toric variety is a normal 𝑇 -variety which contains an open dense free

𝑇 -orbit.

Sumihiro linearization implies that every toric variety 𝑋 is covered by (affine) toric

charts. With some effort, one can show that there exists a finite open cover of 𝑋 by

affine toric charts such that all intersections of charts are affine. This implies that every

toric 𝑋 is of the form 𝑋(Δ), where Δ is a fan.

Exercise 4.4. Verify that the following fans give rise to the indicated varieties:

⇝ C2, ⇝ C2 ⧵ {0}, ⇝ Bl0C2,

⇝ P1 × P1, ⇝ P(OP1 ⊕ OP1)(−𝑎),

where the slope of diagonal line is (1, 1) in the first row, and (−1, 𝑎) in the second row.

Example 4.5. Let 𝜎 = Z[𝑒2, 2𝑒1−𝑒2]. Then 𝜎∨ = Z[𝑒∨1 , 𝑒∨1 +2𝑒∨2 ], and so the corresponding
toric chart is

C[𝑆𝜎] = C[𝑋,𝑋𝑌 , 𝑋𝑌 2] = C[𝑥, 𝑦, 𝑧]/(𝑦2 − 𝑥𝑧).
Observe that this variety is singular.

Exercise 4.6. How can one interpret the blow-up of the quadratic cone above in terms of

toric varieties?

We can read off the fan when 𝑋(Δ) is smooth or projective.

Proposition 4.7. 𝑋(Δ) is projective iff the fan Δ is complete, that is⋃𝜎 = 𝑁 ⊗Z R. 𝑋(Δ)
is smooth iff the fan Δ is non-singular, that is each cone 𝜎 ∈ Δ is generated by a part of
basis of 𝑁 . □

What is the 𝑇 -invariant topology of 𝑋(Δ)? In each toric chart, we only have finitely

many 𝑇 -orbits, parameterized by faces of the corresponding cone. The same observation

holds after gluing.
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Definition 4.8. Let 𝜏 ∈ Δ a cone. On each 𝑈𝜎 = SpecC[𝑆𝜎], consider the map

C[𝑆𝜎] = C[𝜎∨ ∩𝑀] → C[𝜏⟂ ∩ 𝜎∨ ∩𝑀],

𝑢 ∈ 𝜎∨ ∩𝑀 ↦

{
𝑢 if 𝑢 ∈ 𝜏⟂,
0 otherwise.

Define 𝑉 (𝜏)∩𝑈𝜎 ∶= SpecC[𝜏⟂∩𝜎∨∩𝑀]. This glues to a closed subvariety 𝑉 (𝜏) ⊂ 𝑋(Δ).

The varieties 𝑉 (𝜏), 𝜏 ∈ Δ are the only closed 𝑇 -invariant irreducible subvarieties of
𝑋(Δ). Note that dimR 𝜏 = codim𝑉 (𝜏). In particular:

∙ 𝑛-dimensional cones in Δ correspond to 𝑇 -fixed points in 𝑋(Δ);
∙ (𝑛 − 1)-dimensional cones correspond to 𝑇 -curves;
∙ rays correspond to divisors.

Moreover, we have

(4.1) 𝑉 (𝜎) ∩ 𝑉 (𝜏) =

{
𝑉 (𝛾 ) if 𝜎, 𝜏 together span a cone 𝛾 ∈ Δ,
∅ otherwise.

4.3. Polytopes and cohomology basis. Let us now recover the “normal” picture.

Definition 4.9. A lattice polytope in𝑀R is the convex hull of a finite set of points in𝑀 .

Given a lattice polytope 𝑃 , we define the fan Δ𝑃 via

Δ𝑃 = {𝜎𝐹 , 𝐹 a face of 𝑃}, 𝜎𝐹 = {𝑣 ∶ ⟨𝑢′, 𝑣⟩ ≥ ⟨𝑢, 𝑣⟩ for all 𝑢′ ∈ 𝑃, 𝑢 ∈ 𝐹 }.

Given a complete fan Δ, we can always find a lattice polytope 𝑃 such that Δ = Δ𝑃 ;
roughly speaking, we can recover 𝑃 by intersecting the “translations” of duals of cones

of maximal dimension:

⇝

Exercise 4.10. The fan Δ𝑃 is non-singular if and only if at each vertex of 𝑃 , the primitive

vectors along the one-dimensional edges form a basis of 𝑀 .

Let us fix a lattice polytope 𝑃 ⊂ 𝑀R, and denote its vertices by 𝑝1,… , 𝑝𝑘. Pick a generic
vector 𝑣 ∈ 𝑁 , such that all pairings ⟨𝑝𝑖, 𝑣⟩ are distinct. Renumbering the vertices, let us

assume that ⟨𝑝1, 𝑣⟩ < … < ⟨𝑝𝑘, 𝑣⟩. Recall that each vertex 𝑝𝑖 of the polytope corresponds
to an 𝑛-dimensional cone 𝜎𝑖 ∈ Δ𝑃 . Define

𝜏𝑖 = ⋂
𝑗>𝑖

dim(𝜎𝑖∩𝜎𝑗 )=𝑛−1

𝜎𝑖 ∩ 𝜎𝑗 .

Such collection of cones is called a shelling of Δ. Each 𝜏𝑖 gives rise to a cohomology class

[𝑉 (𝜏𝑖)], and these classes form a basis of both 𝐻 ∗(𝑋(Δ)) and 𝐻 ∗
𝑇 (𝑋(Δ)).
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Example 4.11. Consider 𝑋 = P2
, and pick the vector 𝑣 = (0, 1, 2). Then 𝑉 (𝜏2) = [0∶0∶1],

𝑉 (𝜏1) = [0∶1∶𝑧], and 𝑉 (𝜏0) = [1∶𝑦∶𝑧].

Remark 4.12. Let C∗
act on P2

with characters (0, 𝑡, 2𝑡). For every 𝐿 ∈ (P2)C∗
, consider

the set 𝐴(𝐿) of all points 𝐿′ ∈ P2
such that lim𝑡→0 𝑒𝑡(𝐿′) = 𝐿. It is easy to check that

𝐴([C𝑒𝑖]) = 𝜏𝑖.
More generally, our identification 𝑀 = 𝑇 ∨

induces the equality 𝑁 = Hom(C∗, 𝑇 ).
Then the shelling of 𝑋 for 𝑣 ∈ 𝑁 is precisely the cellular decomposition obtained from

Białynicki-Birula theorem for the action of the one-dimensional torus 𝑣 ∶ C∗ ↪ 𝑇 .

4.4. Stanley-Reisner ring. Recall that every ray 𝜌 in Δ corresponds to a 𝑇 -invariant
divisor 𝐷𝜌 ∶= 𝑉 (𝜌) in 𝑋(Δ). Let us denote by 𝑣𝜌 ∈ 𝑁 the indivisible integral generator

of 𝜌.
By our construction, every 𝑢 ∈ 𝑀 is a rational function on 𝑋(Δ). Another way to

phrase this is that 𝑢 defines a section 𝑠𝑢 of a (topologically trivial) line bundle 𝐿𝑢 of

character 𝑢 on 𝑋(Δ). In particular, by the properties of Chern classes

𝑢 = 𝑐1(𝐿𝑢) = [𝑍(𝑠𝑢)] = ∑
rays 𝜌∈Δ

⟨𝑢, 𝑣𝜌⟩𝐷𝜌.

This equality, together with (4.1), motivates the following definition. Let us consider

a polynomial ring Z[𝑥] = Z[𝑥𝜌], where 𝜌 runs through the set of all rays in Δ. We have

the following ideals in Z[𝑥]:
∙ 𝐼 is generated by all monomials 𝑥𝜌1 … 𝑥𝜌𝑟 such that the rays 𝜌1,… , 𝜌𝑟 do not span
a cone;

∙ 𝐽 is generated by all elements∑𝜌⟨𝑢, 𝜌⟩𝑥𝜌 with 𝑢 ∈ 𝑀 .

Definition 4.13. The ring Z[𝑥]/𝐼 is called the Stanley-Reisner ring of Δ.

Similarly, let Λ = Λ𝑇 , and Λ[𝑥] ∶= Z[𝑥] ⊗Z Λ. Here, we have two similar ideals:

∙ 𝐼 ′ has the same generators as 𝐼 above;
∙ 𝐽 ′ is generated by all elements 𝑢 −∑𝜌⟨𝑢, 𝜌⟩𝑥𝜌 with 𝑢 ∈ 𝑀 .

Lemma 4.14. The map Z[𝑥]/𝐼 → Λ[𝑥]/(𝐼 ′ + 𝐽 ′) is an isomorphism.

Proof. We can identify Λ with Z[𝑀]. Given a basis 𝑢1,… , 𝑢𝑛 of 𝑀 , the elements

𝑢1 −∑
𝑖
⟨𝑢1, 𝜌⟩𝑥𝜌,… , 𝑢𝑛 −∑

𝑖
⟨𝑢𝑛, 𝜌⟩𝑥𝜌

form a regular sequence in Λ[𝑥] and generate 𝐽 ′, with quotient Λ[𝑥]/𝐽 ′ = Z[𝑥]. Since
𝐼 ′ = 𝐼 ⋅ Λ[𝑥], we may conclude. □

By the considerations above, we have homomorphisms

Z[𝑥]/(𝐼 + 𝐽 ) → 𝐻 ∗(𝑋), Λ[𝑥]/(𝐼 ′ + 𝐽 ′) → 𝐻 ∗
𝑇 (𝑋),

which send each 𝑥𝜌 to the class of the divisor 𝐷𝜌 ⊂ 𝑋(Δ).

Theorem 4.15. The maps above induce ring isomorphisms

𝐻 ∗(𝑋) ≃ Z[𝑥]/(𝐼 + 𝐽 ), 𝐻 ∗
𝑇 (𝑋) ≃ Λ[𝑥]/(𝐼 ′ + 𝐽 ′).

We will only give the proof for 𝑋 smooth and projective (even though the statement

holds for all toric varieties). Let us begin by introducing a certain intermediate ring.
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Given a cone 𝜎 ∈ Δ, its intersection with 𝑁 generates a sublattice 𝑁𝜎 ⊂ 𝑁 , and so dually

a quotient 𝑀 ↠ 𝑀𝜎. If 𝜎 is spanned by the rays 𝜌1,… , 𝜌𝑘, we can identify Z[𝑀𝜎] with
Laurent polynomials in 𝑥𝜌1 ,… , 𝑥𝜌𝑘 . Let us denote by Sym𝑀𝜎 ⊂ Z[𝑀𝜎] the subring of

polynomials in {𝑥𝜌𝑖 ∶ 𝑖 ∈ [1, 𝑘]}. With all these notations, we define the ring of piecewise
polynomial functions on Δ:

𝑃𝑃(Δ) = {(𝑓𝜎)𝜎∈Δ ∶ 𝑓𝜎 ∈ Sym𝑀𝜎, 𝑓𝜎 |𝜏 = 𝑓𝜏 for all 𝜏 ⊂ 𝜎} .

Lemma 4.16. We have an isomorphism Z[𝑥]/𝐼 ≃ 𝑃𝑃(Δ).

Proof. With our identifications, we can write 𝑃𝑃(Δ) as an inverse limit:

𝑃𝑃(Δ) = lim←−−
𝜎∈Δ,𝜎=⟨𝜌1,…,𝜌𝑘⟩

Z[𝑥𝜌1 ,… , 𝑥𝜌𝑘],

where restriction to a face of a cone kills the variable corresponding to themissing ray. In

particular, we obtain a natural map Z[𝑥]↠ 𝑃𝑃(Δ). For each monomial belonging to 𝐼 ,
its image in each Sym𝑀𝜎 vanishes, therefore this map factors throughZ[𝑥]/𝐼 ↠ 𝑃𝑃(Δ).
On the other hand, take 𝑓 ∉ 𝐼 . It contains a monomial 𝑥 𝑖1𝜌1 … 𝑥

𝑖𝑘
𝜌𝑘 such that 𝜎 = ⟨𝜌1,… , 𝜌𝑘⟩

is a cone in Δ. In particular, the image of 𝑓 in Z[𝑥𝜌1 ,… , 𝑥𝜌𝑘] is non-zero, and so the map

Z[𝑥]/𝐼 → 𝑃𝑃(Δ) is an isomorphism.thm:SR-iso □

The following lemma is obvious from definitions.

Lemma 4.17. The ring 𝑃𝑃(Δ) can be rewritten in the following way:

𝑃𝑃(Δ) =
{
(𝑓𝜎) 𝜎∈Δ,

dim𝜎=𝑛
∶ 𝑓𝜎 ∈ Sym𝑀, 𝑓𝜎 |𝜏 = 𝑓𝜎′ |𝜏 for 𝜏 ⊂ 𝜎 ∩ 𝜎′, dim 𝜏 = 𝑛 − 1

}
.

Proof of Theorem 4.15. First of all, note that we only need to prove the second isomor-

phism. Indeed, the first one follows immediately:

𝐻 ∗(𝑋(Δ)) ≃ 𝐻 ∗
𝑇 (𝑋(Δ)) ⊗Λ Z ≃ Λ[𝑥]/(𝐼 ′ + 𝐽 ′) ⊗Λ Z ≃ Z[𝑥]/(𝐼 + 𝐽 ).

By Corollary 3.38, 𝐻 ∗
𝑇 (𝑋(Δ)) is a subring of 𝐻 ∗

𝑇 (𝑋(Δ)𝑇 ) = ∑𝜎∈Δ,dim𝜎=𝑛 Sym𝑀𝜎, con-

sisting of tuples (𝑓𝜎)𝜎 where 𝑓𝜎 − 𝑓𝜎′ is divisible by 𝑢 whenever there is a 𝑇 -curve of

character 𝑢 between 𝜎 and 𝜎′
. The condition of having 𝑇 -curve is equivalent to cones

𝜎 and 𝜎′
having a common face of dimension 𝑛 − 1. Let 𝜏 = ⟨𝜌1,… , 𝜌𝑛−1⟩, 𝜎 = ⟨𝜏, 𝜌𝑛⟩,

𝜎′ = ⟨𝜏, 𝜌′𝑛⟩. Since 𝑋(Δ) is smooth, and so Δ is non-singular, we can identify Sym𝑀𝜎

with Z[𝑥𝜌1 ,… , 𝑥𝜌𝑛−1 , 𝑥𝜌𝑛], and Sym𝑀𝜎′ with Z[𝑥𝜌1 ,… , 𝑥𝜌𝑛−1 , 𝑥𝜌′𝑛]. Under these notations
the character 𝑢 of the 𝑇 -curve 𝜏 gets identified with 𝑥𝜌𝑛 and 𝑥𝜌′𝑛 respectively. In partic-

ular, 𝑓𝜎 − 𝑓𝜎′ is divisible by 𝑢 if and only if 𝑓𝜎 |𝑥𝜌𝑛=0 = 𝑓𝜎′ |𝑥𝜌′𝑛=0 in Z[𝑥𝜌1 ,… , 𝑥𝜌𝑛−1]. This is
precisely the defining condition of 𝑃𝑃(Δ) by Lemma 4.17, and so

𝐻 ∗
𝑇 (𝑋(Δ)) = 𝑃𝑃(Δ) = Z[𝑥]/𝐼

by Lemma 4.16. □

This description of the equivariant cohomology almost instantly yields the dimensions

of 𝐻 𝑘
𝑇 (𝑋(Δ)).

Proposition 4.18. For 𝑘 ∈ [0, 𝑛], define

𝐶𝑘 = ⨁
𝜎∈Δ,

dim𝜎=𝑘

Z[𝑋]/⟨𝑥𝜌 ∶ 𝜌 ⊄ 𝜎⟩.
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Let 𝑑𝑘 ∶ 𝐶𝑘 → 𝐶𝑘−1 be the sum of restriction maps from cones to their codimension 1 faces,
taken with the sign (−1)𝑝, where 𝑝 is the index of the ray being thrown out. Then we have
an exact sequence of Z[𝑥]/𝐼 -modules

0 → Z[𝑥]/𝐼 → 𝐶𝑛
𝑑𝑛−→ 𝐶𝑛−1

𝑑𝑛−1−−−→ ⋯
𝑑1−→ 𝐶0 → 0.

Proof. Left as an exercise. □

Let us denote 𝑃𝑡(𝑋) = ∑𝑖 dim𝐻 𝑖(𝑋)𝑡 𝑖, 𝑃𝑇𝑡 (𝑋) = ∑𝑖 dim𝐻 𝑖
𝑇 (𝑋)𝑡 𝑖 for any 𝑇 -variety 𝑋 .

Corollary 4.19. Let 𝑎𝑘 be the number of 𝑘-dimensional cones in 𝑋 = 𝑋(Δ). Then

𝑃𝑇𝑡 (𝑋) =
𝑛

∑
𝑖=0

(−1)𝑛−𝑖𝑎𝑖
(1 − 𝑡2)𝑖

=
𝑃𝑡(𝑋)

(1 − 𝑡2)𝑛
,

𝑃𝑡(𝑋) =
𝑛

∑
𝑖=0

(−1)𝑛−𝑖𝑎𝑖(1 − 𝑡2)𝑖.

Assume Δ = Δ𝑃 for 𝑃 a polytope satisfying the conditions of Exercise 4.10; note that

the number 𝑓𝑛−𝑖 of 𝑖-dimensional faces of 𝑃 is equal to 𝑎𝑖. Then the Poincaré duality

for 𝑋(Δ) immediately yields the following combinatorial formulas for 𝑃 , called Dehn-
Sommerville relations:

ℎ𝑘 = ℎ𝑛−𝑘, ℎ𝑘 ∶=
𝑛

∑
𝑖=𝑘

(−1)𝑖−𝑘(
𝑖
𝑘)
𝑓𝑛−𝑖−1.

Remark 4.20. Theorem 4.15 imposes strong cohomological conditions on a variety to be

toric. For example, we can easily see that Gr(2, 4) cannot be toric. Indeed, cohomology

of a toric variety is even and generated by degree 2 elements, whereas

𝐻 ∗(Gr(2, 4)) ≃ Z[𝑐1, 𝑐2]/(𝑐31 − 𝑐1𝑐2, 𝑐
2
2), deg 𝑐𝑖 = 2𝑖

as per Exercise 2.16.
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5. NilHecke algebra and abelianization

We have extensively studied equivariant cohomology for varieties 𝑋 equipped with

an action of an algebraic torus 𝑇 . What about other algebraic groups 𝐺? In this sec-

tion, we will mostly reduce the study of 𝐻 ∗
𝐺(𝑋) to 𝐻 ∗

𝑇 (𝑋), where 𝑇 ⊂ 𝐺 is a maximal

torus; the upshot is that 𝐻 ∗
𝐺(𝑋) is determined by 𝐻 ∗

𝑇 (𝑋), up to 𝑝-torsion for some small

list of primes 𝑝, depending on the group 𝐺. This reduction is known under the name

abelianization.

5.1. Linear algebraic groups. Let us begin by summarizing some notions of the theory

of linear algebraic groups. We will omit all of the proofs.

Definition 5.1. Let 𝐺 ⊂ 𝐺𝐿(𝑉 ) be a connected linear algebraic group. Denote by 𝐺(1)

its commutator [𝐺,𝐺] ∶= ⟨𝑔ℎ𝑔−1ℎ−1 ∶ 𝑔, ℎ ∈ 𝐺⟩, and consider the derived series of 𝐺:

𝐺 ⊃ 𝐺(1) ⊃ 𝐺(2) ⊃ … , 𝐺(𝑖+1) = [𝐺(𝑖), 𝐺(𝑖)].

If 𝐺(𝑖)
is the trivial group for 𝑖 ≫ 0, we say that 𝐺 is solvable. Furthermore, if each

quotient 𝐺(𝑖+1)/𝐺(𝑖)
is isomorphic to an additive group C𝑘𝑖

, we say that 𝐺 is unipotent.

Solvable groups have very few irreducible representations, as evidenced by the fol-

lowing theorem:

Theorem 5.2 (Lie). Let 𝐺 be a solvable group, and 𝐺 → 𝐺𝐿(𝑉 ) a representation. Then
there exists a 𝐺-stable line 𝐿 ⊂ 𝑉 . If 𝐺 is unipotent, then the action of 𝐺 on 𝐿 is trivial. □

Corollary 5.3. Let 𝐺 ⊂ 𝐺𝐿(𝑉 ) be solvable. Then there exists a basis of 𝑉 , such that any
𝑔 ∈ 𝐺 is represented by an upper-triangular matrix. If 𝐺 is unipotent, all these matrices
have 1’s on the diagonal.

Proposition 5.4. Every linear algebraic group 𝐺 has the unique maximal normal unipo-
tent (resp. solvable) subgroup, which we denote by 𝑅𝑢(𝐺) (resp. 𝑅(𝐺)). □

We say that 𝐺 is reductive if 𝑅𝑢(𝐺) = {𝑒}, and 𝐺 is semisimple if 𝑅(𝐺) = {𝑒}. By defi-

nition, any 𝐺 linear algebraic contracts to 𝐺/𝑅𝑢(𝐺); in particular, 𝐻 ∗
𝐺(𝑋) = 𝐻 ∗

𝐺/𝑅𝑢(𝐺)(𝑋).
Thus for our purposes it suffices to only consider reductive algebraic groups. Further-

more, any reductive group 𝐺 can be written as 𝐺 = (𝐺′ ×𝑇 ′)/Γ, where 𝐺′
is semisimple,

𝑇 ′
an algebraic torus, and Γ a finite group. In order to streamline the presentation, we

will only work with semisimple groups in this subsection.

Let 𝐺 be a connected semisimple group, and pick a maximal connected solvable sub-

group 𝐵 ⊂ 𝐺; we will call 𝐵 a Borel subgroup. Further, let 𝑇 ⊂ 𝐵 be the maximal torus,

and denote by t ⊂ b ⊂ g the corresponding Lie algebras. We write 𝑀 = 𝑇 ∨
for the

character lattice of 𝑇 .

Definition 5.5. A root of 𝐺 is a non-zero character appearing in the adjoint action

𝑇 ↷ g. We denote the (finite) set of roots by Δ.

By definition, we have the following decomposition of vector spaces:

g = t ⊕⨁
𝛼∈Δ

g𝛼 ,

where g𝛼 is the subspace where 𝑇 acts via 𝛼.
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Exercise 5.6. Check that for any 𝛼, 𝛽 ∈ Δ we have [g𝛼 , g𝛽] ⊂ g𝛼+𝛽 .

Proposition 5.7. Each g𝛼 is 1-dimensional. □

Let us write Δ+ ⊂ Δ for the roots occurring in b. One can show that Δ− ∶= Δ ⧵ Δ+ =
−Δ+

; because of this we call Δ+
the set of positive roots. By definition, b = t⊕⨁𝛼∈Δ+ g𝛼 ;

in fact, there exists the opposite Borel subgroup 𝐵− ⊂ 𝐺 such that b− = t ⊕⨁𝛼∈Δ− g𝛼 .

We denote 𝑀rt ∶= Z⟨Δ⟩ ⊂ 𝑀 , and call it the root lattice. There exists a Z-basis S of

𝑀rt consisting of positive roots; we call elements of S simple roots.
Dually, let us write 𝑀∨ = Hom(𝑀,Z) for the set of 1-dimensional subgroups of 𝑇 ,

and 𝑀∨
R
∶= 𝑀∨ ⊗Z R. For each 𝛼 ∈ Δ, there exists the unique coroot 𝛼∨ ∈ 𝑀∨

R, defined

by the following conditions:

⟨𝛼, 𝛼∨⟩ = 2, ⟨𝛽, 𝛼∨⟩ ∈ Z ∀𝛽 ∈ Δ.

We denote by𝑀wt ⊂ 𝑀R the dual lattice of Z⟨𝛼∨ ∶ 𝛼 ∈ Δ⟩, and call it theweight lattice.
We have inclusions 𝑀rt ⊂ 𝑀 ⊂ 𝑀wt. We have isomorphism of groups 𝑀wt/𝑀 = 𝜋1(𝐺)
and 𝑀/𝑀rt = 𝑍(𝐺). In general, both 𝑀rt and 𝑀wt only depend on g.

Example 5.8. Let 𝐺 = 𝑆𝐿2. In this case, 𝐵 = (
𝑡 ∗
0 𝑡−1), 𝑇 = (

𝑡 0
0 𝑡−1), g = sl2 =

(
𝑎 𝑏
𝑐 −𝑎). We have 𝑀 = Z⟨𝜔⟩, where 𝜔 is the character of weight 1. Note that

(
𝑡 0
0 𝑡−1)(

𝑎 𝑏
𝑐 −𝑎)(

𝑡−1 0
0 𝑡) = (

𝑎 𝑡2𝑏
𝑡−2𝑐 −𝑎) ,

so that g = g−2𝜔 ⊕ t ⊕ g2𝜔. In particular, the root lattice is 𝑀rt = Z⟨𝛼⟩, 𝛼 = 2𝜔. On the

other hand, the coroot is defined by ⟨𝛼∨, 𝛼⟩ = 2, which means that the weight lattice is

𝑀wt = Z⟨𝜔⟩. We have 𝑀rt ⊂ 𝑀 = 𝑀wt.

Now, let us look at 𝐺 = 𝑃𝑆𝐿2 = 𝑆𝐿2/{±1}. The maximal torus here is 𝑇 ′ = 𝑇/{±1},
which implies that 𝑀 = Z⟨2𝜔⟩. In particular, in this case we have 𝑀rt = 𝑀 ⊂ 𝑀wt.

In fact, the whole theory of reductive groups is built out of the fundamental example

above. The critical result is

Theorem 5.9 (Jacobson-Morozov). For any nilpotent 𝑥 ∈ g, there exists an inclusion of
Lie algebras sl2 ⊂ g, such that 𝑥 ∈ sl2.

This produces an sl2 for each positive root 𝛼, and the rest of the theory is roughly

about how these sl2’s interact with each other.

Example 5.10. Let𝐺 = 𝑆𝐿𝑛, 𝐵 upper-triangular matrices, 𝑇 diagonal matrices. Denote by

𝑡𝑖 the character that picks out 𝑖-th entry on the diagonal, then𝑀 = (Z𝑡1⊕⋯⊕Z𝑡𝑛)/(𝑡1+
⋯ + 𝑡𝑛). We have:

Δ = {(𝑡𝑖 − 𝑡𝑗) ∶ 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛},
Δ+ = {(𝑡𝑖 − 𝑡𝑗) ∶ 1 ≤ 𝑖 < 𝑗 ≤ 𝑛},
S = {(𝑡𝑖 − 𝑡𝑖+1) ∶ 1 ≤ 𝑖 < 𝑛}.

We have 𝑀 = 𝑀wt, and 𝑀/𝑀rt ≃ Z/𝑛Z, with the generator 𝑡1.
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5.2. Weyl group.

Definition 5.11. TheWeyl group of𝐺 is𝑊 ∶= 𝑁𝐺(𝑇 )/𝑇 , where𝑁𝐺(𝑇 ) is the normalizer

of 𝑇 inside 𝐺.

The Weyl group𝑊 acts on 𝑀 by conjugating 𝑇 . This action is faithful; moreover,𝑊
preserves Δ and is generated by simple reflections:

∀𝛼 ∈ Δ+ ∶ 𝑠𝛼 ∶ 𝛽 ↦ 𝛽 − ⟨𝛽, 𝛼∨⟩𝛼.

Denoting S = {𝛼1,… , 𝛼𝑟}, one can also show that𝑊 is generated by 𝑠𝛼 , 𝛼 ∈ S. Since𝑊
acts faithfully on Δ, it is itself finite.

Example 5.12. Let 𝐺 = 𝑆𝐿2. In this case, 𝑇 is normalized by

{

(
𝑡 0
0 𝑡−1) ,(

0 𝑡
𝑡−1 0)

}
,

therefore𝑊 = S2. Similarly, for 𝐺 = 𝐺𝐿𝑛 we have𝑊 = S𝑛.

Remark 5.13. While it so happens that S𝑛 ⊂ 𝐺𝐿𝑛, in general𝑊 ⊄ 𝐺!

In a certain sense, Weyl group𝑊 is the combinatorial core of 𝐺.

Theorem 5.14 (Bruhat decomposition). We have a decomposition 𝐺 = ⨆𝑤∈𝑊 𝐵𝑤𝐵 of 𝐺
into locally closed subvarieties.

It is known that all Borels in 𝐺 are conjugate; moreover, 𝑁𝐺(𝐵) = 𝐵. This means that

the set of all Borels in 𝐺 acquires a structure of a homogeneous space F = 𝐺/𝐵. This is
a projective variety, and we call it the flag variety of𝐺. We have an action 𝑇 ↷ F by left

multiplication; one can check that F𝑇 ≃ 𝑊 . Furthermore, applying Białynicki-Birula

theorem to F recovers precisely the Bruhat decomposition F = ⨆𝑤∈𝑊 𝐵𝑤.

Remark 5.15. The flag varieties F are examples of spherical varieties, that is 𝐺-varieties
with an open dense 𝐵-orbit. This notion is a rich generalization of toric varieties. Spher-

ical varieties can also be classified in terms of some combinatorial data, which is more

involved (coloured fans).

Any reductive group 𝐺 over C contains a (real) maximal compact subgroup 𝐾 ⊂ 𝐺,
which is unique up to conjugation. It is known that 𝐺 homotopically retracts to 𝐾 .

Example 5.16. For 𝐺 = 𝑆𝐿𝑛, 𝐾 = 𝑆𝑈𝑛. Similarly, for 𝐺 = 𝐺𝐿𝑛, 𝐾 = 𝑈𝑛.

Let us intersect all of our subgroups with 𝐾 . We have 𝐾 ∩ 𝑇 = 𝑆 = (S1)𝑟 the maximal

torus in 𝐾 , and moreover 𝐾 ∩ 𝐵 = 𝐾 ∩ 𝑇 . In particular,

F = 𝐺/𝐵 ≃ 𝐾/𝑆.

Since 𝑊 = 𝑁𝐺(𝑇 )/𝑇 = 𝑁𝐾 (𝑆)/𝑆, we have a natural, albeit non-algebraic (see Re-

mark 5.19), action of 𝑊 on 𝐾/𝑆 ≃ F by multiplication on the right. This induces an
action𝑊 ↷ 𝐻 ∗(F).

5.3. Abelianization over Q. We finally have all pieces in place to state the first ver-

sion of abelianization theorem. For now, let us restrict to equivariant cohomology with

coefficients in Q. Let 𝑋 be a 𝐺-variety; then we have

𝐻 ∗
𝑇 (𝑋) ≃ 𝐻

∗
𝐵(𝑋) ≃ 𝐻

∗
𝐺(𝐺 ×𝐵 𝑋) ≃ 𝐻 ∗

𝐺(𝐺/𝐵 × 𝑋) ≃ 𝐻 ∗
𝐾 (𝐾/𝑆 × 𝑋).

Since 𝑊 acts on 𝐾/𝑆 on the right, this action commutes with the 𝐾 -action, and so we

obtain an action𝑊 ↷ 𝐻 ∗
𝑇 (𝑋).
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Theorem 5.17 (Borel). The map 𝐻 ∗
𝐺(𝑋,Q) → 𝐻 ∗

𝑇 (𝑋,Q)𝑊 is a ring isomorphism.

We begin with a topological lemma, which is the only place where we use the Q-

coefficients:

Lemma 5.18. Let𝑊 be a finite group acting freely on a topological space 𝑌 . Then we have
𝐻 ∗(𝑌 /𝑊,Q) ≃ 𝐻 ∗(𝑌 ,Q)𝑊 .

Proof. Interpreting 𝐻 ∗
as simplicial cohomology, we can pick a chain complexes 𝐶∙(𝑌 ),

𝐶∙(𝑌 /𝑊 ) computing cohomology in such a way that 𝐶∙(𝑌 /𝑊 ) = 𝐶∙(𝑌 )𝑊 . Over Q, any

representation of a finite group𝑊 splits into isotypical components. Therefore we have

𝐶∙(𝑌 ) = ⨁
𝜒∶irrep of𝑊

𝜒 ⊗ 𝐶∙
𝜒 (𝑌 ),

where𝑊 acts trivially on all 𝐶∙
𝜒 (𝑌 ). In particular, 𝐶∙(𝑌 )𝑊 = triv⊗𝐶∙

triv(𝑌 ), and applying
cohomology we see that 𝐻 ∗(𝑌 /𝑊,Q) = 𝐻 ∗(𝐶∙(𝑌 )𝑊 ) = 𝐻 ∗(𝐶∙(𝑌 ))𝑊 = 𝐻 ∗(𝑌 ,Q)𝑊 . □

Proof of Theorem 5.17. Let us first consider the action of𝑊 on 𝐾/𝑆. It is free with quo-

tient 𝐾/𝑁𝐾 (𝑆); therefore applying Lemma 5.18 we have 𝐻 ∗(𝐾/𝑁𝐾 (𝑆)) = 𝐻 ∗(𝐾/𝑆)𝑊 . By

Bruhat decomposition, the cohomology of F = 𝐾/𝑆 is even and the Euler characteristic

is 𝜒 (𝐾/𝑆) = #𝑊 . Thus

𝜒 (𝐾/𝑁𝐾 (𝑆)) =
1

#𝑊
𝜒 (𝐾/𝑆) =

#𝑊
#𝑊

= 1,

and so by evenness 𝐻 ∗(𝐾/𝑁𝐾 (𝑆)) = Q, that is 𝐾/𝑁𝐾 (𝑆) is acyclic.
Now consider the fibration E𝐾 ×𝑁𝐾 (𝑆) 𝑋 → E𝐾 ×𝐾 𝑋 with fiber 𝐾/𝑁𝐾 (𝑆). Since

𝐾/𝑁𝐾 (𝑆) is acyclic, the pullback along this map induces an isomorphism on cohomology

by Leray spectral sequence:

𝐻 ∗
𝐺(𝑋) = 𝐻

∗
𝐾 (𝑋) = 𝐻

∗(E𝐾 ×𝐾 𝑋) = 𝐻 ∗(E𝐾 ×𝑁𝐾 (𝑆) 𝑋).

Finally, the map E𝐾 ×𝑆𝑋 → E𝐾 ×𝑁𝐾 (𝑆)𝑋 is a finite cover with deck transformation group

𝑊 , so by Lemma 5.18 we have

𝐻 ∗(E𝐾 ×𝑁𝐾 (𝑆) 𝑋) = 𝐻 ∗(E𝐾 ×𝑆 𝑋)𝑊 = 𝐻 ∗
𝑆 (𝑋)

𝑊 = 𝐻 ∗
𝑇 (𝑋)

𝑊 . □

Remark 5.19. Let 𝐺 = 𝑆𝐿2. Then 𝐾 = 𝑆𝑈2 ≃ S3
, 𝑆 = S1

, and 𝐾 → 𝐾/𝑆 ≃ S2
is the

Hopf fibration. Embedding S2
into R3

, the action of𝑊 = Z/2Z is given by (𝑥, 𝑦, 𝑧) ↦
(−𝑥,−𝑦,−𝑧); in particular, 𝐾/𝑁𝐾 (𝑆) ≃ RP2

. Recall that 𝐻 2(RP2) ≃ Z/2Z, and so RP2

only becomes acyclic after inverting 2.

The only place where we have used Q-coefficients is Lemma 5.18, but there we had to

invert #𝑊 , which can be quite big. For example, for 𝐺 = 𝐺𝐿𝑛 we have to invert 𝑛!, but
we know that at least for 𝑋 = pt we have Λ𝐺 = (Λ𝑇 )𝑊 over Z. Can we do better? The

answer is yes, but for that we need to replace the non-algebraic action of𝑊 by algebraic

action of a slightly bigger algebra.

5.4. Convolution algebras. Let us begin with an abstract setup. Take a smooth pro-

jective 𝐺-variety 𝐹 , and consider the space 𝐇 = 𝐻 ∗
𝐺(𝐹 × 𝐹). We have the following
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correspondence:

𝐹 × 𝐹 × 𝐹

(𝐹 × 𝐹) × (𝐹 × 𝐹) 𝐹 × 𝐹

𝑞 𝑝 𝑞(𝑓1, 𝑓2, 𝑓3) = (𝑓1, 𝑓2, 𝑓2, 𝑓3),
𝑝(𝑓1, 𝑓2, 𝑓3) = (𝑓1, 𝑓3).

We treat the map 𝑞 as being equivariant with respect to the diagonal group embedding

𝐺 ↪ 𝐺 × 𝐺. Composing pullback along 𝑞 with Gysin pushforward along 𝑝, we get a

map 𝑚 ∶ 𝐇 ⊗ 𝐇 → 𝐇.

Proposition 5.20. The map 𝑚 is an associative product.

Proof. Consider the following diagram with obvious maps:

𝐹 4

𝐹 2 × 𝐹 3 𝐹 3

𝐹 2 × 𝐹 2 × 𝐹 2 𝐹 2 × 𝐹 2 𝐹 2

𝑞
𝑞′

𝑝
𝑝′

𝑞
𝑝 𝑞

𝑝

Given 𝑥, 𝑦, 𝑧 ∈ 𝐻 ∗
𝐺(𝑋 × 𝑋), using base change we can write the product 𝑥(𝑦𝑧) as

𝑥(𝑦𝑧) = 𝑝∗𝑞∗𝑝∗𝑞∗(𝑥 ⊗ 𝑦 ⊗ 𝑧) = 𝑝′
∗(𝑞

′)∗(𝑥 ⊗ 𝑦 ⊗ 𝑧).

Writing a similar diagram for (𝑥𝑦)𝑧, we obtain that

(𝑥𝑦)𝑧 = 𝑝′
∗(𝑞

′)∗(𝑥 ⊗ 𝑦 ⊗ 𝑧) = 𝑥(𝑦𝑧),

which proves associativity. □

Exercise 5.21. Check that that𝑚 isΛ𝐺-linear, and the class of diagonal [Δ] ∈ 𝐻 2 dim 𝐹
𝐺 (𝐹×𝐹)

is the unit in 𝐇. In particular, 𝑚 is different from cup product.

Similarly, let 𝑋 be a 𝐺-variety. An analogous correspondence defines a left 𝐇-module

structure on 𝐻 ∗
𝐺(𝐹 × 𝑋):

𝐹 × 𝐹 × 𝑋

(𝐹 × 𝐹) × (𝐹 × 𝑋) 𝐹 × 𝑋

𝑞 𝑝

5.5. NilHecke algebras. Let us apply our general setup to the case 𝐹 = F = 𝐺/𝐵.

Definition 5.22. The NilHecke algebra of 𝐺 is the associative algebra

𝐍𝐇𝐺 ∶= 𝐻 ∗
𝐺(𝐺/𝐵 × 𝐺/𝐵).

Now let𝑋 be a𝐺-variety. Then𝐍𝐇𝐺 acts on𝐻 ∗
𝐺(𝐺/𝐵×𝑋) by the above, and moreover

𝐻 ∗
𝐺(𝐺/𝐵 × 𝑋) = 𝐻 ∗

𝐺(𝐺 ×𝐵 𝑋) = 𝐻 ∗
𝐵(𝑋) = 𝐻

∗
𝑇 (𝑋).

Thuswe have obtained an algebraic replacement for theWeyl group action in Section 5.3.

Let us compute the NilHecke algebra for 𝐺 = 𝐺𝐿2. In this particular case, we can

easily reduce the computation in 𝐻 ∗
𝐺 to (𝐻 ∗

𝑇 )𝑊 .

We have F = P1
, 𝐺 = 𝐺𝐿2 acts by 𝑔(C𝑣) = C𝑔(𝑣) for any 𝑣 ∈ C2 ⧵ 0, and 𝐍𝐇 ∶=

𝐍𝐇𝐺𝐿2 = 𝐻 ∗
𝐺(P1 × P1). Let us check that in this particular case, we have 𝐻 ∗

𝐺(P1 × P1) =
𝐻 ∗
𝑇 (P1 × P1)𝑊 . It is clear that P1 × P1

has two 𝐺-orbits: the diagonal Δ ≃ P1 ⊂ P1 × P1
,
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and the complement (P1 × P1) ⧵ Δ. Since (P1 × P1) ⧵ Δ
pr1−−→ P1

is an affine bundle, by

homotopy invariance we have

𝐻 ∗
𝐺((P

1 × P1) ⧵ Δ) ≃ 𝐻 ∗
𝐺(P

1) ≃ 𝐻 ∗
𝐵(pt) = Λ𝑇 .

SinceΛ𝑇 is even, the long exact sequence in cohomology splits into short exact sequences

0 → 𝐻 ∗−2
𝐺 (Δ) → 𝐻 ∗

𝐺(P
1 × P1) → 𝐻 ∗

𝐺((P
1 × P1) ⧵ Δ) → 0,

and so it suffices to check that 𝐻 ∗
𝐺(P1) ≃ 𝐻 ∗

𝑇 (P1)S2
.

Let us recal the GKM description of the 𝑇 -equivariant cohomology of P1
:

𝐻 ∗
𝑇 (P

1) = {(𝑓0, 𝑓∞) ∈ Λ𝑇 ⊕ Λ𝑇 ∶ (𝑓∞ − 𝑓0) is divisible by (𝑡1 − 𝑡2)}
= {(𝑓0, 𝑓0 − (𝑡1 − 𝑡2)ℎ) ∶ 𝑓0, ℎ ∈ Λ𝑇 } .

How dowe see theS2-invariant part? Note that on the 𝑇 -fixed points, the natural action
of 𝑁𝐺(𝑇 ) factors through the Weyl group𝑊 = 𝑁𝐺(𝑇 )/𝑇 . In our case,𝑊 = S2 = ⟨𝑠⟩; 𝑠
swaps 𝑡1 with 𝑡2, and 𝐿0 with 𝐿∞. Therefore,

𝐻 ∗
𝑇 (P

1)S2 = {(𝑓𝑂 , 𝑓0 − (𝑡1 − 𝑡2)ℎ) ∶ 𝑓0, ℎ ∈ Λ𝑇 , 𝑠(𝑓0) = 𝑓0 − (𝑡1 − 𝑡2)ℎ} ,

or equivalently

𝑓0 − 𝑠(𝑓0)
𝑡1 − 𝑡2

∈ Λ𝑇 .

Lemma 5.23. For any 𝑓 ∈ Λ𝑇 = Z[𝑡1, 𝑡2], the element 𝜕(𝑓 ) ∶= 𝑓−𝑠(𝑓 )
𝑡1−𝑡2

belongs to Λ𝑇 .

Proof. On monomials 𝑡𝑚1 𝑡𝑛2 , 𝑚 ≥ 𝑛, we have

𝜕(𝑡𝑚1 𝑡
𝑛
2 ) = (𝑡1𝑡2)𝑛

𝑡𝑚−𝑛1 − 𝑡𝑚−𝑛2

𝑡1 − 𝑡2
= 𝑡𝑚−11 𝑡𝑛2 + 𝑡

𝑚−2
1 𝑡𝑛+12 + … + 𝑡𝑛1 𝑡

𝑚−1
2 .

For other polynomials, we conclude by linearity of 𝜕. □

We call 𝜕 ∶ Λ𝑇 → Λ𝑇 the Demazure operator.

Exercise 5.24. Check that 𝜕(𝑓 𝑔) = 𝑠(𝑓 )𝜕(𝑔) + 𝑔𝜕(𝑓 ) = 𝑓 𝜕(𝑔) + 𝑠(𝑔)𝜕(𝑓 ).

We conclude that

𝐻 ∗
𝑇 (P

1)S2 ≃ 𝐻 ∗
𝑇 ({𝐿0}) = 𝐻

∗
𝐺(P

1),
and so we may work with 𝐻 ∗

𝑇 (P1 × P1) instead of 𝐻 ∗
𝐺(P1 × P1).

We compute this algebra via its natural action on 𝐻 ∗
𝑇 (P1). Consider the following

localization diagram:

𝐻 ∗
𝑇 (P1 × P1) ⊗ 𝐻 ∗

𝑇 (P1) 𝐻 ∗
𝑇 (P1 × P1) 𝐻 ∗

𝑇 (P1)

Λ(P1×P1)𝑇
𝑇 ⊗ Λ(P1)𝑇

𝑇 Λ(P1×P1)𝑇
𝑇 Λ(P1)𝑇

𝑇

𝑖∗

Δ∗
23 pr1∗

𝑖∗ 𝑖∗

𝑝∗

The left square clearly commutes; for the right square integration formula yields

(5.1) 𝑖∗𝑝1∗(𝛼) = 𝑝∗𝑖∗ (
𝛼

𝑡1 − 𝑡2)
.

Thus in order to compute the composition in the top row, it is enough to localize to

𝑇 -fixed and compute it on the bottom row instead. The convolution algebra there is
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nothing other than (2 × 2)-matrix algebra; however, we need to take into account the

additional Euler class from (5.1). Let us only consider the S2-invariant part. We know

that 𝐻 ∗
𝐺(P1 × P1) is generated by [Δ], [P1 × P1] over Λ𝑇 ; by equivariant localization to

fixed points we obtain

[P1 × P1](
𝑓
𝑠(𝑓 )) = (

1 1
1 1)(

𝑓
𝑠(𝑓 )) =

(

𝑓−𝑠(𝑓 )
𝑡1−𝑡2
𝑠(𝑓 )−𝑓
𝑡2−𝑡1 )

= (
𝜕𝑓
𝜕𝑓) ,

[Δ](
𝑓
𝑠(𝑓 )) = (

𝑡1 − 𝑡2 0
0 𝑡2 − 𝑡1)(

𝑓
𝑠(𝑓 )) =

(

𝑓 (𝑡1−𝑡2)
𝑡1−𝑡2

𝑠(𝑓 )(𝑡2−𝑡1)
𝑡2−𝑡1 )

= (
𝑓
𝑠(𝑓 )) .

We can check that the action of 𝐍𝐇 on 𝐻 ∗
𝐺(P1) is faithful. To sum up, we obtained that

𝐍𝐇𝐺𝐿2 = ⟨Λ𝑇 , 𝜕⟩ ⊂ End(Λ𝑇 ).

The action of 𝐍𝐇𝐺𝐿2 is clearly Λ𝐺𝐿2-linear, so in fact 𝐍𝐇𝐺𝐿2 ⊂ EndΛ𝐺𝐿2 (Λ𝑇 ). Note that
Λ𝑇 is a free Λ𝐺𝐿2-module of rank 2, with a basis {1, 𝑡1}. On the other hand, 𝐍𝐇𝐺𝐿2 is a free

Λ𝐺𝐿2-module of rank 4 with basis {1, 𝑡1, 𝜕, 𝑡1𝜕}. Writing the action of these operators in

matrix form, we obtain

1 = (
1 0
0 1) , 𝑡1 = (

0 −𝑡1𝑡2
1 𝑡1 + 𝑡2)

, 𝜕 = (
0 1
0 0) , 𝑡1𝜕 = (

0 0
0 1) .

This shows that the inclusion map is onto, and so

𝐍𝐇𝐺𝐿2 ≃ Mat2×2(Λ𝐺𝐿2).

Remark 5.25. Note thatS2 ↪ 𝐍𝐇𝐺𝐿2 , 𝑠 ↦ 1 − (𝑡1 − 𝑡2)𝜕, and this inclusion is compatible

with the action on Λ𝑇 . In particular, if we invert (𝑡1 − 𝑡2), we obtain

𝐍𝐇𝐺𝐿2[(𝑡1 − 𝑡2)
−1] ≃ S2 ⋉ Λ𝑇 [(𝑡1 − 𝑡2)−1].

5.6. NilHecke for 𝐺𝐿𝑛. Let us generalize the above example to 𝐺 = 𝐺𝐿𝑛. In this case,

F is the variety of complete flags:

F = 𝐺𝐿𝑛/𝐵 = {0 ⊂ 𝑉1 ⊂ ⋯ ⊂ 𝑉𝑛 = C𝑛 ∶ dim𝑉𝑖 = 𝑖} .

Recall that we have Bruhat decomposition 𝐺/𝐵 = ⨆𝑤∈S𝑛
𝐵𝑤. Equivalently, 𝐺-orbits in

𝐺/𝐵 ×𝐺/𝐵 are parameterized by elements ofS𝑛. In order to describe what these orbits

look like, let us assign some discrete data to each pair (𝑉∙,𝑊∙) of complete flags in C𝑛
.

For any 1 ≤ 𝑖, 𝑗 ≤ 𝑛 − 1, define

𝑑𝑖𝑗 = dim(𝑉𝑖 ∩𝑊𝑗).

Note that these numbers are non-decreasing in 𝑖 and 𝑗 . Moreover, counting codimensions

we see that

max(𝑖 + 𝑗 − 𝑛, 0) ≤ 𝑑𝑖𝑗 ≤ min(𝑖, 𝑗).
Let us define the set of (𝑛 × 𝑛)-matrices with integer coefficients satisfying the two con-

ditions above by M.

Exercise 5.26. The map

S𝑛 → M, 𝜎 ↦ ({𝑘 ≤ 𝑗 ∶ 𝜎(𝑘) ≤ 𝑖})1≤𝑖,𝑗≤𝑛−1
is well-defined, and is a bijection.
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Example 5.27. Let 𝑛 = 2. Then the identity in S2 goes to (1), and 𝑠 goes to (0).

Let us consider the (closed) Bruhat cell 𝑍 𝑠𝑖 ⊂ F × F, which corresponds to the trans-

position 𝑠𝑖 = (𝑖 𝑖 + 1), 1 ≤ 𝑖 ≤ 𝑛 − 1. By the bijection above, we have

𝑍 𝑠𝑖 =
{
(𝑉∙,𝑊∙) ∶ 𝑉𝑗 = 𝑊𝑗 for 𝑗 ≠ 𝑖

}
.

In other words, 𝑍 𝑠𝑖 can be seen as a fiber product:

(5.2)

𝑍 𝑠𝑖 F ×F𝑖 F F𝑖

F × F F𝑖 × F𝑖

Δ

where

F𝑖 ∶= {0 ⊂ 𝑉1 ⊂ ⋯ ⊂ 𝑉𝑖−1 ⊂ 𝑉𝑖+1 ⊂ ⋯ ⊂ 𝑉𝑛 ∶ dim𝑉𝑘 = 𝑘} .
The fiber of 𝑍 𝑠𝑖 → F𝑖 at each point is P1 × P1

, which parameterizes pairs of lines in

𝑉𝑖+1/𝑉𝑖−1. Moreover, we have a natural fiberwise 𝐺𝐿2-action on 𝑍 𝑠𝑖 . Therefore, we are
in a “relative” version of the situation for 𝐺𝐿2. Essentially the same computation yields

that [𝑍 𝑠𝑖] acts on 𝐻 ∗
𝐺(F) = Z[𝑡1,… , 𝑡𝑛] by

𝜕𝑖(𝑓 ) =
𝑓 − 𝑠𝑖(𝑓 )
𝑡𝑖 − 𝑡𝑖+1

.

Exercise 5.28. Check the following relations between 𝜕𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1:

𝜕2𝑖 = 0, 𝜕𝑖𝜕𝑗 = 𝜕𝑗𝜕𝑖 if |𝑖 − 𝑗 | > 1, 𝜕𝑖𝜕𝑖+1𝜕𝑖 = 𝜕𝑖+1𝜕𝑖𝜕𝑖+1.

These relations are almost the same as the defining relations between 𝑠𝑖 ∈ S𝑛, save

for 𝜕2𝑖 = 0. In particular, for any reduced expression 𝑤 = 𝑠𝑖1 … 𝑠𝑖𝑟 ∈ S𝑛 we can define an

operator 𝜕𝑤 ∶= 𝜕𝑖1 … 𝜕𝑖𝑟 , which is independent of the presentation of 𝑤.

Proposition 5.29. For any 𝑤 ∈ S𝑛, we have [𝑍𝑤] = 𝜕𝑤 as an operator on 𝐻 ∗
𝐺(F).

Sketch of proof. Consider 𝜕𝑤 as an operator on 𝐻 ∗
𝐺(F). By definition, it is obtained from

the following chain of correspondences:

𝑍 𝑠1 ⋯ 𝑍 𝑠𝑟

F F F F

All maps here are P1
-bundles, so each fiber product has correct dimension. Taking all

fiber products and applying base change, we see that 𝜕𝑤 is also defined by the corre-

spondence

𝑍 𝑠1 ×F … ×F 𝑍 𝑠𝑟

F F

Let us write 𝑍𝑤 ∶= 𝑍 𝑠1 ×F … ×F 𝑍 𝑠𝑟 , or equivalently 𝑍𝑤 ∶= F ×F𝑖1 … ×F𝑖𝑟 F. This is called
the Bott-Samelson variety of 𝑤. It is known that 𝑍𝑤 surjects onto the closure 𝑍𝑤 of 𝑍𝑤
in F × F, and this surjection is one-to-one over 𝑍𝑤. In particular, we have the following
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diagram:

𝑍𝑤

F 𝑍𝑤 F

𝑞
𝑝𝜋

𝑞′ 𝑝′

By projection formula, we have

𝑝∗𝑞∗(𝛼) = 𝑝′
∗𝜋∗𝜋

∗(𝑞′)∗(𝛼) = 𝑝′
∗(𝑞

′)∗(𝛼),

and so we may conclude. □

Corollary 5.30. The algebra 𝐍𝐇𝐺𝐿𝑛 is a free Λ𝑇 -module with a basis 𝜕𝑤, 𝑤 ∈ S𝑛.

Let𝑤0 ∈ S𝑛 be the longest element, that is the permutation sending 1 to 𝑛, 2 to (𝑛−1)
and so on. Define

𝑆𝑤0 ∶= 𝑡
𝑛−1
1 𝑡𝑛−22 … 𝑡𝑛−1; 𝑆𝑤 ∶= 𝜕𝑤−1𝑤0𝑆𝑤0 for 𝑤 ∈ S𝑛.

These are called Schubert polynomials.

Proposition 5.31. The Schubert polynomial 𝑆𝑤, 𝑤 ∈ S𝑛 give a basis of Z[𝑡1,… , 𝑡𝑛] over
Z[𝑡1,… , 𝑡𝑛]S𝑛 .

Proof. Order the monomials in each 𝑆𝑤 lexicographically. The highest term of 𝑆𝑤 is

𝑡𝑎11 … 𝑡𝑎𝑛−1𝑛−1 , where 𝑎𝑖 = #{𝑗 > 𝑖 ∶ 𝑤(𝑗) < 𝑤(𝑖)}. Since the lowest terms form a basis,

Schubert polynomials form a basis as well. □

Corollary 5.32. We have 𝐍𝐇𝐺𝐿𝑛 ≃ Mat𝑛×𝑛(Z[𝑡1,… , 𝑡𝑛]S𝑛).

Proof. Omitted, see Proposition 5.46 for the general case. □

5.7. General group. Let us now sketch what happens for an arbitrary reductuve group

𝐺. In this case, we have

𝐍𝐇𝐺 = Λ𝑇 ⟨𝜕𝛼 ∶ 𝛼 ∈ S⟩ ⊂ EndΛ𝑊𝑇 (Λ𝑇 ), 𝜕𝛼 =
𝑃 − 𝑠𝛼(𝑃)

𝛼
,

where 𝛼 ∈ S is a simple reflection.

Remark 5.33. For any weight 𝛽 ∈ 𝑇 ∨
, we have 𝜕𝛼𝛽 = ⟨𝛼∨, 𝛽⟩.

A similar argument gives rise to a basis 𝜕𝑤, 𝑤 ∈ 𝑊 of 𝐍𝐇𝐺 over Λ𝑇 . If we denote

d ∶= ∏𝛼∈Δ+ 𝛼, then 𝐍𝐇𝐺[d−1] ≃ 𝑊 ⋉Λ𝑇 [d−1] as in Remark 5.25. However, the inclusion

𝐍𝐇𝐺 ⊂ EndΛ𝑊𝑇 (Λ𝑇 ) is not an isomorphism in general.

Example 5.34. Let 𝐺 = 𝑃𝑆𝐿2. As in Example 5.8, we have Λ𝑇 = Z[2𝑡], and the (only)

Demazure operator 𝜕𝛼 sends 2𝑡 to 2. It is easy to conclude from this that for any element

𝐴 ∈ 𝐍𝐇𝑃𝑆𝐿2 the image 𝐴(2𝑡) is divisible by 2, and so e.g. the matrix (
0 1
0 0) does not

belong to 𝐍𝐇𝑃𝑆𝐿2 .

5.8. Abelianizationwithmodular coefficients. Let us return to the question of com-

puting 𝐻 ∗
𝐺(𝑋) in terms of the action of 𝐍𝐇𝐺 on 𝐻 ∗

𝑇 (𝑋). We begin with a simple compar-

ison claim. Let us consider the following left ideal in 𝐍𝐇𝐺:

𝐼 = ∑
𝑒≠𝑤∈𝑊

Λ𝑇𝜕𝑤 = ⟨𝜕𝑤, 𝑤 ≠ 𝑒⟩.
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Given a left 𝐍𝐇𝐺-module 𝑀 , we denote by 𝑀 𝐼 ⊂ 𝑀 the submodule of all elements

annihilated by 𝐼 .

Proposition 5.35. Let 𝑋 be a 𝐺-variety. Then we have natural maps

𝐻 ∗
𝐺(𝑋) → 𝐻 ∗

𝑇 (𝑋)
𝐼 ↪ 𝐻 ∗

𝑇 (𝑋)
𝑊 .

Proof. Recall that the map 𝐻 ∗
𝐺(𝑋) → 𝐻 ∗

𝑇 (𝑋) is defined as the pullback along 𝑋 ×𝐺/𝐵 →
𝑋 . For any simple root 𝛼 ∈ S, we have the closed Bruhat cell 𝑍𝛼 , which fits into the fiber

square

𝑍𝛼 F

F F𝛼 𝐺/𝑃𝛼

𝑝

𝑝 𝜋

𝜋

Here, 𝑃𝛼 ⊂ 𝐺 is the standard parabolic corresponding to𝛼, that is the subgroup generated
by 𝐵 and the one-parameter group associated to g𝛼 . As in (5.2), base change yields 𝜕𝛼 =
𝑝∗𝑝∗ = 𝜋∗𝜋∗. Therefore, using projection formula

𝜕𝛼(𝜋∗𝛾 ) = 𝜋∗𝜋∗𝜋∗𝛾 = 𝜋∗(𝛾 ∪ 𝜋∗(1)) = 𝜋∗𝛾 ∪ 𝜕𝛼(1) = 0.

This shows that the image of 𝐻 ∗
𝐺(𝑋) → 𝐻 ∗

𝑇 (𝑋) is contained in 𝐻 ∗
𝑇 (𝑋)𝐼 . For the second

inclusion, note that 𝜕𝛼(𝛾 ) = 0 implies, by definition of Demazure operator, that 𝛼𝜕𝛼(𝛾 ) =
𝛾 − 𝑠𝛼(𝛾 ). The right-hand side obviously vanishes when 𝛾 is𝑊 -invariant. □

The map 𝐻 ∗
𝑇 (𝑋)𝐼 ↪ 𝐻 ∗

𝑇 (𝑋)𝑊 is not bijective in general. Moreover, 𝐻 ∗
𝐺(𝑋) → 𝐻 ∗

𝑇 (𝑋)𝐼

may even fail to be injective! Thankfully, it turns out to be injective under fairly mild

conditions. In order to formulate them, consider the following pullback along 𝐺 → pt:

𝑐 ∶ Λ𝑇 = 𝐻 ∗
𝑇 (pt) ≃ 𝐻

∗
𝐵(pt) → 𝐻 ∗

𝐵(𝐺) ≃ 𝐻
∗(𝐺/𝐵).

Lemma 5.36. The map 𝑐 is surjective over Q.

Proof. Recall that Λ𝑇 = 𝐻 ∗
𝐺(F) is a free Λ𝐺 = Λ𝑊𝑇 -module, when working over Q. There-

fore we can apply Künneth formula to obtain

𝐻 ∗
𝑇 (F) = 𝐻

∗
𝐵(F) = 𝐻

∗
𝐺(F × F) = Λ𝑇 ⊗Λ𝐺 Λ𝑇 .

Factoring off one copy of Λ𝑇 , we see that the map Λ𝑇 → Λ𝑇/Λ𝐺 = 𝐻 ∗
𝑇 (F)/Λ𝑇 = 𝐻 ∗(F)

surjects. □

In particular, the map 𝑐 has finite cokernel over Z.

Definition 5.37. Let 𝑡(𝐺) be the order of the cokernel of the map 𝑐 ∶ Λ2 dimF →
𝐻 2 dimF(F) ≃ Z. We call this number the torsion index of 𝐺.

Remark 5.38. Let d = ∏𝛼∈Δ+ 𝛼 as before. One can show (e.g. by integration formula) that

𝑐(d) = |𝑊 |𝜃, where 𝜃 is the generator of 𝐻 2 dimF(F) ≃ Z. This implies that the torsion

index 𝑡(𝐺) divides the order of Weyl group |𝑊 |. In general, primes factors of 𝑡(𝐺) are
the same as prime factors of 𝜋1(𝐺), plus additionally

∙ 2 if 𝐺 has a factor of type G2 or B𝑛, 𝑛 ≥ 3;
∙ 2, 3 for factors of types E6, E7, F4;
∙ 2, 3, 5 for factor of type E8.

For instance, 𝑡(𝐺𝐿𝑛) = 1, and 𝑡(𝑆𝐿𝑛) has the same prime factors as 𝑛.
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Proposition 5.39. The kernel of 𝐻 ∗
𝐺(𝑋) → 𝐻 ∗

𝑇 (𝑋)𝐼 is annihilated by 𝑡(𝐺). If 𝑡(𝐺) is
invertible, this map is split injective.

Proof. Pick a point 𝑥 ∈ 𝑋 , and consider the following diagram:

F F × 𝑋 𝑋

pt

𝑖𝑥

𝑖 𝜋

𝑝

Recall that 𝑐 = 𝑖∗. Choose a class 𝑢 ∈ Λ𝑇 satisfying 𝑖∗(𝑢) = 𝑡(𝐺)𝜃, and define 𝑢 ∶= 𝜋∗(𝑢).

Exercise 5.40. Let 𝑝 ∶ 𝑋 → 𝑌 be a 𝐺-equivariant map. Then the pullback 𝑝∗ ∶ 𝐻 ∗
𝑇 (𝑌 ) →

𝐻 ∗
𝑇 (𝑋) commutes with 𝐍𝐇𝐺-action on both sides.

Using this exercise, we have

𝑖∗𝑥𝑝
∗𝑝∗(𝑢) = 𝑖∗𝑥𝜕𝑤0(𝑢) = 𝜕𝑤0 𝑖

∗
𝑥(𝑢) = 𝜕𝑤0 𝑖

∗(𝑢)

= 𝑡(𝐺)𝜕𝑤0(𝜃) = 𝑡(𝐺) ∈ 𝐻
0(F),

which implies that 𝑝∗(𝑢) = 𝑡(𝐺). Define the maps

𝐻 ∗
𝐺(𝑋)

Φ−→ 𝐻 ∗
𝑇 (𝑋)

Ψ−→ 𝐻 ∗
𝐺(𝑋)

by Φ = 𝑝∗
, Ψ = 𝑝∗(𝑢∪−). By projection formula, ΨΦ(𝑦) = 𝑝∗(𝑢) ∪𝑦 = 𝑡(𝐺)𝑦. Therefore

𝑝∗(𝑦) = Φ(𝑦) = 0 implies 𝑡(𝐺)𝑦 = 0, which proves the first claim. Moreover, when 𝑡(𝐺)
is invertible,

Ψ
𝑡(𝐺) provides a splitting for Φ. □

From now on, we will consider cohomology with coefficients in a field k, such that 𝑡(𝐺) is
invertible in k. In this case, there exists an element 𝑆 ∈ Λ2 dimF

𝑇 such that 𝑖∗(𝑆) = 𝑐(𝑆) = 𝜃.

Definition 5.41. Let 𝑤0 be the longest element in 𝑊 . For each 𝑤 ∈ 𝑊 , define the

Schubert polynomial 𝑆𝑤 by 𝑆𝑤 ∶= 𝜕𝑤−1𝑤0(𝑆).

Lemma 5.42. We have 𝑆𝑒 = 1. The set {𝑐(𝑆𝑤) ∶ 𝑤 ∈ 𝑊 } is a basis of 𝐻 ∗(F).

Proof. We have

𝑖∗𝑆𝑒 = 𝑖∗𝜕𝑤0(𝑆) = 𝜕𝑤0 𝑖
∗𝑆 = 𝜕𝑤0(𝜃) = 1,

which proves the first claim. An analogous computation shows that 𝑐(𝑆𝑤) = 𝑖∗(𝑆𝑤) =
𝜕𝑤−1𝑤0(𝜃), and the latter is equal to the class of the closed Bruhat cell [𝑍𝑤−1𝑤0]. The second
claim follows by Bruhat decomposition. □

Consider the k-linear maps

𝑠 ∶ 𝐻 ∗(F) → Λ𝑇 , 𝑐(𝑆𝑤) ↦ 𝑆𝑤,
𝑠 ∶ 𝐻 ∗(F) → 𝐻 ∗

𝑇 (𝑋), 𝑐(𝑆𝑤) ↦ 𝜋∗(𝑆𝑤).

Proposition 5.43. The map

𝐻 ∗(F) ⊗ 𝐻 ∗
𝐺(𝑋) → 𝐻 ∗

𝑇 (𝑋), (𝑥, 𝑏) ↦ 𝑠(𝑥)𝑝∗(𝑏)

is a Λ𝐺-module isomorphism. The map

Λ𝑇 ⊗Λ𝐺 𝐻
∗
𝐺(𝑋) → 𝐻 ∗

𝑇 (𝑋), (𝑢, 𝑏) ↦ 𝜋∗(𝑢)𝑝∗(𝑏)

is an algebra isomorphism.
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Proof. Note that 𝑖∗𝑥(𝜋∗𝑆𝑤) = 𝑖∗(𝑆𝑤) = 𝑐(𝑆𝑤); in particular 𝑖∗𝑥 is surjective, and 𝑠 provides a
section. This is exactly the setting where Leray-Hirsch theorem applies, and so the first

isomorphism follows. The second map is manifestly multiplicative, and sends a basis

{𝑆𝑤 ⊗ 1} to a basis {𝜋∗(𝑆𝑤)}. □

Corollary 5.44. We have 𝐻 ∗
𝐺(pt,k) ≃ 𝐻 ∗

𝐺(pt,Z)⊗Z k and 𝐻 ∗
𝐺(pt,k) ≃ (𝐻 ∗

𝑇 (pt,Z)𝑊 )⊗Z

k. Moreover, (Λ𝑇/Λ𝑊𝑇 ) ⊗Z k → 𝐻 ∗(F,k) is an isomorphism.

Proof. We have TorZ(Λ𝐺,k) = 0, since the torsion submodule of Λ𝐺 is killed by 𝑡(𝐺),
and 𝑡(𝐺) is invertible in k. The first isomorphism follows by universal coefficients. In

particular,

𝑝∗𝐻 ∗
𝐺(pt,k) = 𝑝

∗𝐻 ∗
𝐺(pt) ⊗ k ⊂ 𝐻 ∗

𝑇 (pt)
𝑊 ⊗ k.

For the opposite inclusion, note that 𝐻 ∗
𝑇 (pt,k) is free over 𝑝∗𝐻 ∗

𝐺(pt,k) with basis 𝑆𝑤,
𝑤 ∈ 𝑊 . Moreover, one can check that Λ𝑇 ⊗ k is free over Λ𝐺 ⊗ k with the same basis;

this implies that 𝐻 ∗
𝐺(pt,k) ≃ (𝐻 ∗

𝑇 (pt,Z)𝑊 ) ⊗Z k.

Finally, for the last isomorphism we write

(Λ𝑇/Λ𝑊𝑇,+) ⊗ k = (Λ𝑇 ⊗ k) ⊗Λ𝑊𝑇 ⊗Zk
k

= (𝐻 ∗(F,k) ⊗k (Λ𝑊𝑇 ⊗Z k)) ⊗Λ𝑊𝑇 ⊗Zk
k = 𝐻 ∗(F,k),

where we used Proposition 5.43 for the second equality. □

Corollary 5.45. The map Λ𝑇 ⊗Λ𝐺 𝐻 ∗
𝐺(𝑋) → 𝐻 ∗

𝑇 (𝑋) is an isomorphism of 𝐍𝐇𝐺-modules,
where the action on the left hand side is defined by 𝜕𝑤(𝑢 ⊗ 𝑏) ∶= 𝜕𝑤 ⊗ 𝑏 .

Proof. The action of 𝐍𝐇𝐺 on Λ𝑇 is Λ𝐺-linear, therefore the action on the left hand side

is well-defined. Furthermore, 𝐍𝐇𝐺-action on 𝐻 ∗
𝑇 (𝑋) is 𝐻 ∗

𝐺(𝑋)-linear by the proof of

Proposition 5.35, therefore

𝜋(𝜕(𝑢))𝑝∗(𝑏) = 𝜕(𝜋∗(𝑢))𝑝∗(𝑏) = 𝜕(𝜋∗(𝑢)𝑝∗(𝑏)),

and so we may conclude. □

We are ready to prove Corollary 5.32 in a more general setting.

Proposition 5.46. Assume that 𝑡(𝐺) is invertible in k. Then we have an isomorphism
𝐍𝐇𝐺 ≃ EndΛ𝐺(Λ𝑇 ) over k.

Proof. Let us consider the elements 𝜕𝑤(𝑆𝑤′) for 𝑤,𝑤′ ∈ 𝑊 . By definition of 𝑆𝑤 and

relations in 𝐍𝐇𝐺, we have 𝜕𝑤(𝑆𝑤) = 1.

Lemma 5.47. Denote 𝑙(𝑤) ∶= 𝑟 for a reduced expression 𝑤 = 𝑠𝑖1 … 𝑠𝑖𝑟 . If 𝑙(𝑤) > 𝑙(𝑤′),
then 𝜕𝑤(𝑆𝑤′) = 0. If 𝑙(𝑤) = 𝑙(𝑤′), then 𝜕𝑤(𝑆𝑤′) = 𝛿𝑤,𝑤′ .

Proof. For the first claim, consider the degree of resulting polynomial:

deg 𝜕𝑤𝑆𝑤′ = deg 𝜕𝑤𝜕𝑤−1𝑤0𝑆 = 𝑙(𝑤0) − (𝑙(𝑤0) − 𝑙(𝑤′)) − 𝑙(𝑤) = 𝑙(𝑤′) − 𝑙(𝑤) < 0.

For the second claim, note that 𝜕𝑤𝜕(𝑤′)−1𝑤0 unless 𝑙(𝑤) = 𝑙((𝑤′)−1𝑤0), which is equivalent
to 𝑤 = 𝑤′

. □

As a consequence of the lemma above, the determinant of the (|𝑊 | × |𝑊 |)-matrix

(𝜕𝑤(𝑆𝑤′))𝑤,𝑤′∈𝑊 is equal to 1. In other words, the Λ𝑇 -linear map

⨁
𝑤

Λ𝑇𝜕𝑤 → ⨁
𝑤

Λ𝑇𝑆𝑤, 𝐴 ↦ (𝐴(𝑆𝑤)𝑆𝑤)𝑤
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is an isomorphism. We conclude by observing that 𝐍𝐇𝐺 ≃ ⨁𝑤 Λ𝑇𝜕𝑤 as explained in

Section 5.7, and EndΛ𝐺(Λ𝑇 ) ≃ ⨁𝑤 Λ𝑇𝑆𝑤 by Proposition 5.43 applied to a point. □

An easy consequence of this structure result is the main statement of this chapter.

Theorem 5.48. Assume that 𝑡(𝐺) is invertible in k. Restriction from 𝐺 to 𝑇 induces an
isomorphism 𝐻 ∗

𝐺(𝑋,k) ≃ 𝐻 ∗
𝑇 (𝑋,k)𝐼 .

Proof. Let us consider the categories A = 𝐍𝐇𝐺-mod, B = Λ𝐺-mod. We have the follow-

ing functors:

𝐹 ∶ A → B, 𝐴 ↦ Hom𝐍𝐇𝐺(Λ𝑇 , 𝐴);
𝐺 ∶ B → A, 𝐵 ↦ Λ𝑇 ⊗Λ𝐺 𝐵.

Recall that 𝐍𝐇𝐺 ≃ Mat|𝑊 |×|𝑊 |(Λ𝐺). For such rings, we have the following useful result

(which we will not prove).

Lemma 5.49 (Morita equivalence). Let 𝑅 be a ring. Then for any 𝑛 > 0, we have 𝑅-mod ≃
Mat𝑛×𝑛(𝑅), via the maps 𝑀 ↦ 𝑀⊕𝑛, HomMat(𝑀⊕𝑛, 𝑁 ) ←[ 𝑁 .

In particular, 𝐺 is an equivalence of categories, and 𝐹 is its inverse.

Lemma 5.50. Let 𝐽 ∶ A → B, 𝐽 (𝐴) ∶= 𝐴𝐼 . Then 𝐹 ≃ 𝐽 via 𝜑, sending 𝑓 ∈ 𝐹(𝐴) to
𝑓 (1) ∈ 𝐽 (𝐴).

Proof. The map 𝜑 is injective, since Λ𝑇 is cyclic over 𝐍𝐇𝐺, and surjective because 𝐼 is
precisely the annihilator of 1 ∈ Λ𝑇 . □

Finally, let𝐴 ∶= 𝐻 ∗
𝑇 (𝑋) ∈ A, and 𝐵 ∶= 𝐻 ∗

𝐺(𝑋) ∈ B. We know that𝐴 = 𝐺(𝐵), therefore
𝐵 = 𝐹(𝐴) = 𝐽 (𝐴) = 𝐴𝐼 . □

It only remains for us to compare 𝐻 ∗
𝑇 (𝑋,k)𝐼 with 𝐻 ∗

𝑇 (𝑋,k)𝑊 .

Proposition 5.51. Let 𝐴 be an 𝐍𝐇𝐺-module. Then 𝐴𝐼 = 𝐴𝑊 if either |𝑊 | is invertible, or
d = ∏𝛼∈Δ+ 𝛼 is not a zero divisor in 𝐴.

Sketch of proof. One can check that 𝑢 ↦ 𝜕𝑤0(𝑆𝑢) defines a map 𝜌 ∶ 𝐴 → 𝐴𝐼 . If |𝑊 | is
invertible, we can pick 𝑆 = d|𝑊 |−1 and check that 𝜌 is precisely the symmetrization. If

d is not a zero divisor, then 𝐍𝐇𝐺 ≃ 𝑊 ⋉ Λ𝑇 . □

Corollary 5.52. If 𝑡(𝐺) is invertible and𝐻 ∗
𝑇 (𝑋) is equivariantly formal (or just Λ𝑇 -torsion

free), then 𝐻 ∗
𝐺(𝑋) ≃ 𝐻 ∗

𝑇 (𝑋)𝑊 . □

Remark 5.53. When 𝑡(𝐺) is not invertible in k, not much is known about 𝐺-equivariant
cohomology, or even about the ring structure of Λ𝐺.
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6. Convolution algebras

In the previous section, we used the action of convolution algebra 𝐍𝐇𝐺 to study

𝐻 ∗
𝐺(𝑋). Let us go the other way around, and ask:

∙ Given an algebra 𝐴, can we realize it as a convolution algebra?

∙ Given a convolution algebra 𝐻 ∗
𝐺(𝐹 ×𝐹), do all of its modules arise from 𝐻 ∗

𝐺(𝐹 ×𝑋)
for various 𝑋? Maybe 𝑋 = pt is enough?

A good testing ground is 𝐴 = Z[Γ], where Γ is a finite group. Let us further restrict our

attention to the symmetric group Γ = S𝑛.

We immediately run into a problem; namely, the product in 𝐻 ∗
𝐺(𝐹 × 𝐹) changes co-

homological degree by −2 dim 𝐹 , while Z[Γ] doesn’t have any natural grading. This

corresponds to the fact that while Z[S𝑛] ⊂ 𝐍𝐇𝑛, the two algebras are meaningfully

different. For the first attempt at repairing this, assume that 𝐹 → 𝐵 is a proper map, and

consider 𝑍 ∶= 𝐹 ×𝐵 𝐹 . We have the following correspondence:

𝐹 ×𝐵 𝐹 ×𝐵 𝐹

𝑍 × 𝑍 𝑍

If dim 𝐹 ×𝐵 𝐹 ×𝐵 𝐹 = 𝐹 ×𝐵 𝐹 , then the multiplication preserves cohomological degree.

Moreover, if dim 𝐹 ×𝐵4 = dim 𝐹 ×𝐵 𝐹 , then the product on 𝐻 ∗(𝑍) is associative by base

change. However, we arrive at a new problem: Z[Γ] must belong to 𝐻 0(𝑍) for degree
reasons, and 𝐻 0(𝑍) = Z if 𝑍 is connected.

Example 6.1. Let 𝑋 = {𝑥𝑦 = 0} ⊂ C2
. Then 𝐻 ∗(𝑋) = 𝐻 0(𝑋) = Z by homotopy equiva-

lence. On the other hand, in compactly supported cohomology𝐻 0
𝑐 (𝑋) = Z, 𝐻 2

𝑐 (𝑋) = Z2

by an easy application of Mayer-Vietoris.

This suggest that we should replace cohomology with compactly supported cohomol-

ogy. The remaining issue is that 𝐻 ∗
𝑐 is contravariant with respect to proper maps, so in

order to define convolution algebras we need to dualize.

Let us recall the 4 flavours of singular (co)homology:

𝐻∗(𝑋) 𝐻BM
∗ (𝑋)

𝐻 ∗
𝑐 (𝑋) 𝐻 ∗(𝑋)

Here, the dashed line means duality (over Q), blue line is Poincaré duality (when 𝑋 is

smooth), and red line is the trivial isomorphism when 𝑋 is compact. 𝐻BM
∗ (𝑋) stands

for Borel-Moore homology, and so this is what we need to work with. The main issue

we will encounter is the definition of pullbacks; while pullback clearly makes sense for

maps between smooth varieties by Poincaré duality, the fiber products 𝐹 ×𝐵 𝐹 we want

to consider are rarely smooth.

6.1. Borel-Moore homology. From now on, we will work exclusively with the spaces

admitting a closed embedding into R𝑛
; note that these covers all quasi-projective alge-

braic varieties over C, since CP𝑛 ⊂ R4𝑛
.
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Definition 6.2. Let 𝑋 ⊂ R𝑁
be a closed embedding. The Borel-Moore homology of 𝑋 is

defined to be the relative cohomology:

𝐻BM
𝑖 (𝑋) ∶= 𝐻𝑁−𝑖(R𝑁 ,R𝑛 ⧵ 𝑋).

Proposition 6.3. This definition is independent of the closed embedding 𝑋 ⊂ R𝑁 .

Proof. Let 𝑖 ∶ 𝑋 ↪ R𝑁
, 𝑗 ∶ 𝑋 ↪ R𝑀

be two closed embeddings. We can find a smooth

map 𝜑 ∶ R𝑁 → R𝑀
, such that 𝜑 ◦ 𝑖 = 𝑗 . Let us define an automorphism of R𝑁 × R𝑀

by

𝜃 ∶ R𝑁 × R𝑀 → R𝑁 × R𝑀 , (𝑣, 𝑤) ↦ (𝑣, 𝑤 − 𝜑(𝑣)).

Note that 𝜃 sends 𝑋(𝑖,0) ∶= 𝑖(𝑋) × {0} to 𝑋(𝑖,𝑗) ∶= (𝑖 × 𝑗)(𝑋). Using this and Thom isomor-

phism, we get

𝐻𝑁−𝑖(R𝑁 ,R𝑁 ⧵ 𝑋) = 𝐻𝑁+𝑀−𝑖(R𝑁 × R𝑀 , (R𝑁 × R𝑀) ⧵ 𝑋(𝑖,0))

= 𝐻𝑁+𝑀−𝑖(R𝑁+𝑀 , (R𝑁+𝑀) ⧵ 𝑋(𝑗 ,𝑖)).

Similarly, we have𝐻𝑀−𝑖(R𝑀 ,R𝑀⧵𝑋) = 𝐻𝑁+𝑀−𝑖(R𝑀+𝑁 , (R𝑀+𝑁 )⧵𝑋(𝑗 ,𝑖)), and so it remains

to check that

𝐻𝑁+𝑀−𝑖(R𝑁+𝑀 , (R𝑁+𝑀) ⧵ 𝑋(𝑖,𝑗)) = 𝐻𝑁+𝑀−𝑖(R𝑀+𝑁 , (R𝑀+𝑁 ) ⧵ 𝑋(𝑗 ,𝑖)).

However, this isomorphism is realized by the map R𝑁 × R𝑀 → R𝑀 × R𝑁
which swaps

the factors. □

Note that we can replace a closed embedding into R𝑁
by an embedding into any

smooth manifold 𝑀 . Indeed, let 𝑋 ⊂ 𝑀 ⊂ R𝑁
be closed embeddings, and 𝑚 = dimR𝑀 .

Then

𝐻𝑚−𝑖(𝑀,𝑀 ⧵ 𝑋) = 𝐻𝑁−𝑖(𝑈, 𝑈 ⧵ 𝐴) = 𝐻𝑁−𝑖(R𝑁 ,R𝑁 ⧵ 𝐴) = 𝐻𝑁−𝑖(R𝑁 ,R𝑁 ⧵ 𝑋),

where 𝑈 is a tubular neighborhood of 𝑀 in R𝑁
, and 𝐴 is its restriction to 𝑋 .

Remark 6.4. There exist other, equivalent definitions of Borel-Moore homology.

(1) One can prove that for any compactification 𝑋 ⊂ 𝑋 such that the boundary

𝜕𝑋 ∶= 𝑋 ⧵ 𝑋 is a retract of its neighborhood (e.g. one-point compactification),

we have 𝐻BM
∗ (𝑋) = 𝐻∗(𝑋, 𝜕𝑋);

(2) Consider the complex 𝐶lf(𝑋)
of locally finite singular chains, that is where we

allow infinite sums, which restrict to a finite sum over each compact 𝐾 ⊂ 𝑋 .
Then 𝐻BM

∗ (𝑋) = 𝐻∗(𝐶lf(𝑋)).

6.2. Functoriality. Let 𝑝 ∶ 𝑋 → 𝑌 be a proper map. Then by definition 𝑝 factors

as 𝑋 ↪ 𝑌 × D → 𝑌 , where the first map is a closed embedding, the sedond map is a

projection, and D is a closed disk in some R𝑁
. Pick a closed embedding 𝑌 ⊂ R𝑀

, then

𝐻BM
𝑖 (𝑋) = 𝐻𝑀+𝑁−𝑖(R𝑀+𝑁 ,R𝑀+𝑁 ⧵ 𝑋) → 𝐻𝑀+𝑁−𝑖(R𝑀+𝑁 ,R𝑀+𝑁 ⧵ (𝑌 × D))

≃ 𝐻𝑀+𝑁−𝑖(R𝑀+𝑁 ,R𝑀+𝑁 ⧵ (𝑌 × {0})) ≃ 𝐻𝑀−𝑖(R𝑀 ,R𝑀 ⧵ 𝑌 )

= 𝐻BM
𝑖 (𝑌 )

defines a proper pushforward map 𝑝∗ ∶ 𝐻BM
∗ (𝑋) → 𝐻BM

∗ (𝑌 ). Unraveling this definition,
note that for a closed embedding 𝑋 ↪ 𝑌 this maps is nothing else than the restriction

map 𝐻 ∗(R𝑀 ,R𝑀 ⧵ 𝑋) → 𝐻 ∗(R𝑀 ,R𝑀 ⧵ 𝑌 ).
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Now let 𝑗 ∶ 𝑈 ↪ 𝑋 be an open embedding. Embed 𝑋 in an 𝑚-dimensional manifold

𝑀 , and let �̊� = 𝑀 ⧵ (𝑋 ⧵ 𝑈 ). Then

𝐻BM
𝑖 (𝑋) = 𝐻𝑚−𝑖(𝑀,𝑀 ⧵ 𝑋) → 𝐻𝑚−𝑖(�̊�, �̊� ⧵ 𝑈 ) = 𝐻BM

𝑖 (𝑈 )

defines an open pullback 𝑗∗ ∶ 𝐻BM
𝑖 (𝑋) → 𝐻BM

𝑖 (𝑈 ). Note that if 𝑖 ∶ 𝑉 = 𝑋 ⧵ 𝑈 ↪ 𝑋 is

the complement, the long exact sequence in relative cohomology induces a long exact

sequence in Borel-Moore homology:

⋯ → 𝐻BM
𝑖 (𝑉 )

𝑖∗−→ 𝐻BM
𝑖 (𝑋)

𝑗∗
−→ 𝐻BM

𝑖 (𝑈 ) → 𝐻BM
𝑖+1 (𝑉 ) → ⋯

6.3. Fundamental classes. Assume 𝑋 is smooth of (complex) dimension 𝑛. Then we

have Poincaré duality:

𝐻BM
𝑖 (𝑋) = 𝐻 2𝑛−𝑖(𝑋,𝑋 ⧵ 𝑋) = 𝐻 2𝑛−𝑖(𝑋).

In particular, in top degree we have 𝐻BM
2𝑛 (𝑋) = 𝐻 0(𝑋) = ⨁𝑖∈𝐼 Z[𝑋𝑖], where 𝑋𝑖, 𝑖 ∈ 𝐼 are

connected components of 𝑋 (each of them has dimension 𝑛 by smoothness).

Now let 𝑋 be any algebraic variety. Then it has a non-empty smooth locus 𝑋sm ⊂ 𝑋 ,
and by algebraicity the real codimension of the complement 𝑋 ⧵ 𝑋sm is at least 2. The
long exact sequence in Borel-Moore homology then implies

𝐻BM
2 dim𝑋 (𝑋) = 𝐻

BM
2 dim𝑋 (𝑋sm) = ⨁

𝑖∈𝐼
Z[𝑋sm,𝑖] = ⨁

𝑖∈𝐼
Z[𝑋𝑖],

where 𝑖 ∈ 𝐼 runs over connected components of 𝑋sm of top dimension, or equivalently

over irreducible components of 𝑋 of top dimension. Note that lower-dimensional com-

ponents do not contribute, since on each component 𝑋𝑖 Poincaré duality establishes an

isomorphism between 𝐻 0(𝑋sm,𝑖) and 𝐻BM
2 dim𝑋𝑖(𝑋sm,𝑖). We call the class [𝑋𝑖] the fundamen-

tal class of 𝑋𝑖; in particular, for each 𝑋 we get its fundamental class

[𝑋] = ∑
dim𝑋𝑖=dim𝑋

[𝑋𝑖] ∈ 𝐻BM
2 dim𝑋 (𝑋).

Each class [𝑋𝑖] ∈ 𝐻BM
2 dim𝑋 (𝑋) can therefore be understood as the pushforward of [𝑋𝑖] ∈

𝐻BM
2 dim𝑋𝑖(𝑋𝑖) under the closed inclusion 𝑋𝑖 ⊂ 𝑋 .
Using Poincaré duality, we can also define a pullback along any map 𝑓 ∶ 𝑋 → 𝑌

between smooth varieties. Let 𝑛 = dimC 𝑋 , 𝑚 = dimC 𝑌 , then

𝐻BM
𝑖 (𝑌 ) = 𝐻 2𝑚−𝑖(𝑌 )

𝑓 ∗
−→ 𝐻 2𝑚−𝑖(𝑋) = 𝐻BM

𝑖+2(𝑛−𝑚)(𝑋).

6.4. Intersection pullback. Note that 𝐻BM
∗ (𝑋) is not a ring, but only a module over

𝐻 ∗(𝑋). Indeed, one can construct the module structure as follows. Let 𝑋 ⊂ 𝑀 closed

embedding, such that 𝑀 is smooth of dimension 𝑚 and 𝑋 is a retract of 𝑀 . Then cup

product in relative cohomology gives us a map

∩ ∶ 𝐻 𝑖(𝑋) ⊗ 𝐻BM
𝑗 (𝑋) ≃ 𝐻 𝑖(𝑀) ⊗ 𝐻𝑚−𝑗(𝑀,𝑀 ⧵ 𝑋)

∪−→ 𝐻𝑚−𝑗+𝑖(𝑀,𝑀 ⧵ 𝑋) ≃ 𝐻BM
𝑗−𝑖 (𝑋),

which is called cap product.
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This construction can be generalized. Indeed, let 𝑋, 𝑌 ⊂ 𝑀 be two closed (possibly

singular) subvarieties of a smooth variety 𝑀 . We have a map

∩ ∶ 𝐻BM
𝑖 (𝑋) ⊗ 𝐻BM

𝑗 (𝑌 ) ≃ 𝐻𝑚−𝑖(𝑀,𝑀 ⧵ 𝑋) ⊗ 𝐻𝑚−𝑗(𝑀,𝑀 ⧵ 𝑌 )
∪−→ 𝐻 2𝑚−𝑖−𝑗(𝑀, (𝑀 ⧵ 𝑋) ∪ (𝑀 ⧵ 𝑌 )) = 𝐻 2𝑚−𝑖−𝑗(𝑀,𝑀 ⧵ (𝑋 ∩ 𝑌 ))

≃ 𝐻BM
𝑖+𝑗−𝑚(𝑋 ∩ 𝑌 ).

Note that this map very much depends on the ambient variety𝑀! For instance, even its

degree depends on dim𝑀 .

Now let 𝑖 ∶ 𝑋 ↪ 𝑌 be a closed embedding of smooth varieties of codimension 𝑑, and
𝑍 ⊂ 𝑌 any closed subvariety. Denote 𝑍 ′ = 𝑋 ∩ 𝑍 and consider the fiber square

𝑍 ′ 𝑍

𝑋 𝑌

𝑖′

𝑖

Definition 6.5. The intersection pullback is defined by

(𝑖′)∗ ∶ 𝐻BM
𝑖 (𝑍) → 𝐻BM

𝑖−2𝑑(𝑍
′), (𝑖′)∗(𝑐) = 𝑐 ∩ [𝑋].

We will denote this map both (𝑖′)∗ and 𝑖∗, or (𝑖′)∗𝑖 if we need to underline its dependence
on the map 𝑖 ∶ 𝑋 → 𝑌 .

Remark 6.6. Later on, we will drop the requirement for maps 𝑍 → 𝑌 , 𝑋 → 𝑌 to be closed

embeddings.

Let us list some useful properties of intersection pullback.

Exercise 6.7 (Functoriality). Consider the diagram with fiber squares

𝑍 ′
2 𝑍 ′

1 𝑍

𝑋2 𝑋1 𝑌

𝑗 ′ 𝑖′

𝑗 𝑖

where 𝑋1, 𝑋2, 𝑌 are smooth, and all maps are closed embeddings. Then we have an

equality (𝑖 ◦ 𝑗)∗ = 𝑗∗ ◦ 𝑖∗ of maps from 𝐻BM
∗ (𝑍) to 𝐻BM

∗ (𝑍 ′
2).

Exercise 6.8 (Commutativity). Consider the diagram with fiber squares

𝑊 ′′ 𝑊 ′ 𝑊

𝑍 ′′ 𝑍 ′ 𝑍

𝑋 𝑌

𝑖′′

𝑗 ′′ 𝑗 ′ 𝑗

𝑖′

𝑖

where 𝑋 , 𝑌 , 𝑊 , 𝑍 are smooth, and all maps are closed embeddings. Then we have an

equality 𝑗∗ ◦ 𝑖∗ = 𝑖∗ ◦ 𝑗∗ of maps from 𝐻BM
∗ (𝑍 ′) to 𝐻BM

∗ (𝑊 ′′).
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Proposition 6.9 (Excess intersection). Consider the diagram with fiber squares

(6.1)

𝑋 ′′ 𝑌 ′′

𝑋 ′ 𝑌 ′

𝑋 𝑌

𝑓 ′′

ℎ′ ℎ

𝑓 ′

𝑔′ 𝑔

𝑓

where 𝑋 , 𝑋 ′, 𝑌 , 𝑌 ′ are smooth, and all maps are closed embeddings. Then for any 𝑐 ∈
𝐻BM

∗ (𝑌 ′′), we have
(𝑓 ′′)∗𝑓 (𝑐) = eu ∩ (𝑓 ′′)∗𝑓 ′(𝑐).

where eu ∶= 𝑒((𝑔 ′)∗(𝑁𝑋𝑌 )/𝑁𝑋 ′𝑌 ′).

Sketch of proof. Wededuce from associativity of cup product in relative cohomology that

𝑐 ∩𝑌 [𝑋] = (𝑐 ∩𝑌 ′ [𝑌 ′]) ∩𝑌 [𝑋] = 𝑐 ∩𝑌 ′ ([𝑌 ′] ∩𝑌 [𝑋]).

This means that we only need to show that [𝑌 ′] ∩𝑌 [𝑋] = [𝑋 ′] ∩ eu. By excision, we can
work in a tubular neighborhood of 𝑋 ′

. Moreover, by deformation we can assume that

𝑇𝑋 |𝑋 ′ ∩𝑇𝑌 ′|𝑋 ′ = 𝑇𝑋 ′
. In this case 𝑋 is given as a zero set of a section of the pullback of

normal bundle 𝑁𝑋 (𝑌 ) to 𝑌 , and same for 𝑌 , 𝑋 ′
. Since the cohomological class of a zero

set of a section is exactly the Euler class of the corresponding vector bundle, we have

[𝑌 ′] ∩𝑌 [𝑋] = 𝑒(𝑁𝑌 ′(𝑌 ))𝑒(𝑁𝑋 (𝑌 )) = 𝑒(𝑁𝑋 ′𝑌 ′)eu = [𝑋 ′] ∩ eu,

and so we may conclude. □

Proposition 6.10 (Base change). Consider the fiber diagram (6.1), and assume that 𝑋 , 𝑌
are smooth, ℎ is proper, and 𝑓 , 𝑔 are closed embeddings. Then we have an equality

(𝑓 ′)∗ℎ∗ = ℎ′∗(𝑓
′′)∗ ∶ 𝐻BM

∗ (𝑌 ′′) → 𝐻BM
∗ (𝑋 ′).

Proof. Note that since 𝑔 is not necessarily a closed embedding, the map (𝑓 ′′)∗ is not

yet defined. We postpone this definition, as well as the proof of the statement until

Section 6.8. □

6.5. Convolution algebras in Borel-Moore homology. Let us reconsider the setup
from the beginning of this section. Let 𝑌 be a smooth variety, and 𝑓 ∶ 𝑌 → 𝑋 a proper

map. Define 𝑍 ∶= 𝑌 ×𝑋 𝑌 , 𝑍 (2) ∶= 𝑌 ×𝑋 𝑌 ×𝑋 𝑌 , and consider the correspondence

(6.2)

𝑍 × 𝑍 𝑍 (2) 𝑍

𝑌 2 × 𝑌 2 𝑌 3

𝑞 𝑝

Δ

where Δ maps (𝑦1, 𝑦2, 𝑦3) to (𝑦1, 𝑦2, 𝑦2, 𝑦3). Taking pullback 𝑞∗ relatively to the map Δ,
we get a product 𝑚 = 𝑝∗𝑞∗Δ on 𝐻BM

∗ (𝑍)

Remark 6.11. When 𝑋 = pt, we have 𝑍 = 𝑌 × 𝑌 , and so we immediately recover the

convolution algebras from Section 5.4.

Proposition 6.12. The product 𝑚 is associative.
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Proof. Let us denote 𝑍 (3) ∶= 𝑌 ×𝑋 𝑌 ×𝑋 𝑌 ×𝑋 𝑌 . Consider a diagram as in the proof of

Proposition 5.20:

𝑍 (3)

𝑍 (2) × 𝑍 𝑍 (2)

𝑍 × 𝑍 × 𝑍 𝑍 × 𝑍 𝑍

𝑞′

𝑞

As before, we want to use Proposition 6.10 to conclude by base change. The only issue

is that in the square above, (𝑞′)∗ is defined with respect to a map 𝑌 4 → 𝑌 5
, while 𝑞∗ is

defined with respect to 𝑌 3 → 𝑌 4
. However, it is easy to see that the excess intersection

class eu from Proposition 6.9 vanishes in this situation, so we can consider 𝑞∗ relatively
to 𝑌 4 → 𝑌 5

instead. □

Exercise 6.13. Let Δ ∶= 𝑌 ×𝑌 𝑌 ⊂ 𝑌 ×𝑋 𝑌 . Show that [Δ] ∈ 𝐻BM
2 dim 𝑌 (𝑍) is the unit of the

convolution product. Furthermore, show that the subspace [Δ] ∩ 𝑓 ∗(𝐻 ∗(𝑋)) belongs to
the center of 𝐻BM

∗ (𝑍).

Example 6.14. Let 𝑋 = N2 be the set of nilpotent matrices in gl2, and

𝑌 = {(𝐿, 𝑥) ∶ 𝐿 ∈ P1, 𝑥 ∈ N2, 𝑥 |𝐿 = 0}.

We have a natural map 𝑓 ∶ 𝑌 → 𝑋 , 𝑓 (𝐿, 𝑥) = 𝑥 . Moreover,

{𝑥 ∈ gl2 ∶ 𝑥 |𝐿 = 0} = Hom(C2/𝐿, 𝐿) = Hom(𝐿,C2/𝐿)∨ = 𝑇 ∗
[𝐿]P

1,

so that 𝑌 ≃ 𝑇 ∗P1
. The map 𝑓 is an isomorphism over N2 ⧵ {0}, and 𝑓 −1(0) = P1

:

𝑇 ∗P1

𝑓

N2

This implies that 𝑍 = 𝑇 ∗P1 ×N2 𝑇 ∗P1
has two irreducible components, namely Δ =

𝑇 ∗P1 = 𝑇 ∗P1 ×𝑇 ∗P1 𝑇 ∗P1
and 𝑉 = P1 ×P1

. Let us denote 𝛿 = [Δ], 𝜈 = [𝑉 ], and compute

the convolution product on

𝐻BM
4 (𝑍) = Z𝛿 ⊕Z𝜈.

By Exercise 6.13, it is enough to compute 𝜈 ⋅ 𝜈 . Consider the following diagram:

(P1 × P1) × (P1 × P1) P1 × P1 × P1 P1 × P1

𝑍 × 𝑍 𝑍 (2) 𝑍

𝑖

𝑞′ 𝑝′

𝑖 𝑖

𝑞 𝑝

By base change, we have 𝑝∗𝑞∗𝑖∗(𝜈 ⊗ 𝜈) = 𝑖∗𝑝′
∗(𝑞′)∗(𝜈 ⊗ 𝜈). Note however that the

pullback (𝑞′)∗ must be taken relatively to the diagonal inclusion (𝑇 ∗P1)3 → (𝑇 ∗P1)4. By
excess intersection, we have

(𝑞′)∗𝑑(𝜈 ⊗ 𝜈) = 𝑒(𝑁P1𝑇 ∗P1)𝑞∗(𝜈 ⊗ 𝜈) = −2[P1 × pt × P1].
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Thus 𝜈 ⋅ 𝜈 = −2𝑝∗𝑖∗([P1 × pt × P1]) = −2𝜈 . In particular, (𝜈 + Δ)2 = Δ, and so 𝐻BM
4 (𝑍)

is isomorphic to Z[S2].

6.6. Localization of convolution algebras. Similarly to what we did in the beginning

of the course, given a 𝐺-space 𝑋 , one can define 𝐺-equivariant Borel-Moore homology

𝐻BM,𝐺
∗ (𝑋), which is a module over𝐻 ∗

𝐺(𝑋), and so in particular overΛ𝐺. All constructions
from the previous paragraph naturally transport to the equivariant setting.

Let 𝑇 be an algebraic torus. One of our main tools to study 𝑇 -equivariant cohomology

were the localization theorems. While generalizing GKM-type descriptions is a tall order,

we have an analogue of Theorem 3.28.

Theorem 6.15. Let 𝑋 be a 𝑇 -variety, and 𝑖𝑋 ∶ 𝑋𝑇 ↪ 𝑋 the inclusion. Denote by 𝑆 ⊂ Λ𝑇
the multiplicative set of all non-zero elements. Then

𝑖𝑋∗ ∶ 𝑆−1𝐻BM,𝑇
∗ (𝑋𝑇 ) → 𝑆−1𝐻BM,𝑇

∗ (𝑋)

is an isomorphism. Moreover, assume that 𝑋 ⊂ 𝑌 is a closed 𝑇 -equivariant embedding into
a smooth variety, and denote 𝑖𝑌 ∶ 𝑌 𝑇 ↪ 𝑌 . Then the intersection pullback

(𝑖𝑋 )∗𝑖𝑌 ∶ 𝑆
−1𝐻BM,𝑇

∗ (𝑋) → 𝑆−1𝐻BM,𝑇
∗ (𝑋𝑇 )

is an isomorphism.

Proof. For 𝑖𝑋∗, the proof is exactly the same as for Theorem 3.28. For 𝑖∗𝑋 , note that we

have 𝑖∗𝑋 𝑖𝑋∗(−) = 𝑒(𝑁𝑌 𝑇𝑌 ) ∩ − by base change and excess intersection, and we conclude

by inverting the Euler class. □

A priori, there is no reason for the map 𝐻BM,𝑇
∗ (𝑋) → 𝑆−1𝐻BM,𝑇

∗ (𝑋) to be injective.

The best general statement is that 𝐻BM,𝑇
∗ (𝑋) is equivariantly formal whenever there ex-

ists a filtration of 𝑋 by 𝑇 -invariant closed varieties, which satisfies the conclusion of

Białynicki-Birula theorem; we will call such filtration cellular. Fortunately, all spaces to
which we will want to apply localization will satisfy this condition.

Finally, one can show that for 𝐺 reductive, 𝐻BM,𝐺
∗ (𝑋) ≃ 𝐻BM,𝑇

∗ (𝑋)𝑊 , when 𝐺 = 𝐺𝐿𝑛
or over a field where |𝑊 | is invertible.

We might ask ourselves a question: is localization compatible with convolution prod-

uct? The answer is almost.

Definition 6.16. Let 𝑓 ∶ 𝑌 → 𝑋 proper, 𝐺-equivariant, with 𝑌 smooth, and denote

𝑍 = 𝑌 ×𝑋 𝑌 , 𝑍 (2) = 𝑌 ×𝑋 𝑌 ×𝑋 𝑌 . Pick 𝛾 ∈ 𝐻 ∗
𝐺(𝑌 ). We define the (𝛾 -)twisted convolution

algebra A𝛾 to be 𝐻BM,𝐺
∗ (𝑌 ×𝑋 𝑌 ) as a vector space, with product given by

𝑥 ⋅𝛾 𝑦 ∶= 𝑝∗(pr∗2(𝛾 ) ∩ 𝑞
∗(𝑥 ⊗ 𝑦)),

where 𝑞 ∶ 𝑍 (2) → 𝑍 × 𝑍 , 𝑝 ∶ 𝑍 (2) → 𝑍 are as in (6.2), and pr2 ∶ 𝑍 (2) = 𝑌 ×𝑋 𝑌 ×𝑋 𝑌 → 𝑌
is the projection on the second factor.

Exercise 6.17. Show that the product above is associative.

Let now 𝐺 = 𝑇 be a torus. Note that if 𝑌 → 𝑋 is proper and 𝑌 is smooth, then

𝑌 𝑇 → 𝑋𝑇
is proper and 𝑌 𝑇 is smooth. This means that 𝐻BM,𝑇 (𝑍𝑇 ), 𝑍𝑇 ∶= 𝑌 𝑇 ×𝑋𝑇 𝑌 𝑇 has

a well-defined convolution product.
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Theorem 6.18. Let 𝑇 be a torus, 𝑓 ∶ 𝑌 → 𝑋 proper, 𝑇 -equivariant, with 𝑌 smooth.
Denote 𝑍 = 𝑌 ×𝑋 𝑌 , 𝑍𝑇 = 𝑌 𝑇 ×𝑋𝑇 𝑌 𝑇 , and A = 𝐻𝐵𝑀,𝑇

∗ (𝑍), A𝑇 = 𝐻𝐵𝑀,𝑇
∗ (𝑍𝑇 ). Set 𝛾 =

𝑒(𝑁𝑌 𝑇𝑇 )−1 ∈ FracΛ𝑇 . Assume that 𝑌 𝑇 → 𝑋𝑇 is a submersion, so that 𝑍𝑇 is smooth. Then
the pullback along 𝑖𝑍 ∶ 𝑍𝑇 ↪ 𝑍 relatively to 𝑔 ∶ (𝑌 𝑇 )4 ↪ 𝑌 4 defines a homomorphism of
algebras

𝑖∗𝑍 ∶ A → 𝑆−1A𝑇
𝛾 .

Proof. Let us denote Γ = pr∗2(𝛾 ) for simplicity. Consider the localization diagram

𝑍 × 𝑍 𝑍 (2) 𝑍

𝑍𝑇 × 𝑍𝑇 (𝑍 (2))𝑇 𝑍𝑇
(1)

𝑞 𝑝

(2)𝑖

𝑞′ 𝑝′
𝑖 𝑖

The square (1) commutes by Exercise 6.8, that is 𝑖∗𝑔𝑞∗Δ = (𝑞′)∗Δ𝑖∗𝑔 , where Δ ∶ 𝑌 → 𝑌 × 𝑌 .
Furthermore, by excess intersection we have (𝑞′)∗Δ = Γ−1 ∩ (𝑞′)∗, where (𝑞′)∗ is the non-
intersection pullback between two smooth varieties. Thus,

(6.3) 𝑖∗𝑔𝑞
∗
Δ = Γ−1 ∩ (𝑞′)∗𝑖∗𝑔 .

For the square (2), the integration formula implies 𝑖∗𝑔′′𝑝∗ = 𝑝′
∗(Γ∩𝑖∗𝑔′), where 𝑔 ′ ∶ (𝑌 𝑇 )3 ↪

𝑌 3
, 𝑔 ′′ ∶ (𝑌 𝑇 )2 ↪ 𝑌 2

. Yet another application of excess intersection yields 𝑖∗𝑔′ = Γ ∩ 𝑖∗𝑔 .
In total,

(6.4) 𝑖∗𝑔′′𝑝∗ = 𝑝
′
∗(Γ

2 ∩ 𝑖∗𝑔).

Combining (6.3) and (6.4), we get

𝑖∗𝑔′′𝑝∗𝑞
∗
Δ = 𝑝′

∗(Γ
2 ∩ 𝑖∗𝑔𝑞

∗
Δ) = 𝑝

′
∗(Γ

∩(𝑞′)∗𝑖∗𝑔),

which is precisely what we had to prove. □

Remark 6.19. The condition for 𝑌 𝑇 → 𝑋𝑇
to be a submersion is not needed; we only use

it to simplify the notations in the proof. In all our examples we will have finitely many

fixed points, so it is trivially satisfied.

Recall that the convolution algebra 𝐻BM
∗ (𝑍) naturally acts on 𝐻BM

∗ (𝑌 ) ≃ 𝐻 ∗(𝑌 ). A

completely analogous argument shows that this action is also compatible with localiza-

tion.

Proposition 6.20. The following diagram commutes:

A ⊗ 𝐻 ∗
𝑇 (𝑌 ) 𝐻 ∗

𝑇 (𝑌 )

𝑆−1A𝑇
𝛾 ⊗ 𝐻 ∗

𝑇 (𝑌 𝑇 ) 𝐻 ∗
𝑇 (𝑌 𝑇 )

where vertical arrows are localization maps, the lower horizontal map is given by

𝑎 ⊗ 𝑥 ↦ pr1∗(𝑎 ∩ pr∗2(𝛾𝑥)),

and the upper horizontal map is the usual action. □

6.7. Degenerate affine Hecke algebra. Let us use Theorem 6.18 in order to study an

equivariant version of Example 6.14. We will consider the action of 𝐺 = 𝐺𝐿2 × C∗
given
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by

(𝑔, 𝑡)(𝐿, 𝑥) = (𝑔𝐿, 𝑡 ⋅ Ad𝑔(𝑥)); (𝑔, 𝑡)(𝑥) = 𝑡 ⋅ Ad𝑔(𝑥).
In plain English, 𝐺𝐿2 acts by the natural action and C∗

scales the nilpotent matrix. Let

𝑇 = (C∗)2 × C∗ ⊂ 𝐺 be the maximal torus, and denote its equivariant parameters by 𝑡1,
𝑡2, ℏ. Observe that 𝑍 has a cellular filtration

𝑇 ∗
0 P1 ⊂ 𝑇 ∗P1 ⊂ 𝑇 ∗P1 ∪ {(𝐿0, 𝐿) ∈ P1 × P1 ∶ 𝐿 ≠ 𝐿0} ⊂ 𝑍,

so that the localization map is injective.

We have 𝑋𝑇 = {0}, 𝑌 𝑇 = {(𝐿0, 0), (𝐿∞, 0)}. Thus we can write elements of the algebra

𝑆−1A𝑇
𝛾 in matrix form. First of all, we have

𝛾 = 𝑒(𝑁𝑌 𝑇𝑇 )−1 = (

1
(𝑡1−𝑡2)(𝑡2−𝑡1+ℏ)

1
(𝑡2−𝑡1)(𝑡1−𝑡2+ℏ)

) .

By Proposition 6.20, the action of 𝑆−1A𝑇
𝛾 on 𝐻 ∗

𝑇 (𝑌 𝑇 ) is given by

(6.5) (
𝑎 𝑏
𝑐 𝑑)(

𝑓
𝑔) =

(

𝑎𝑓
(𝑡1−𝑡2)(𝑡2−𝑡1+ℏ)

𝑏𝑔
(𝑡2−𝑡1)(𝑡1−𝑡2+ℏ)

𝑐𝑓
(𝑡1−𝑡2)(𝑡2−𝑡1+ℏ)

𝑑𝑔
(𝑡2−𝑡1)(𝑡1−𝑡2+ℏ))

.

Since 𝑍 decomposes into Δ⊔ (P1 ×P1), it is enough to compute the images of these two

classes in𝐻 ∗
𝑇 (𝑌 𝑇 )S2

(since we only care about𝐺-equivariant cohomology). The image of

[Δ]must be identity by Exercise 6.13. By integration formula, the image of [P1×P1] ∈ A

in 𝑆−1A𝑇
𝛾 is given by 𝑒(𝑇𝑌 2/𝑇 (P1 × P1)). Computing the fibers at fixed points, we get

𝑖∗𝑍[P
1 × P1] = (

(𝑡2 − 𝑡1 + ℏ)(𝑡2 − 𝑡1 + ℏ) (𝑡2 − 𝑡1 + ℏ)(𝑡1 − 𝑡2 + ℏ)
(𝑡1 − 𝑡2 + ℏ)(𝑡2 − 𝑡1 + ℏ) (𝑡1 − 𝑡2 + ℏ)(𝑡1 − 𝑡2 + ℏ))

.

Plugging this into (6.5), we get for any 𝑓 ∈ Λ𝑇 = 𝐻 ∗
𝐺(𝑌 )

𝑖∗𝑍[P
1 × P1] =

𝑡2 − 𝑡1 + ℏ
𝑡1 − 𝑡2

𝑓 +
𝑡2 − 𝑡1 + ℏ
𝑡2 − 𝑡1

𝑠(𝑓 )

= −𝑓 + 𝑠(𝑓 ) + ℏ𝜕(𝑓 ).

In particular, [𝑍] acts on Λ𝑇 = Z[ℏ][𝑡1, 𝑡2] by 𝑠 + ℏ𝜕.

Exercise 6.21. Consider a mild modification of the setup above. Let 𝑋 = gl2, and

𝑌 = {(𝐿, 𝑥) ∈ P1 × gl2 ∶ 𝑥(𝐿) ⊂ 𝐿}.

Check that 𝑍 = 𝑌 ×𝑋 𝑌 once again has two irreducible components, and compute the

action of each of them on 𝐻 ∗
𝐺(𝑌 ). However, verify that the action of [𝑍] is different from

the action of [𝑍] above.

In conclusion, we see that the algebraA is generated byΛ𝑇 and the operator𝜎 = 𝑠+ℏ𝜕
in EndΛ𝐺(Λ𝑇 ). It is easy to check that the defining relations are

𝜎2 = 1, 𝜎𝑡1 = 𝑡2𝜎 + ℏ.

One can perform a similar computation for 𝐺 = 𝐺𝐿𝑛 (and any other reductive 𝐺,
although we will not need this). Namely, define 𝑋 = N𝑛 to be the set of nilpotent

matrices in gl𝑛. Recall the flag variety F = 𝐺/𝐵, and write

𝑌 = {(𝐹∙, 𝑥) ∈ F ×N𝑛 ∶ 𝑥(𝐹𝑖) ⊂ 𝐹𝑖−1, 1 ≤ 𝑖 ≤ 𝑛}.
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A computation similar to the case 𝑛 = 2 shows that 𝑌 ≃ 𝑇 ∗F; the map 𝑇 ∗F → N𝑛

is called the Springer resolution. One can check that A = 𝐻BM,𝐺
∗ (𝑍) is a subalgebra in

EndΛ𝐺(Λ𝑇 ), generated by Λ𝑇 and 𝜎𝑖 = 𝑠𝑖 + ℏ𝜕𝑖 for 1 ≤ 𝑖 ≤ 𝑛 − 1. The defining relations

are S𝑛-relations and

𝜎𝑖𝑡𝑗 =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑡𝑗𝜎𝑖, |𝑖 − 𝑗 | > 1,
𝑡𝑖+1𝜎𝑖 + ℏ, 𝑗 = 𝑖,
𝑡𝑖𝜎𝑖 − ℏ, 𝑗 = 𝑖 + 1.

The algebra defined by these generators and relations is known under the name graded
affine Hecke algebra for 𝐺𝐿𝑛.

Remark 6.22. If ℏ = 1, one usually says “degenerate” instead of “graded”.

6.8. Crash course into 6-functor formalism. This goal of this paragraph is solely to

prove and generalize Proposition 6.10, and thus it can be safely skipped.

Let 𝐺 be a Lie group, and 𝑋 a variety. To this data, we can associate

𝐷𝑏𝑐,𝐺(𝑋) ∶ 𝐺-equivariant derived category of constructible sheaves on 𝑋.

The objects of this category are, roughly speaking, complexes of sheaves 𝐸 in abelian

groups, admitting a 𝐺-equivariant stratification 𝑋 = ⨆𝑋𝛼 such that the cohomology

groups of 𝐻 𝑖(𝐸) are constant over each 𝛼. We will treat this category as a black box, and

only use some of its formal properties. We will also write𝐷(𝑋) = 𝐷𝑏𝑐,𝐺(𝑋) for simplicity.

Let 𝑓 ∶ 𝑋 → 𝑌 be a map of varieties. It gives rise to functors

𝑓∗, 𝑓! ∶ 𝐷(𝑋) → 𝐷(𝑌 ), 𝑓 ∗, 𝑓 ! ∶ 𝐷(𝑌 ) → 𝐷(𝑋).

The stalk of 𝑓∗(𝐸) at a point 𝑦 ∈ 𝑌 is 𝐻 ∗(𝐸|𝑓 −1(𝑦)), and the stalk of 𝑓! is 𝐻 ∗
𝑐 (𝐸|𝑓 −1(𝑦)). The

pullback functors are defined by the property that 𝑓 ∗
is left adjoint to 𝑓∗, and 𝑓 !

is right

adjoint to 𝑓!. Let us list some useful properties:

(1) If 𝑓 is proper, then 𝑓∗ = 𝑓!. If 𝑓 is smooth, then 𝑓 ! = 𝑓 ∗[2𝑑], where [−] is the
homological shift, and 𝑑 is the relative dimension of 𝑓 ;

(2) Verdier duality: there exists a contravariant functor (−)∨ ∶ 𝐷(𝑋) → 𝐷(𝑋), such
that (𝑓∗)∨ = 𝑓!, (𝑓 ∗)∨ = 𝑓 !

, and vice versa;

(3) Base change: given a fiber square

(6.6)

𝑋 ′ 𝑌 ′

𝑋 𝑌

𝑓 ′

𝑔′ 𝑔

𝑓

we have 𝑔 !𝑓∗ ≃ 𝑓 ′
∗ (𝑔 ′)!.

Let 𝑝 ∶ 𝑋 → pt be projection to a point. Starting from a constant sheaf 𝑍 ∈ 𝐷(pt), we
define

Z𝑋 = 𝑝∗(Z), D𝑋 = 𝑝!(Z).

Remark 6.23. In the equivariant situation, one starts with the regular Λ𝐺-module.

Note that when 𝑋 is smooth, we have D𝑋 ≃ Z𝑋 [2 dim𝑋]. By definition, we have

𝑝∗Z𝑋 = 𝐻 ∗(𝑋), 𝑝!Z𝑋 = 𝐻 ∗
𝑐 (𝑋).

Therefore, by Verdier duality 𝑝!D𝑋 = 𝐻−∗(𝑋), 𝑝∗D𝑋 = 𝐻BM
−∗ (𝑋).
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Let us rewrite the maps in Borel-Moore homology in terms of the sheaf D𝑋 . For

𝑓 ∶ 𝑋 → 𝑌 proper, using adjunction for D𝑋 ≃ 𝑓 !D𝑌 , we get

𝑓∗D𝑋 = 𝑓!D𝑋 → D𝑌 .

Pushing to a point, we recover the proper pushforward 𝐻BM
∗ (𝑋) → 𝐻BM

∗ (𝑌 ).
Now let 𝑓 ∶ 𝑋 → 𝑌 be a map between smooth varieties, and denote 𝑑 = dim𝑋 −

dim 𝑌 . Then
𝑓 ∗D𝑌 ≃ 𝑓 ∗Z𝑌 [2 dim 𝑌 ] ≃ Z𝑌 [2 dim 𝑌 ] ≃ D𝑋 [−2𝑑],

and so again the adjunction yields a map D𝑌 → 𝑓∗D𝑋 [−2𝑑]. Pushing to a point, we

recover the pullback 𝐻BM
∗ (𝑌 ) → 𝐻BM

∗+2𝑑(𝑋).
Now suppose we have a fiber square (6.6) with 𝑋 , 𝑌 smooth, but we do not impose

any conditions on either 𝑓 or 𝑔 . We have

D𝑌 ′ = 𝑔 !D𝑌
unit−−→ 𝑔 !𝑓∗𝑓 ∗D𝑌 ≃ 𝑓 ′

∗ (𝑔
′)!𝑓 ∗D𝑌 𝑓 ′

∗ (𝑔
′)! ≃ D𝑋 [−2𝑑]

≃ 𝑓 ′
∗ ≃ D𝑋 ′[−2𝑑].

In particular, this yields a generalization (𝑓 ′)∗𝑓 ∶ 𝐻BM
∗ (𝑌 ′) → 𝐻BM

∗+2𝑑(𝑋 ′) of the intersec-
tion pullback map.

With the setup out of the way, we are ready to prove base change in Borel-Moore

homology.

Proof of Proposition 6.10. We prove the equality in a more general setup, dropping any

conditions on 𝑓 and 𝑔 . Let 𝑑 = dim𝑋 − dim 𝑌 , and consider the following diagram:

ℎ∗D𝑌 ′′ ℎ∗ℎ!𝑔 !D𝑌 ℎ∗ℎ!𝑔 !𝑓∗𝑓 ∗D𝑌 ℎ∗ℎ!𝑓 ′
∗ (𝑔 ′)!𝑓 ∗D𝑌 ℎ∗ℎ!𝑓 ′

∗D𝑋 ′[−2𝑑]

D𝑌 ′ 𝑔 !D𝑌 𝑔 !𝑓∗𝑓 ∗D𝑌 𝑓 ′
∗ (𝑔 ′)!𝑓 ∗D𝑌 𝑓 ′

∗D𝑋 ′[−2𝑑]

∼

∼

All squares are obtained by applying the counit ℎ∗ℎ! ⇒ Id, so they commute. The com-

position of leftmost vertical arrow with the bottom row gives the map (𝑓 ′)∗ℎ∗ in Borel-

Moore homology. For the top row, note that the composition

ℎ∗ℎ!𝑓 ′
∗ ⇒ ℎ∗𝑓 ′′

∗ (ℎ′)! = 𝑓∗ℎ′∗(ℎ
′)! ⇒ 𝑓 ′

∗

coincides with the counit map ℎ∗ℎ!𝑓 ′
∗ ⇒ 𝑓 ′

∗ , since base change commutes with counits.

This implies that the composition of the top row with the rightmost vertical arrow gives

the map ℎ′∗(𝑓 ′′)∗, and so we are done. □
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7. Diagrammatics and qiver Hecke algebras

Let us recast the relations in graded affine Hecke algebra of 𝐺𝐿𝑛 as diagrams. We will

draw the products of 𝜎𝑖, 𝑡𝑗 as diagrams on 𝑛 strands, where 𝑡𝑖 is a dot on 𝑖-th strand, and

𝜎𝑖 permutes strands 𝑖 and 𝑖 + 1. Reading the element from left to right will correspond

to reading the diagram from top to bottom. Then the S𝑛-relations can be drawn as

(7.1) ⋯ = ⋯ , = , = ,

and the commutation relations between 𝜎’s and 𝑡’s are

(7.2) ⋯ = ⋯ , − = ℏ , − = ℏ .

We will often understand the first (commutation) relation in each of the two lines above

as implicit.

The nilHecke algebra has similar relations, except that we replace ℏ with 1 in (7.2),

and the last relation in (7.1) by

= 0.

In this section, we will study a class of algebras that have a similar diagrammatic

presentation.

7.1. Quiver representations. What is common between the maps F → pt and 𝑇 ∗F →
N𝑛? We can interpret F as a vector space 𝑉 plus a full flag, and 𝑇 ∗F as a vector space

with an endomorphism 𝑥 , plus a compatible flag. Then the projectionmaps simply forget

the choice of a compatible flag. We can thus draw the elements of pt and N𝑛 by

pt↭ 𝑉
N𝑛↭ 𝑉

𝑥

This suggests that we could instead begin with any directed graph whatsoever. It is

customary to use a different term in this context, to underline that our focus is repre-

sentation theory, as opposed to graph theory.

Definition 7.1. A quiver 𝑄 is a finite directed graph. We write 𝑄 = (𝐼 , 𝐸) = (𝐼 , 𝐸, 𝑠, 𝑡),
where 𝐼 is the set of vertices, 𝐸 the set of edges, and 𝑠, 𝑡 ∶ 𝐸 → 𝐼 are the maps sending

each edge 𝑒 to its source 𝑠(𝑒) and target 𝑡(𝑒) vertex respectively.
A representation of 𝑄 of dimension vector 𝐯 = (𝑣𝑖) ∈ Z𝐼

≥0 is an assignment, for each

arrow 𝑒 ∈ 𝐸, of a linear map 𝜑𝑒 ∈ Hom(C𝐯𝑠(𝑒) ,C𝐯𝑡(𝑒)).

Example 7.2. Let 𝑄 = ∙ → ∙. Then a representation of 𝑄 of dimension vector (𝑛1, 𝑛2) is
just a linear map C𝑛1 → C𝑛2

.

We denote the set of all representations of 𝑄 of dimension vector 𝐯 by

Rep𝐯𝑄 = ⨁
𝑒∈𝐸

Hom(C𝐯𝑠(𝑒) ,C𝐯𝑡(𝑒)).

There is a natural action of 𝐺𝐿𝐯 ∶= ∏𝑖∈𝐼 𝐺𝐿𝑣𝑖 on Rep𝐯𝑄 by changing the bases of vector

spaces.
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Given a representation 𝑉 ∈ Rep𝐯𝑄, we say that a collection of subspaces 𝑉 ′ = (𝑉 ′
𝑖 )𝑖∈𝐼 ,

𝑉 ′
𝑖 ⊂ C𝑣𝑖

is a subrepresentation of 𝑉 if for any edge 𝑒 ∈ 𝐸 we have 𝜑𝑒(𝑉 ′
𝑠(𝑒)) ⊂ 𝑉 ′

𝑡(𝑒). In

plain English, we require the maps 𝜑𝑒 to restrict to 𝑉 ′
. We also say that a representation

𝑉 of𝑄 is indecomposable if it cannot be written as a direct sum of two subrepresentations

𝑉 ′ ⊕ 𝑉 ′′
.

Exercise 7.3. Let 𝑄 = ∙ → ∙ → ⋯ → ∙ be the linear quiver of length 𝑛. Classify all

indecomposable representations of 𝑄.

7.2. Quiver flag varieties. Since quiver representations live on several vector spaces,

we need to develop some combinatorics before the definition of flag varieties. Let us fix

a quiver 𝑄, a dimension vector 𝐯 ∈ Z𝐼
≥0, and write |𝐯| ∶= ∑𝑖 𝑣𝑖. For each 𝑖 ∈ 𝐼 , denote by

𝜖𝑖 the dimension vector whose value at 𝑖′ ∈ 𝐼 is 1 if 𝑖′ = 𝑖, and 0 otherwise. Denote

Seq(𝐯) ∶=

{

𝜂 = (𝑖1, 𝑖2,… , 𝑖|𝐯|) ∈ 𝐼 |𝐯| ∶ ∑
𝑗
𝜖𝑖𝑗 = 𝐯

}

.

We call Seq(𝐯) the set of sequences. For any 𝜂 ∈ Seq(𝐯), we consider the partial sums

𝐯(𝜂, 𝑘) =
𝑘

∑
𝑗=1
𝜖𝑖𝑗

for all 𝑘 ∈ [1, |𝐯|]. Let us write F𝑛 = 𝐺𝐿𝑛/𝐵.

Definition 7.4. The quiver (full) flag variety of dimension 𝐯 and order 𝜂 ∈ Seq(𝐯) is
defined by

Fl𝜂 =

{

(𝑉 , (𝐹 (𝑖)∙ )𝑖∈𝐼 ) ∈ Rep𝐯𝑄 ×∏
𝑖∈𝐼

F𝑣𝑖 ∶ ∀𝑘, (𝐹 (𝑖)𝐯(𝜂,𝑘)𝑖)𝑖∈𝐼 ⊂ 𝑉 is a subrepresentation

}

.

In other words, the points of Fl𝜂 are chains

0 = 𝑉0 ⊂ 𝑉1 ⊂ 𝑉2 ⊂ … ⊂ 𝑉|𝐯| = 𝑉

of representations of 𝑄, such that dim(𝑉𝑘+1/𝑉𝑘) = 𝜀𝑖𝑘 for all 𝑘.

Note that we have a natural projection map

Fl𝜂 → Rep𝐯, (𝑉 , (𝐹 (𝑖)∙ )) ↦ 𝑉 .

Example 7.5. (1) Let 𝑄 = ∙. Then dimension vector is just a non-negative number 𝑛,
and Seq(𝑛) = {(1,… , 1)}. The corresponding flag variety is Fl = Fl(1,…,1) = 𝐺𝐿𝑛/𝐵.

(2) Let𝑄 = ∙ . Then Fl = {(𝐹∙, 𝑥) ∈ 𝐺𝐿𝑛/𝐵×𝑥 ∈ gl𝑛 ∶ 𝑥(𝐹𝑖) ⊂ 𝐹𝑖}. If we additionally
require 𝑥 to be nilpotent, we obtain precisely the Springer resolution.

Example 7.6. Let us consider the quiver 𝑄 = ∙ → ∙ in more detail. We call the left vertex

1, and the right vertex 2.
(1) Let 𝐯 = (1, 1). Then Seq(𝐯) = {12, 21}, and Rep𝐯 = C. For any representation

𝑉 = (𝑉1
𝜑
−→ 𝑉2) and any subspace 𝑉 ′

2 ⊂ 𝑉2, it’s easy to see that 0 → 𝑉 ′
2 is a

subrepresentation 𝑉 . Similarly, 𝑉 ′
1 → 0, 𝑉 ′

1 ⊂ 𝑉 is a subrepresentation of 𝑉 if

and only if 𝜑|𝑉 ′
1
= 0. These two facts tell us that

Fl12 = {0} ⊂ C, Fl21 = C.



EQUIVARIANT METHODS IN REPRESENTATION THEORY 57

(2) Let 𝐯 = (1, 2). Then Seq(𝐯) = {122, 212, 221}, and Rep𝐯 = Hom(C,C2) = C2
.

Analogously to the previous case, we see that

Fl122 = {0} × P1 ⊂ C2 × P1, Fl221 = C2 × P1.

Now, a flag of order 212 on C
𝜑
−→ C2

is equivalent to a choice of line 𝐿 ⊂ C2

satisfying Im(𝜑) ⊂ 𝐿. Thus we obtain

Fl212 = {(𝑣, 𝐿) ∶ 𝑣 ∈ 𝐿} = Bl0C2 ⊂ C2 × P1.

(3) Let 𝐯 = (2, 1). Then Seq(𝐯) = {112, 121, 211}, and Rep𝐯 = Hom(C2,C) = (C2)∨.
Analogously to the previous case, we have

Fl112 = {0} × P1, Fl121 = Bl0(C2)∨, Fl211 = (C2)∨ × P1.

Exercise 7.7. Compute all flag varieties for 𝑄 = ∙ → ∙, 𝐯 = (2, 2).

7.3. Quiver Hecke algebras. In order to consider convolution algebras, we need to

verify a couple of properties of quiver flag varieties. From now on, we assume for sim-

plicity that 𝑄 doesn’t have any edge loops or multiple edges.

Proposition 7.8. Let 𝜂 ∈ Seq 𝐯. The quiver flag variety Fl𝜂 is smooth, and the projection
map Fl𝜂 → Rep𝐯 is proper.

Proof. The properness follows from the fact that Fl𝜂 is cut out by closed conditions in

Rep𝐯 ×∏𝑖 F𝑣𝑖 , and the projection Rep𝐯 ×∏𝑖 F𝑣𝑖 → Rep𝐯 is manifestly proper.

For the smoothness, let us show that the other projection Fl𝜂 → ∏𝑖 F𝑣𝑖 is an affine

bundle. We think of a point in Fl𝜂 as of a chain of representations 𝑉 1 ⊂ 𝑉 2 ⊂ … of

𝑄, and proceed by induction. Suppose that we proved that the chain 𝑉 1 ⊂ … ⊂ 𝑉 𝑘
is

an affine bundle, and we want to extend representation 𝑉 𝑘
to 𝑉 𝑘+1

. Let 𝑖 ∈ 𝐼 be the

vertex satisfying dim(𝑉 𝑘+1/𝑉 𝑘) = 𝜖𝑖, and choose a splitting 𝑉 𝑘+1
𝑖 = 𝑉 𝑘

𝑖 ⊕ C. In order to

extend the representation to 𝑉 𝑘+1
, we need to extend all maps 𝜑𝑒, where 𝑒 either begins

or ends at 𝑖. In the former case, any map 𝑉 𝑘
𝑖 ⊕ C → 𝑉 𝑘

𝑡(𝑒) contains 𝑉
𝑘
𝑖 → 𝑉 𝑘

𝑡(𝑒) as a

subrepresentation, so we acquire a liner space Hom(C, 𝑉 𝑘
𝑡(𝑒)) = 𝑉 𝑘

𝑡(𝑒). In the latter case,

𝑉 𝑘
𝑠(𝑒) → 𝑉 𝑘

𝑖 is only a subrepresentation of 𝑉 𝑘
𝑠(𝑒)

𝜑
−→ 𝑉 𝑘

𝑖 ⊕C if Im𝜑 ⊂ 𝑉 𝑘
𝑖 , and so we acquire

nothing. Thus restriction from chains of length 𝑘 + 1 to chains of length 𝑘 is an affine

bundle, and we conclude by induction. □

Let us denote the disjoint union of all quiver flag varieties of dimension 𝐯 by Fl𝐯 =
⨆𝜂∈Seq(𝐯) Fl𝜂.

Definition 7.9. The quiver Hecke algebra (or KLR algebra) 𝑅(𝐯) is defined to be the

convolution algebra

𝑅(𝐯) ∶= 𝐻BM,𝐺𝐯
∗ (Fl𝐯 ×Rep𝐯 Fl𝐯).

Let 𝑇𝐯 ⊂ 𝐺𝐯 be the maximal torus. As before, the algebra 𝑅(𝐯) naturally acts on its

polynomial representation

Pol(𝐯) ∶= 𝐻BM,𝐺𝐯
∗ (Fl𝐯) ≃ ⨁

𝜂∈Seq(𝐯)

𝐻 ∗
𝐺𝐯
(Fl𝜂) ≃ ⨁

𝜂∈Seq(𝐯)

Λ𝑇𝐯 .

We identify this representationwith spaces of polynomials in a very specificway. Namely,

the quotient 𝑉 𝑘+1/𝑉 𝑘
gives rise to a 𝐺𝐯-equivariant line bundle on Fl𝜂. We denote its
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first Chern class by 𝑥𝑘. It is straightforward to see that 𝐻 ∗(Fl𝜂) ≃ Z[𝑥1,… , 𝑥|𝐯|]; indeed,
the only thing we did is renaming the standard generators of 𝐻 ∗(F𝑣𝑖), 𝑖 ∈ 𝐼 . We will

denote

Pol = Z[𝑥1,… , 𝑥|𝐯|], Pol(𝐯) = ⨁
𝜂∈Seq(𝐯)

Pol 𝑒𝜂,

where 𝑒𝜂 is the fundamental class [Fl𝜂] ∈ 𝐻BM,𝐺𝐯
2 dim Fl𝜂(Fl𝜂) = 𝐻

0
𝐺𝐯
(Fl𝜂).

Example 7.10. (1) For 𝑄 = ∙, we have 𝑅(𝑛) = 𝐍𝐇𝑛, Pol(𝑣) = Z[𝑥1,… , 𝑥𝑛], and the

action of 𝐍𝐇𝑛 on Pol(𝑣) is the one we studied in Section 5.

(2) For 𝑄 = ∙ , we have 𝑅(𝑛) = Z[𝑥1,… , 𝑥𝑛] ⋊ S𝑛, Pol(𝑣) = Z[𝑥1,… , 𝑥𝑛], and
the action is the natural action. If we enlarge the group 𝐺𝐿𝑛 to 𝐺𝐿𝑛 × C∗

as in

Section 6.7, the algebra 𝑅(𝑛) deforms to the graded affine Hecke algebra.

Let us study the case 𝑄 = ∙ → ∙, 𝐯 = (1, 1) in more detail. We know that Rep𝐯 ≃ C,

Fl𝐯 ≃ C ⊔ {0}, and so

𝑍𝐯 ∶= Fl𝐯 ×Rep𝐯 Fl𝐯 =
{

Fl12, Fl12 ∩ Fl21,
Fl21 ∩ Fl12, Fl21

}
=
{
{0}, {0},
{0}, C

}
.

In particular, the algebra 𝑅(1, 1) is a free module of rank 4 over Pol = Z[𝑥1, 𝑥2], with
generators being the fundamental classes of connected components of 𝑍𝐯. Let us com-

pute their action on Pol(𝐯) = Pol 𝑒12 ⊕ Pol 𝑒21. It is clear that [Fl12] acts by identity on

Pol 𝑒12, and [Fl21] acts by identity on Pol 𝑒21. For Fl21 ∩ Fl12, the correspondence that gives
rise to action is

{0}

{0} C

We have 𝑒(𝑁0C) = (𝑥1−𝑥2). Moreover, our naming convention means that this operator

is not linear in Pol, but rather exchanges 𝑥1 with 𝑥2. Thus

[Fl21 ∩ Fl12] ∶ Pol 𝑒12 → Pol 𝑒21, 𝑓 𝑒12 ↦ (𝑥1 − 𝑥2)𝑠(𝑓 )𝑒21.

For Fl12 ∩ Fl21, we have the same correspondence going the other way. Pushforward will

not contribute an Euler class anymore, so that

[Fl12 ∩ Fl21] ∶ Pol 𝑒21 → Pol 𝑒12, 𝑓 𝑒21 ↦ 𝑠(𝑓 )𝑒12.

If we perform a similar computation for 𝑄 = ∙ ⊔ ∙, C gets replaced by a point, and so

both [Fl12 ∩ Fl21] and [Fl21 ∩ Fl12] will act by swapping 𝑥1 with 𝑥2.

7.4. KLR diagrammatics. Let us introduce some diagrammatic notations. First, for

any 𝜂, 𝜂′ ∈ Seq(𝐯) let us denote 𝜂𝑅(𝐯)𝜂′ ∶= 𝐻BM,𝐺𝐯(Fl𝜂 ×Rep𝐯 Fl𝜂′). We will consider di-

agrams on |𝐯| strands, each strand colored by an element of 𝐼 , such that all the colors

sum up to 𝐯. For 𝜂 = (𝑖1, 𝑖2,…), we draw the fundamental class [Fl𝜂] ∈ 𝐻BM,𝐺𝐯
∗ (Fl𝜂) as the

arrangement of strands with consecutive colors 𝑖1, 𝑖2,…:

⋯

𝑖1 𝑖2 𝑖|𝐯|
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The variable 𝑥𝑘 ∈ Pol 𝑒𝜂 will be denoted by a dot on 𝑘-th strand. Furthermore, for a pair

of consecutive colors 𝑖, 𝑗 in 𝜂, let 𝜂′ be the sequence obtained by swapping them. We

have a corresponding operator [Fl𝜂′ ×Rep𝐯 Fl𝜂] ∈ 𝜂′𝑅(𝐯)𝜂, computed by base change from

[Fl𝑗𝑖 ×Rep Fl𝑖𝑗] as in Section 5.6. We draw it as a crossing:

𝜏 =

𝑖 𝑗

Given two diagrammatic operators𝐷1 ∈ 𝜈 ′𝑅(𝐯)𝜈 ,𝐷2 ∈ 𝜂′𝑅(𝐯)𝜂, their product𝐷1𝐷2 is zero

unless 𝜈 = 𝜂′, and is given by stacking 𝐷1 on top of 𝐷2 otherwise. Since we know how

all diagrammatic operators act on the polynomial representation, we can easily verify

the following relations:

(7.3)

𝑖 𝑗

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 𝑖 = 𝑗

𝑖 𝑗

−

𝑖 𝑗
𝑖 → 𝑗

𝑖 𝑗

−

𝑖 𝑗
𝑗 → 𝑖

𝑖 𝑗
otherwise

(7.4)
−

𝑖 𝑗 𝑖 𝑗

= −

𝑖 𝑗 𝑖 𝑗

=

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

𝑖 𝑖
𝑖 = 𝑗

0 otherwise

Let us now consider the cubic relations. Let 𝑖 → 𝑗 be two vertices in 𝑄 connected by an

arrow, and let us consider the case |𝐯| = 3 for simplicity. Then on one hand, we have

𝑖 𝑗 𝑖

∶ 𝑓 ↦ (𝑥1 − 𝑥2)𝑠1(𝑓 ) ↦ (𝑥1 − 𝑥3)𝜕2𝑠1(𝑓 ) − 𝑠1(𝑓 ) ↦ (𝑥2 − 𝑥3)𝑠1𝜕2𝑠1(𝑓 ) − 𝑓 ,

and on the other hand

𝑖 𝑗 𝑖

∶ 𝑓 ↦ 𝑠2(𝑓 ) ↦ 𝜕1𝑠2(𝑓 ) ↦ (𝑥2 − 𝑥3)𝑠2𝜕1𝑠2(𝑓 ).
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One can check that this is the only situation when the two expressions do not coincide,

so that we have

(7.5)

𝑖 𝑗 𝑘

−

𝑖 𝑗 𝑘

=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎩

−

𝑖 𝑗 𝑖
𝑖 = 𝑘, 𝑖 → 𝑗

𝑖 𝑗 𝑖
𝑖 = 𝑘, 𝑗 → 𝑖

0 otherwise

Theorem 7.11 (Khovanov-Lauda, Rouquier, Varagnolo-Vasserot). The quiver Hecke al-
gebra 𝑅(𝐯) is generated by dots and crossings, modulo local relations (7.3), (7.4), (7.5).

Sketch of proof. Similarly to the proof of Proposition 5.29, one can find a cellular filtration

of ., and show that the class of each cell is expressed in terms of dots and crossings by

constructing an explicit resolution of every cell. This proves surjectivity. The injectivity

follows by comparing the size of the two algebras, see Proposition 7.12. □

It is clear from relations that any symmetric polynomial in dots commutes with any

element of 𝑅(𝐯). In fact, one can show that the center of 𝑅(𝐯) is precisely Sym ∶= PolS|𝐯|
.

Proposition 7.12. Let us fix a presentation of each 𝜏 ∈ S|𝐯| as a diagram in crossings. The
set of diagrams as below, where 𝑃 ∈ Pol, forms a basis of 𝑅(𝐯):

𝜏

𝑃

In particular, 𝑅(𝐯) is a free module of rank (|𝐯|)2 over Sym.

Proof. Using the relations (7.3–7.5), we can push all dots in a given diagram to the bot-

tom; note that we needed to fix a presentation of each permutation because of the rela-

tion (7.5). This shows that the set above is a spanning set. In order to check it has the

correct size, one uses equivariant localization to compute the size of 𝑅(𝐯). □

Note that despite its size, 𝑅(𝐯) is typically not isomorphic toMat|𝐯|×|𝐯|(Sym).

Example 7.13. Let 𝑄 = ∙ → ∙, 𝐯 = (1, 1). Then 𝑅(1, 1) can be realized as a subalgebra of

Mat2×2(Sym):

𝑅(1, 1) =
{

(
𝑎 𝑏

(𝑥1 − 𝑥2)𝑐 𝑑) ∶ 𝑎, 𝑏, 𝑐, 𝑑 ∈ Sym

}
.

The bijection is given by

(
𝑎 𝑏

(𝑥1 − 𝑥2)𝑐 𝑑) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝑎
1 2

𝑏
2 1

𝑐
1 2

𝑑
2 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠
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7.5. Simple andprojective representations. Before studying𝑅(𝐯)-modules, note that

𝑅(𝐯) has a natural grading by setting

deg
⎛
⎜
⎜
⎝ 𝑖

⎞
⎟
⎟
⎠
= 2, deg

⎛
⎜
⎜
⎝ 𝑖 𝑗

⎞
⎟
⎟
⎠
=

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

−2 if 𝑖 = 𝑗 ,
1 if 𝑖 → 𝑗 or 𝑗 → 𝑖,
0 otherwise.

From now on, all modules we consider will be understood to be graded.
Let 𝑅(𝐯)−mod be the category of finitely generated (left) 𝑅(𝐯)-modules. It contains

two subcategories of interest:

∙ The category 𝑅(𝐯)−fmod of finite-dimensional modules;

∙ The category 𝑅(𝐯)−pmod of projective modules.

The first question one needs to answer in order to understand 𝑅(𝐯)−fmod is what are

the simple modules.

Proposition 7.14. The category 𝑅(𝐯)−mod has finitely many simple modules.

Proof. Recall that the center of 𝑅(𝐯) is the polynomial algebra Sym = PolS|𝐯|
. Note that

Sym is also a polynomial ring in finitely many variables, which are all positively graded.

Let Sym+ ⊂ Sym be the augmentation ideal of all polynomials without constant term.

Then for any 𝑀 ∈ 𝑅(𝐯)−fmod, Sym+𝑀 is a proper submodule of 𝑀 . If 𝑀 is simple,

this means that Sym+𝑀 = 0, so that the action of 𝑅(𝐯) on 𝑀 factors through the quo-

tient 𝑅(𝐯)/Sym+
. Since 𝑅(𝐯)/Sym+

is a finite-dimensional algebra (more precisely, of

dimension |𝐯|2), it has finitely many simple modules. □

In particular, there finitely many simple modules in 𝑅(𝐯)−fmod.

Example 7.15. Let 𝑄 = ∙, and 𝐯 = 2. Then we know that 𝑅(2) ≃ Mat2×2(Sym). By the

proof of Proposition 7.14, all simple 𝑅(2)-modules come from 𝑅(2)/Sym+ ≃ Mat2×2(k).
Let 𝐸𝑖𝑗 , 𝑖, 𝑗 = 1, 2 be the matrix elements. Clearly, 𝐸11 and 𝐸22 are idempotents, therefore

a representation of Mat2×2(k) is the same as a quiver representation

𝑉1 𝑉2

𝐸12

𝐸21

with an extra condition that 𝐸12 is the inverse of 𝐸21 Up to isomorphism, it is exactly the

same as specifying a vector space 𝑉1 ≃ 𝑉2. Since a vector space is indecomposable if

and only if it has dimension one, 𝑅(2) has the unique simple module, namely the two-

dimensional “vector” module.

Example 7.16. Let 𝑄 = ∙ → ∙, and 𝐯 = (1, 1). Analogously to the previous example,

every simple module over 𝑅(1, 1) comes from the quotient 𝑅(1, 1)/Sym+
. It follows from

Example 7.13 representations of this quotient are the same as quiver representations

𝑉1 𝑉2
𝑥

𝑦

with an extra condition 𝑥𝑦 = 𝑦𝑥 = 0. Note that for any such representation both

0 ⇄ Im 𝑥 and Im 𝑦 ⇄ 0 are non-trivial submodules. This implies that for any simple

module, we have 𝑥 = 𝑦 = 0. Therefore 𝑅(1, 1) has two simple modules, one-dimensional

modules, corresponding to C⇄ 0 and 0⇄ C.
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Let us summarize some properties of graded algebras.

Definition 7.17. Let 𝐴 be an algebra, and 𝑀 an 𝐴-module. A projective cover of 𝑀 is

a surjective map 𝜓 ∶ 𝑃 → 𝑀 from a projective 𝐴-module 𝑀 , such that for any 𝛼 ∈
Hom𝐴(𝑃, 𝑃) equality 𝜓 ◦ 𝛼 = 𝜓 implies that 𝛼 is invertible. When a projective cover

exists, it is always unique.

Proposition 7.18. Let 𝐴 = ⨁𝑖∈Z 𝐴𝑖 be a graded algebra, such that dim𝐴𝑖 < ∞ for all
𝑖 ∈ Z, and 𝐴𝑖 = {0} for 𝑖 ≪ 0. Then up to a shift of grading, every projective 𝐴-module
can be written uniquely as a sum of indecomposable projectives. Every indecomposable
projective is a direct summand of 𝐴, so has a form 𝐴𝑒, where 𝑒 ∈ 𝐴 is an idempotent. Every
simple 𝐴-module 𝑆 admits a projective cover 𝑃𝑆 , and the map 𝑆 ↦ 𝑃𝑆 establishes a bijection
between simple modules in 𝐴−fmod and indecomposable modules in 𝐴−pmod.

Proof. This follows from the fact that 𝐴−mod is a Krull-Schmidt category. □

Thus classifying simples in 𝑅(𝐯)−fmod amounts to classifying indecomposables in

𝑅(𝐯)−pmod, which in turn amounts to classifying primitive idempotents in 𝑅(𝐯), i.e.
𝑒 ∈ 𝑅(𝐯) with 𝑒2 = 𝑒, such that 𝑒 ≠ 𝑒1 + 𝑒2, where 𝑒𝑖’s satisfy the same property.

It is clear from diagrammatics developed in Section 7.4 that the elements

𝑒𝜂 ∶= [Fl𝜂] ∈ 𝜂𝑅(𝐯)𝜂, 𝜂 ∈ Seq(𝐯)

are idempotents in 𝑅(𝐯), summing up to 1. However, these idempotents are neither

pairwise distinct nor indecomposable. Indeed, already in the case of 𝑄 = ∙, we have

𝑒11 = 𝑥1𝜏 + (−𝜏𝑥2), and

(𝑥1𝜏)2 = = + = = 𝑥1𝜏.

Let us denote this idempotent by 𝑒1(2) = 𝑥1𝜏. One can check that it is primitive; more-

over it is the unique primitive idempotent by Example 7.15, and the module 𝑅(𝐯)𝑒1(2) is
precisely the polynomial representation Pol2.

For the same quiver 𝑄 = ∙ and arbitrary dimension 𝑛 > 0, one can similarly check

that the element

𝑒1(𝑛) = 𝑥𝑛−11 𝑥𝑛−22 … 𝑥𝑛−1𝜕𝑤0 , 𝑤0 = (
1 2 ⋯ 𝑛
𝑛 𝑛 − 1 ⋯ 1)

is the unique primitive idempotent in𝑅(𝑛), and𝑅(𝑛)𝑒1(𝑛) ≃ Pol𝑛. Wewill call it the divided
power idempotent. By comparing the dimensions, one sees that 𝑅(𝑛) ≃ (Pol𝑛)⊕𝑛!, up to

grading shifts (we will return to these later).

Let us slightly mofify the indexing set Seq(𝐯). Namely, for every sequence 𝜂 ∈ Seq(𝐯)
and every color 𝑖 ∈ 𝐼 , we replace each occurrence of … 𝑗𝑖𝑘𝑗 ′ … in 𝜂 with … 𝑗𝑖(𝑘)𝑗 ′ ….
We will denote the resulting set of sequences by Seq′(𝐯); it is clear that any element

𝜂 ∈ Seq′(𝐯) gives rise to an idempotent 𝑒𝜂 ∈ 𝑅(𝐯) by concatenation of divided power

idempotents. We will write 𝑃𝜂 = 𝑅(𝐯)𝑒𝜂 for the corresponding projectives.
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Proposition 7.19. Let 𝑖 ≠ 𝑗 ∈ 𝐼 . There exist isomorphisms of projective modules

𝑃…𝑖𝑗… ≃ 𝑃…𝑗𝑖…, if there is no arrow between 𝑖 and 𝑗 ,
𝑃…𝑖𝑗 𝑖… ≃ 𝑃…𝑖(2)𝑗… ⊕ 𝑃…𝑗𝑖(2)…, if 𝑖 → 𝑗 or 𝑗 → 𝑖.

Proof. Let us consider a map 𝑃…𝑖𝑗… → 𝑃…𝑗𝑖…, given by appending a crossing to the bottom

of each diagram:

𝑖 𝑗⋯ ⋯

⇝

𝑗 𝑖⋯ ⋯
We have an analogous map 𝑃…𝑗𝑖… → 𝑃…𝑖𝑗…. If 𝑖 and 𝑗 are not connected by an edge, these

two maps are inverses of each other by relation (7.3), hence the first claim.

For the second claim, let us assume that 𝑖 → 𝑗 , the other case being analogous. We

construct explicit maps

𝐵0 ∶ 𝑃…𝑖𝑗 𝑖… → 𝑃…𝑖(2)𝑗… ⊕ 𝑃…𝑗𝑖(2)…, 𝐵1 ∶ 𝑃…𝑖(2)𝑗… ⊕ 𝑃…𝑗𝑖(2)… → 𝑃…𝑖𝑗 𝑖…
by appending the following diagrams:

𝐵0 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑖 𝑗 𝑖

𝑖 𝑗 𝑖

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, 𝐵1 =
⎛
⎜
⎜
⎜
⎝

−

𝑖 𝑖 𝑗 𝑗 𝑖 𝑖

⎞
⎟
⎟
⎟
⎠

.

Note that 𝐵1𝐵0 = 1:

𝐵1𝐵0 = −

𝑖 𝑗 𝑖

+

𝑖 𝑗 𝑖

= −

𝑖 𝑗 𝑖

+

𝑖 𝑗 𝑖

=

𝑖 𝑗 𝑖

.

Similarly 𝐵0𝐵1 = 1:

𝐵0𝐵1 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−

𝑖 𝑖 𝑗 𝑗 𝑖 𝑖

−

𝑖 𝑖 𝑗 𝑗 𝑖 𝑖

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−

𝑖 𝑖 𝑗

0

0

𝑗 𝑖 𝑖

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝑖 𝑖 𝑗
0

0
𝑗 𝑖 𝑖

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

Thus we may conclude. □

7.6. Grothendieck groups. Let 𝐵 ⊂ 𝐴 be an inclusion of unital algebras which does

not preserve a unit, and denote the image of 1𝐵 by 𝑒. This is an idempotent in 𝐴. In this
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situation, we have adjoint functors of induction and restriction:

Ind ∶ 𝐵−mod 𝐴−mod ∶ Res

where Ind(𝑀) = 𝐵 ⊗𝐴 𝑀 , and Res(𝑁 ) = 𝑒𝑁 .

For quiver Hecke algebras, we have an obvious inclusion of algebras 𝑅(𝐯) ⊗ 𝑅(𝐯′) ⊂
𝑅(𝐯 + 𝐯′), obtained by putting the diagrams horizontally next to each other. Note that

by definition, we have Ind(𝑃𝜂, 𝑃𝜂′) = 𝑃𝜂𝜂′ . On the other hand, it is easy to see that

Res(𝑅(𝐯+𝐯′)) is free over 𝑅(𝐯)⊗𝑅(𝐯′), with basis given by “shuffle” permutation, which

leave the order of first |𝐯| and last |𝐯′| strands intact:

𝑅(𝐯) 𝑅(𝐯′)

In particular, both Ind and Res restrict to functors between the category of projective

modules.

Definition 7.20. Let C be an exact category. The Grothendieck group 𝐾0(C) of C is de-

fined by

𝐾0(C) ∶= ⨁
𝐶∈C/∼

Z[𝐶]/⟨[𝐶] = [𝐴] + [𝐵] ∶ 0 → 𝐴 → 𝐶 → 𝐵 → 0⟩

where the sum runs over all isomorphism classes of objects in C, and the relations run

over all short exact sequences in C.

Let C = 𝑅(𝐯)−pmod, and denote 𝐾0(𝑅(𝐯)) ∶= 𝐾0(𝑅(𝐯)−pmod). We know that all exact

sequences in this category split; therefore,

𝐾0(𝑅(𝐯)) = ⨁
𝑃

Z[𝑃],

where the sum runs over all indecomposable projective 𝑅(𝐯)-modules. In particular, the

number of simple 𝑅(𝐯)-modules is the same as the rank of 𝐾0(𝑅(𝐯)) over Z.

Since all algebras and modules we consider are graded, we have an additional piece of

structure, namely a grading shift. We will denote the class of 𝑃[1] in 𝐾0(𝑅(𝐯)) by 𝑞[𝑃];
this makes 𝐾0(𝑅(𝐯)) into a free module over Z𝑞 ∶= Z[𝑞, 𝑞−1].

Example 7.21. Let us consider the nilHecke algebra 𝑅(2) again. We saw that 𝑅(2) ≃ 𝑃1(2)
as a left 𝑅(2)-module; however, this does not take into account the grading shift. One

can check that 𝑅(2)(𝜕𝑥1) starts in degree 0, while 𝑅(2)(𝑥2𝜕) starts in degree (−2). This
means that in the Grothendieck group, we have

(7.6) 𝑃12 = (1 + 𝑞−2)𝑃1(2) .

The functors Ind, Res induce Z𝑞-linear maps 𝐾0(𝑅(𝐯)) ⊗ 𝐾0(𝑅(𝐯′)) ⇄ 𝐾0(𝑅(𝐯 + 𝐯′)).
This suggests to consider 𝐾0(𝑅(𝐯)) for all 𝐯 at the same time.

Definition 7.22. Define 𝐾0(𝑅) ∶= ⨁𝐯∈Z𝐼
≥0
𝐾0(𝑅(𝐯)).

Note that the algebra has a 𝑏𝑏𝑍 𝐼 -grading, where 𝐾0(𝑅(𝐯)) lives in degree 𝐯.

Proposition 7.23. The functor Ind induces a (graded) associative product on 𝐾0(𝑅). The
functor Res induces a (graded) coassociative coproduct on 𝐾0(𝑅).
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Proof. This follows from our computation of Ind and Res for projective modules. □

The product and coproduct on 𝐾0(𝑅) are dual to each other in a certain sense. Let us

denote the graded dimension of the center Sym of 𝑅(𝐯) by (𝐯)𝑞 :

(𝐯)𝑞 = grdim(Sym) = ∏
𝑖∈𝐼

𝑣𝑖
∏
𝑎=1

1
1 − 𝑞2𝑎

.

Definition 7.24. Define a Z𝑞-bilinear form on 𝐾0(𝑅(𝐯)) by

(−,−) ∶ 𝐾0(𝑅(𝐯)) × 𝐾0(𝑅(𝐯)) → Z𝑞[(𝐯)𝑞],
(𝑅(𝐯)𝑒1, 𝑅(𝐯)𝑒2) ∶= grdim(𝑒1𝑅(𝐯)𝑒2),

where 𝑒1, 𝑒2 are idempotents in 𝑅(𝐯).

Proposition 7.25. The bilinear form satisfies the following properties:

(1) (1, 1) = 1 for 𝐯 = 0;
(2) (𝑃𝑖, 𝑃𝑗) = 𝛿𝑖𝑗(1 − 𝑞2)−1 for |𝐯| = 1;
(3) (𝑥, Ind(𝑦, 𝑦′)) = (Res(𝑥), 𝑦 ⊗ 𝑦′).

Proof. The first two properties are obvious. For the third one, we have

(𝑃𝜂, Ind(𝑃𝜈 , 𝑃𝜈 ′)) = grdim(𝑒𝜂𝑅(𝐯 + 𝐯′) ⊗𝑅(𝐯+𝐯′) 𝑅(𝐯 + 𝐯′)(𝑒𝜈 ⊗ 𝑒𝜈 ′))
= grdim(𝑒𝜂𝑅(𝐯 + 𝐯′)𝑒𝜈𝜈 ′) = (Res(𝑃𝜂), 𝑃𝜈 ⊗ 𝑃𝜈 ′).

and so we’re done. □

The proposition implies that the bilinear form can be defined inductively.

Remark 7.26. One can ask whether product and coproduct on 𝐾0(𝑅) are algebraically

compatible. They almost form a bialgebra; namely, one needs to twist the factorwise

product on 𝐾0(𝑅) ⊗ 𝐾0(𝑅) by some powers of 𝑞. We will not need this statement.

7.7. Universal enveloping algebras. Let us recall some facts about universal envelop-

ing algebras.

Definition 7.27. Let g be a Lie algebra. The universal enveloping algebra 𝑈 (g) of g is

defined by

𝑈 (g) ∶= 𝑇 (g)/⟨𝑥 ⊗ 𝑦 − 𝑦 ⊗ 𝑥 = [𝑥, 𝑦] ∶ 𝑥, 𝑦 ∈ g⟩,
where 𝑇 (g) = ⨁𝑘≥0 g

⊗𝑘
is the tensor algebra.

The algebra 𝑈 (g) is universal in the sense that every map of Lie algebras g → 𝐴,
where 𝐴 is an associative algebra equipped with the commutator Lie bracket [𝑎, 𝑏] ∶=
𝑎𝑏 − 𝑏𝑎, factors through 𝑈 (g). Therefore the representation of g is contained in the

(richer) representation theory of 𝑈 (g).
The size of 𝑈 (g) is well known:

Theorem 7.28 (Poincaré-Birkhoff-Witt). We have an isomorphism of vector spaces

𝑈 (g) ≃ 𝑆(g),

where 𝑆(g) = ⨁𝑘≥0 𝑆𝑘g ∶= ⨁𝑘≥0(g⊗𝑘)S𝑘 . □
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Now we restrict to a particular example. Let n ⊂ gl𝑛 be the Lie algebra of strictly

upper-triangular matrices. The adjoint action of the Cartan subalgebra t ⊂ g of diagonal

matrices gives rise to a Z𝑛
-grading on n, and so on 𝑈 (n). Let {𝐸𝑖𝑗 ∶ 𝑖 < 𝑗} be the basis

of n consisting of matrix elements, and denote 𝑒𝑖 = 𝐸𝑖,𝑖+1 for 1 ≤ 𝑖 ≤ 𝑛 − 1. Since

𝐸𝑖𝑗𝐸𝑘𝑙 = 𝛿𝑗 ,𝑘𝐸𝑖𝑙 we have the following relations in 𝑈 (n):

(7.7) 𝑒𝑖𝑒𝑗 − 𝑒𝑗𝑒𝑖 = 0 for |𝑖 − 𝑗 | > 1, 𝑒2𝑖 𝑒𝑖+1 − 2𝑒𝑖𝑒𝑖+1𝑒𝑖 + 𝑒𝑖+1𝑒2𝑖 = 0.

It is easy to check that these are the defining relations of 𝑈 (n).

Definition 7.29. We define Z(𝑞)-algebra 𝑈𝑞(n) to be generated by elements 𝑒𝑖, 1 ≤ 𝑖 ≤
𝑛 − 1, modulo the following deformation of relations (7.7):

(7.8) 𝑒𝑖𝑒𝑗 − 𝑒𝑗𝑒𝑖 = 0 for |𝑖 − 𝑗 | > 1, 𝑒2𝑖 𝑒𝑖+1 − (𝑞 + 𝑞−1)𝑒𝑖𝑒𝑖+1𝑒𝑖 + 𝑒𝑖+1𝑒2𝑖 = 0.

Let [𝑛] = 𝑞𝑛−𝑞−𝑛
𝑞−𝑞−1 , [𝑛]! ∶= [𝑛][𝑛 − 1]… [1] ∈ Z𝑞 , and 𝑒(𝑘)𝑖 ∶= 𝑒𝑘𝑖

[𝑘]! ∈ 𝑈𝑞(n). We define

𝑈A
𝑞 (n) ⊂ 𝑈𝑞(n) be the Z𝑞-subalgebra generated by 𝑒(𝑘)𝑖 , 𝑖 ∈ 𝐼 , 𝑘 ≥ 1.

The algebra 𝑈𝑞(n) is known as the positive half of quantum gl𝑛, and 𝑈A
𝑞 (n) is its

Lusztig’s integral form.

7.8. A categorification result. It turns out that the algebra 𝐾0(𝑅) often has an explicit

description. In order to simplify exposition, we restrict our attention to the case of a

linear quiver, as in Exercise 7.3.

Theorem 7.30. Let 𝑄 be a linear quiver, with any orientation of edges. Then there exists
an isomorphism of Z𝑞-algebras

𝑈A
𝑞 (n)

∼−→ 𝐾0(𝑅),

which sends 𝑒(𝑘)𝑖 to [𝑃𝑖(𝑘)]. It preserves the Z𝑛-grading.

Sketch of proof. First, we define a homomorphism 𝑈𝑞(n) → 𝐾0(𝑅) ⊗Z𝑞 Z(𝑞) of Z(𝑞)-
algebras. This amounts to checking the defining relations (7.8) of 𝑈𝑞(n), which follow

from Proposition 7.19. Indeed, for |𝑖 − 𝑗 | > 1 we have

𝑒𝑖𝑒𝑗 = [𝑃𝑖𝑗] = [𝑃𝑗𝑖] = 𝑒𝑗𝑒𝑖,

and for the cubic relation

𝑒𝑖𝑒𝑖+1𝑒𝑖 = [𝑃𝑖𝑗 𝑖] = [𝑃𝑖+1,𝑖(2)] + [𝑃𝑖+1,𝑖(2)] = 𝑒𝑖+1𝑒
(2)
𝑖 + 𝑒(2)𝑖 𝑒𝑖+1 = (𝑒𝑖+1𝑒2𝑖 + 𝑒

2
𝑖 𝑒𝑖+1)/(𝑞 + 𝑞

−1)

⇒ 𝑒𝑖+1𝑒2𝑖 + 𝑒
2
𝑖 𝑒𝑖+1 = (𝑞 + 𝑞−1)𝑒𝑖𝑒𝑖+1𝑒𝑖.

This morphism restricts to a map Φ ∶ 𝑈A
𝑞 (n) → 𝐾0(𝑅). In order to check its injectiv-

ity, we recall that there exists a non-degenerate bilinear form on 𝑈A
𝑞 (n), defined by the

properties in Proposition 7.25. Therefore Φ is compatible with bilinear forms, and as

such must be injective. The surjectivity of Φ is slightly more technical, and so we omit

it. □

What is the point of this theorem? On one hand, by PBW theorem it computes the

rank of each individual𝐾0(𝑅(𝐯)), which is whatwe started outwith. On the other hand, it
tells us that the universal enveloping algebra𝑈 (n) is a shadow of a “categorified” picture.

Namely, we can replace the algebra 𝑈 (n), by the collection of categories 𝑅(𝐯)−pmod. A
slightly better way to view this is as a 2-category, where objects are points in Z𝑛

, and
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morphism categories are Hom(𝐯′, 𝐯 + 𝐯′) = 𝑅(𝐯)−pmod. One eventually extends this to

𝑈𝑞(gl𝑛). Then instead of representation theory of an algebra, one can study categorical

representations.

While all of this might sounds abstract, here is one application. For any finite dimen-

sional representation 𝑉 of sl2 = ⟨𝐸, 𝐹 , 𝐻 ⟩, we have an isomorphism of weight spaces

𝑉−𝑘 ≃ 𝑉𝑘, given by 𝐸𝑘. Similarly, one can show that a categorical action of𝑈 (sl2) induces
similar equivalences of weight categories. This observation was leveraged by Chuang

and Rouquier to a great effect in order to understand the blocks of the category of rep-

resentations of S𝑛 over a field of positive characteristic.
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A note on references

Sections 2 to 4 roughly follow selected chapters from the excellent lecture notes by

Anderson-Fulton [AF23]. Section 5.1 is an extreme butchering of a beautiful and im-

portant topic. One would need a separate series of lectures to do it justice; if you want

to dive into that, my preferred textbooks are [Hum12] and [OV12]. The rest of Sec-

tion 5 is based on the seminal paper of Demazure [Dem73], and its later extension by

Holm-Sjamaar [HS08]. My exposition of convolution algebras in Section 6 started out

by following Chriss-Ginzburg [CG97], but ended up being more inspired by the tech-

niques found in Fulton [Ful13]. For a less rushed look at the equivariant categories of

constructible sheaves, look at lecture notes by Yun [Yun06]. Finally, I am not aware of a

good textbook treating quiver Hecke algebras; however, I suggest looking at the expos-

itory article by Brundan [Bru13], and Przezdziecki’s master thesis [Prz15]. I based my

exposition on the original paper of Khovanov-Lauda [KL09].
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